Supporting Information

S1: Synthetic details

S2: X-Ray diffraction studies

S3: Theoretical details

S4: References

S1: Synthetic details

General: All manipulations were performed under an inert atmosphere of dry nitrogen, using standard Schlenk techniques. Dry, oxygen-free solvents were employed unless otherwise mentioned. The compounds L=CH₂ (L = 1,3-Bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene), L=CHTMS, [LC(Ph)]PCl₂, MesPCl₂ 4,5-dimethyl-1,3-diisopropylimidazol-2-ylidene (^{Me}ipr) were prepared following literature procedures,^[1] while all other starting materials were purchased from commercial sources. NMR spectra were recorded on Bruker Avance 400 MHz spectrometers (¹H, 400.1 MHz; ¹³C, 100.5 MHz; ³¹P, 161.9 MHz) or Bruker Avance 600 MHz spectrometers (¹H, 600.2 MHz; ¹³C, 150.8 MHz; ³¹P, 242.9 MHz). The chemical shifts (δ) were measured according to IUPAC and expressed in ppm relative to SiMe₄ (¹H, ¹³C), and 85% H₃PO₄ (³¹P). Coupling constants *J* are reported in Hertz [Hz] as absolute values. Because of high sensitivity of these compounds or the contamination of solvents, the elemental analyses gave unsatisfying results. The high purity of these isolated compounds has been proved mainly by NMR spectra. ESI-MS spectra were measured on Bruker ESI-Q-TOF maxis 4G. UV/vis spectra were measured on Shimadzu UV/vis/NIR UV-3600-spectrometer. Melting point (M. p.) were measured on Jiahang JH30 apparatus.

Synthesis of 1a:

PCl₃ (685 mg, 5 mmol) in toluene (5 mL) was added to a stirred solution of **L=CHTMS** (5.2 g, 11 mmol) in toluene (40 mL) at room temperature. After stirring at 130 °C for 24 h, the reaction mixture was allowed to cool slowly to room temperature. The resulting precipitates were collected via filtration, then washed with hexane (2×5 mL) and dried *in vacuo* to afford **1a** (4.0 g, yield = 92 %) as an orange powder. M. p. > 250.0 °C. ¹H NMR (600.2 MHz, CD₃CN): δ = 7.39 (t, *J*_{HH} = 7.6 Hz, 4 H, *C*_{Ar}), 7.14 (d, *J*_{HH} = 7.6 Hz, 8 H, *C*_{Ar}), 4.88 (d, ²*J*_{PH} = 13.5 Hz, 2 H, CHP), 3.95 (s, 8 H, NCH₂), 2.83 (m, 8 H, CH(CH₃)₂), 1.19 (d, *J* = 7.0 Hz, 12 H, CH(CH₃)₂), 0.90 (d, *J* = 7.0 Hz, 12 H, CH(CH₃)₂). ¹³C {¹H} NMR (150.8 MHz, CD₃CN): δ = 166.3 (d, ²*J*_{PC} = 20.9 Hz, NCN), 147.8 (*C*_{Ar}), 131.4 (*C*_{Ar}), 129.9 (*C*_{Ar}), 129.2 (*C*_{Ar}), 126.2 (*C*_{Ar}), 107.2 (d, ¹*J*_{PC} = 45.0 Hz, CH-P), 51.9 (NCH₂), 29.4, 24.9, 24.5. ³¹P {¹H} NMR (242.9 MHz, CD₃CN): δ = 331.8. ³¹P NMR (242.9 MHz, CD₃CN): δ = 331.7 (t, ²*J*_{PH} = 13.5 Hz). UV/Vis (acetonitrile, λ (nm) ε (M⁻¹cm⁻¹)): 332 (8125), 473.5 (43599). HRMS (ESI, m/z) calc. for: C₅₆H₇₈N₄P⁺: 837.5959 [M]⁺; found: 837.5888. IR (ATR, cm⁻¹): 3395, 2961, 2927, 2866, 1425, 1313, 905.

Figure S2. ¹³C{¹H} NMR of **1a** in CD₃CN. *Toluene.

Figure S4. ³¹P NMR of 1a in CD₃CN.

Figure S5. HRMS of 1a.

Figure S6. IR spectrum of 1a.

Synthesis of 3a:

NaOCP (151 mg, 0.5 mmol) in tetrahydrofuran (10 mL) was added dropwise to a stirred solution of 1a (450 mg, 0.5 mmol) in a mixed solvent of acetonitrile (1 mL) and tetrahydrofuran (20 mL). After stirring for 20 minutes, the solvent was removed under reduced pressure. The remaining solid was extracted with a mixed solvent of hexane (20 mL) and diethyl ether (10 mL). The mixture was then filtered and concentrated to approximately 5 mL with a concomitant precipitation. The precipitates were collected, washed with a minimum amount of cold hexane (2×1 mL) and dried in vacuo to afford **3a** (340 mg, 76 %) as a red powder. Red crystals of **3a** were obtained from a saturated hexane solution stored at -30 °C for 1 day. M. p. = 134.3 °C. ¹H NMR (600.2 MHz, C₆D₆): δ = 7.29 (t, J_{HH} = 7.8Hz, 1 H, C_{Ar}), 7.15 (m, 2 H, C_{Ar}), 7.08 ~ 7.00 (br., 7 H, C_{Ar}), 6.96 (d, J_{HH} = 7.8 Hz, 2 H, C_{Ar}), 5.77 (br., 1 H, P-CH), 4.77 (s, 1 H, C(O)CH), 3.42 (br., 2 H, CH(CH₃)₂), 3.34 (m, 4 H, NCH₂), 3.27 (m, 4 H, NCH₂), 3.17 (m, 2 H, CH(CH₃)₂), 3.10 (br., 2 H, CH(CH₃)₂), 3.02 (m, 2 H, CH(CH₃)₂), 1.41 (br., 6 H, CH(CH₃)₂), 1.27 (br., 6 H, CH(CH₃)₂), 1.23 ~ 1.19 (m, 24 H, CH(CH₃)₂), 1.12 (d, $J_{\text{HH}} = 7.4$ Hz, 6 H, CH(CH₃)₂), 1.11 (d, $J_{\text{HH}} = 6.8$ Hz, 6 H, CH(CH₃)₂). ¹³C{¹H} NMR (150.8 MHz, C₆D₆): $\delta =$ 198.9 (m, CO), 159.0 (NCN), 157.2 (NCN), 148.4 (CAr), 148.2 (CAr), 147.7 (CAr), 145.8 (CAr), 139.2 (*C*_{Ar}), 136.6 (*C*_{Ar}), 135.0 (*C*_{Ar}), 134.6 (*C*_{Ar}), 129.6 (*C*_{Ar}), 129.5 (*C*_{Ar}), 129.2 (*C*_{Ar}), 128.4 (C_{Ar}) , 125.0 (C_{Ar}) , 124.6 (C_{Ar}) , 124.7 (C_{Ar}) , 123.9 (C_{Ar}) , 89.4 (br., CHP), 84.6 (d, ${}^{2}J_{PC} = 48.7$ Hz, CHCO), 53.6 (NCH₂), 52.0 (NCH₂), 50.4 (NCH₂), 49.9 (NCH₂), 29.1, 29.0, 25.4, 25.3, 24.9, 24.5, 24.3, 24.0. ³¹P{¹H} NMR (242.9 MHz, C₆D₆): $\delta = 487.5$ (d, ¹*J*_{PP} = 529.5 Hz, CH-P=P-CO), 385.0 (d, ${}^{1}J_{PP} = 529.5$ Hz, CH-P=P-CO). UV/Vis (toluene, λ (nm) ϵ (M⁻¹cm⁻¹)): 368 (15262), 488.0 (49678). HRMS (ESI, m/z) calc. for: C₅₇H₇₈N₄OP₂: 897.5724 [M+H]⁺; found: 897.5707. IR (ATR, cm⁻¹): 2960, 2927, 2868, 1502, 1494, 1445, 1434, 1323, 1054, 1042, 803.

Figure S8. ${}^{13}C{}^{1}H$ NMR of **3a** in C₆D₆. *Toluene, [#]hexane.

Figure S10. ³¹P NMR of **3a** in C_6D_6 .

Figure S11. (a) ³¹P{¹H} NMR spectra of **3a** (internal standard OPPh₃) over a period of 40 h in C₆D₆. (b) Table of the concentration of **3a** over a period of 40 h in C₆D₆. (c) Plot of concentration of **3a** against time in C₆D₆.

Figure S13. IR spectrum of 3a.

Synthesis of 3a-dimer:

3a (200 mg, 0.2 mmol) in hexane (20 mL) was allowed to evaporate slowly at room temperature for 1 week. Yellow crystals were then formed and collected to afford **3a-dimer** (122 mg, yield = 61 %) as yellow crystalline materials. M. p. = 193.1 °C (Decomposition). ¹H NMR (600.2 MHz, C_6D_6): $\delta = 7.45$ (d, J = 7.7 Hz, 2 H, $C_{Ar}H$), 7.41 (t, J = 7.5 Hz, 2 H, $C_{Ar}H$), 7.37 (t, J =7.7 Hz, 2 H, C_{Ar}H), 7.30 (d, J = 7.7 Hz, 2 H, C_{Ar}H), 7.26 (t, J = 7.5 Hz, 4 H, C_{Ar}H), 7.21 (t, J = 7.7 Hz, 2 H, C_{Ar}H), 7.14 (d, J = 7.5 Hz, 2 H, C_{Ar}H), 7.11~7.08 (m, 2 H, C_{Ar}H), 4.81 (s, 2 H, CHC(O)PP), 3.80 (m, 6 H, NCH2), 3.61 (m, 2 H, NCH2), 3.28 (m, 8 H, NCH2), 3.18 (m, 6 H, CH(CH₃)₂), 3.13 (m, 4 H, CH(CH₃)₂), 3.07 (m, 6 H, CH(CH₃)₂), 2.83 (m, 2 H, CHPP), 1.86 (d, J = 6.6 Hz, 6 H, CH(CH₃)₂), 1.46 (d, J = 6.6 Hz, 6 H, CH(CH₃)₂), 1.44 (d, J = 7.1 Hz, 6 H, $CH(CH_3)_2$), 1.39~1.37 (m, 12 H, $CH(CH_3)_2$), 1.36 (d, J = 6.6 Hz, 6 H, $CH(CH_3)_2$), 1.34 (d, J =6.6 Hz, 12 H, CH(CH₃)₂), 1.28 (d, J = 6.9 Hz, 6 H, CH(CH₃)₂), 1.26 (d, J = 6.8 Hz, 6 H, $CH(CH_3)_2$), 1.22 (m, 12 H, $CH(CH_3)_2$), 1.18 (d, J = 6.9 Hz, 6 H, $CH(CH_3)_2$), 1.06 (d, J = 6.6Hz, 6 H, $CH(CH_3)_2$), 0.62 (d, J = 6.6 Hz, 6 H, $CH(CH_3)_2$), 0.56 (d, J = 6.6 Hz, 6 H, $CH(CH_3)_2$). ¹³C{¹H} NMR (150.8 MHz, C₆D₆): δ = 201.8 (m, C=O), 159.4 (NCN), 156.8 (m, NCN), 150.6 (*C*_{Ar}), 150.0 (*C*_{Ar}), 150.0 (*C*_{Ar}), 148.7 (*C*_{Ar}), 147.8 (*C*_{Ar}), 146.8 (*C*_{Ar}), 145.6 (*C*_{Ar}), 143.8 (*C*_{Ar}), 141.7 (CAr), 141.1 (CAr), 137.2 (CAr), 133.8 (CAr), 128.8 (CAr), 128.5 (CAr), 127.4 (CAr), 127.3 (*C*_{Ar}), 127.0 (*C*_{Ar}), 125.7 (*C*_{Ar}), 125.2 (*C*_{Ar}), 124.6 (*C*_{Ar}), 124.5 (*C*_{Ar}), 123.9 (*C*_{Ar}), 123.9 (*C*_{Ar}), 123.7 (C_{Ar}), 80.2 (t, ${}^{1}J_{PC} \sim {}^{2}J_{PC} = 10.3$ Hz, CHPP), 71.3 (m, CHC(O)P), 54.0 (NCH₂), 51.9 (NCH₂), 50.4 (NCH₂), 50.3 (NCH₂), 29.6, 28.7, 28.5, 28.4, 28.3, 28.2, 27.9, 27.9, 26.2, 26.1, 26.1, 26.0, 25.9, 25.8, 25.6, 25.4, 25.3, 24.8, 24.7, 24.6, 24.1, 23.9, 23.8, 15.6. ³¹P{¹H} NMR $(242.9 \text{ MHz}, C_6D_6): \delta = -30.9 \text{ (br., } C(H)-PP-C(O)), -43.7 \text{ (br., } C(H)-PP-C(O)). UV/Vis$ (toluene, λ (nm) ϵ (M⁻¹cm⁻¹)): 373.0 (27134), 486.0 (1872). HRMS (ESI, m/z) calc. for:

C₁₁₄H₁₅₆N₈O₂P₄: 1794.1374 [M+H]⁺; found: 1794.1267. IR (ATR, cm⁻¹): 2960, 2925, 2864, 1503, 1472, 1447, 1325, 1054, 1043, 803, 760.

Figure S14. ¹H NMR of **3a-dimer** in C₆D₆. [#]Hexane, *tetrahydrofuran.

Figure S15. ¹³C{¹H} NMR of **3a-dimer** in C₆D₆. [#]Hexane.

Figure 16. ${}^{31}P{}^{1}H$ NMR of **3a-dimer** in C₆D₆.

Figure 17. HRMS of 3a-dimer.

Figure S18. IR spectrum of 3a-dimer.

Synthesis of 1b:

L=CHTMS (500 mg, 1.0 mmol) and L=C(Ph)PCl₂ (580 mg, 1.0 mmol) were mixed in toluene (20 mL) at room temperature. After stirring at 110 °C for 24 h, the solution was allowed to cool slowly to room temperature. The resulting precipitates were collected, washed with hexane (2 × 2 mL) and dried *in vacuo* to afford **1b** (721 mg, yield = 76 %) as an orange powder. M. p. > 250.0 °C. ¹H NMR (600.2 MHz, CD₃CN): δ = 7.40 (t, *J* = 7.8 Hz, 2 H, C_{Ar}*H*), 7.32 (t, *J* = 7.8 Hz, 2 H, C_{Ar}*H*), 7.11 (d, *J* = 7.8 Hz, 4 H, C_{Ar}*H*), 7.03 (d, *J* = 7.8 Hz, 2 H, C_{Ar}*H*), 6.50 (t, *J* = 7.3 Hz, 1 H, C_{Ar}*H*), 6.45 (t, *J* = 7.3 Hz, 2 H, C_{Ar}*H*), 5.99 (d, *J* = 7.3 Hz, 2 H, C_{Ar}*H*), 4.63 (d, ²*J*_{PH} = 12.5 Hz, 1 H, CH-P), 3.94 (s, 4 H, NCH₂), 3.82 (s, 4 H, NCH₂), 2.93 (m, 4 H, CH(CH₃)₂), 2.76 (m, 4 H, CH(CH₃)₂), 1.17 (d, *J* = 7.2 Hz, 12 H, CH(CH₃)₂), 1.14 (d, *J* = 7.2 Hz, 12 H, CH(CH₃)₂), 1.02 (d, *J* = 6.9 Hz, 12 H, CH(CH₃)₂), 0.98 (d, *J* = 6.9 Hz, 12 H, CH(CH₃)₂). ¹³C {¹H</sup> NMR (150.8 MHz, CD₃CN): δ = 169.3 (d, ²*J*_{PC} = 34.2 Hz, *-C*=CHP), 166.1 (d, ²*J*_{PC} = 25.6 Hz, *-C*=C(Ph)P), 147.1 (C_{Ar}), 130.7 (C_{Ar}), 129.2 (C_{Ar}), 127.1 (C_{Ar}), 126.4 (C_{Ar}), 125.9 (C_{Ar}),

121.9 (d, ${}^{1}J_{PC} = 52.5 \text{ Hz}$, =*C*HP), 103.0 (d, ${}^{1}J_{PC} = 45.0 \text{ Hz}$, =*C*(Ph)P), 53.6 (N*C*H₂), 52.1 (N*C*H₂), 29.5, 29.4, 26.3, 24.9, 24.8, 23.9. ${}^{31}P\{{}^{1}H\}$ NMR (242.9 MHz, CD₃CN): $\delta = 323.3$. ${}^{31}P$ NMR (242.9 MHz, CD₃CN): $\delta = 323.2$ (d, ${}^{2}J_{PH} = 12.5 \text{ Hz}$). UV/Vis (acetonitrile, λ (nm) ε (M⁻ ${}^{1}\text{cm}^{-1}$)): 334.5 (8776), 477.0 (53152). HRMS (ESI, m/z) calc. for: C₆₂H₈₂N₄P⁺: 913.6272 [M]⁺; found: 913.6273. IR (ATR, cm⁻¹): 2961, 2923, 2865, 1490, 1455, 1410, 1369, 1359, 1311, 1293, 901, 803, 697.

-323.3

Figure S22. ³¹P NMR of 1b in CD₃CN.

Figure S24. IR spectrum of 1b.

Synthesis of 3b:

NaOCP (100 mg, 0.3 mmol) in tetrahydrofuran (10 mL) was added dropwise to a solution of **1b** (300 mg, 0.3 mmol) in a mixed solvent of acetonitrile (1 mL) and tetrahydrofuran (15 mL). After stirring for 1 hour, the solvent was removed under reduced pressure. The residue was extracted with hexane (20 mL), washed with a minimum amount of cold hexane (2×1 mL), and dried in vacuo to afford 3b (216 mg, 74 %) as a red powder. Red crystals of 3b were obtained from saturated hexane solution stored at -30 °C for 3 days. M. p. = 148.2 °C. ¹H NMR $(400.1 \text{ MHz}, C_6D_6): \delta = 7.29 \text{ (br., 2 H, } C_{Ar}H), 7.11 \text{ (br., 3 H, } C_{Ar}H), 7.02 \text{ (br., 2 H, } C_{Ar}H), 6.92$ (br., 3 H, C_{Ar}H), 6.78 (br., 4 H, C_{Ar}H), 6.64 (m., 3 H, C_{Ar}H), 4.54 (s, 1 H, =CHC(O)), 3.40 (br., 8 H, NCH₂), 3.30 (br., 2 H, CH(CH₃)₂), 3.21 (br., 4 H, CH(CH₃)₂), 2.99 (br., 2 H, CH(CH₃)₂), 1.41 (br., 12 H, CH(CH₃)₂), 1.32 (br., 12 H, CH(CH₃)₂), 1.20 (br., 3 H, CH(CH₃)₂), 1.10 (br., 12 H, CH(CH₃)₂), 1.02 (br., 9 H, CH(CH₃)₂). ¹³C{¹H} NMR (150.8 MHz, C₆D₆): δ = 198.3 (m, PPCO), 159.6 (m, NCN), 157.0 (m, NCN), 148.0 (C_{Ar}), 147.2 (C_{Ar}), 145.7 (C_{Ar}), 144.3 (C_{Ar}), 139.2 (m, CAr-CHPP), 134.8 (CAr), 130.7 (CAr), 129.3 (CAr), 129.0 (CAr), 124.7 (CAr), 124.5 (C_{Ar}), 123.9 (C_{Ar}), 110.8 (m, CHPP), 86.6 (d, ${}^{2}J_{PC} = 70.8$ Hz, PPCOCH), 53.6 (NCH₂), 52.5 (NCH₂), 52.0 (NCH₂), 49.8 (NCH₂), 29.3, 29.1, 28.8, 28.6, 26.6, 25.8, 25.4, 24.7, 24.5, 24.4, 23.6, 22.7. ³¹P NMR (242.9 MHz, C₆D₆): δ = 525.5 (d, ¹J_{PP} = 515.9 Hz, C(Ph)-P), 376.7 (d, ${}^{1}J_{PP} = 515.9 \text{ Hz}, C(O)-P$. UV/Vis (toluene, λ (nm) ε (M⁻¹cm⁻¹)): 317.5 (17369), 495.5(19943). HRMS (ESI, m/z) calc. for: C₅₇H₇₈N₄OP₂C₆H₄: 973.6037 [M+H]⁺; found: 973.6038. IR (ATR, cm⁻¹): 3063, 2962, 2927, 2868, 1505, 1461, 1058, 800.

18

Figure S25. ¹H NMR of 3b in C₆D₆. *Silicone grease, [#]hexane, [&]toluene.

Figure S26. ¹³C{¹H} NMR of **3b** in C₆D₆. *Silicone grease, [#]hexane.

Figure S28. ³¹P NMR of **3b** in C_6D_6 .

Figure S30. IR spectrum of 3b.

Synthesis of 4:

L=CHTMS (476 mg, 1 mmol) and MesPCl₂ (220 mg, 1 mmol) were mixed in tetrahydrofuran (20 mL) at room temperature. After stirring at room temperature overnight, the solvent was removed under reduced pressure. The residue was extracted with hexane (20 mL), washed with a minimum amount of acetonitrile (2 × 1 mL), and dried *in vacuo* to afford 4 (531 mg, 90 %) as a white powder (7 % impurify). M. p. = 132.1 °C. ¹H NMR (400.1 MHz, C₆D₆) δ 7.30-7.29 (m, 2 H, C_{Ar}*H*), 7.18 (d, *J* = 7.4 Hz, 1 H, C_{Ar}*H*), 7.14-7.12 (m, 2 H, C_{Ar}*H*), 7.00 (d, *J* = 7.1Hz, 1 H, $C_{Ar}H$), 6.53 (s, 2 H, ^{Mes}H), 4.42 (d, ² J_{PH} = 3.5 Hz, 1 H, PCH), 3.66 (m, 1 H, CH(CH₃)₂), 3.62 (m, 1 H, CH(CH₃)₂), 3.33 (m, 4 H, NCH₂), 3.18 (m, 1 H, CH(CH₃)₂), 3.01 (m, 1 H, $CH(CH_3)_2$, 2.40 (s, 6 H, ^{mMes}CH₃), 1.89 (s, 3 H, ^{PMes}CH₃), 1.81 (d, J = 6.9 Hz, 3 H, CH(CH₃)₂), 1.58 (d, J = 6.7 Hz, 3 H, CH(CH₃)₂), 1.28 (d, J = 6.9 Hz, 3 H, CH(CH₃)₂), 1.20 (d, J = 6.7 Hz, 3 H, CH(CH₃)₂), 1.17-1.14 (m, 6 H, CH(CH₃)₂), 1.09 (d, J = 6.9 Hz, CH(CH₃)₂), 1.01 (d, J =6.9 Hz, CH(CH₃)₂). ¹³C{¹H} NMR (150.8 MHz, C₆D₆): $\delta = 163.4$ (d, ²J_{PC} = 36.8 Hz, NCN), 149.0 (d, ${}^{1}J_{PC} = 9.5$ Hz, PC_{Ar}), 148.5 (C_{Ar}), 146.6 (C_{Ar}), 138.7 (C_{Ar}), 136.7 (d, ${}^{1}J_{PC} = 38.3$ Hz, P- C_{Ar}), 134.4 (C_{Ar}), 130.0 (C_{Ar}), 129.6 (C_{Ar}), 129.3 (C_{Ar}), 125.3 (C_{Ar}), 125.1 (d, ¹ $J_{PC} = 12.9$ Hz, $P^{-m}C_{Ar}$, 124.6 (C_{Ar}), 66.3 (d, ${}^{1}J_{PC}$ = 42.6 Hz, PCH), 52.3 (NCH₂), 49.9 (NCH₂), 29.4, 29.0, 28.8 (d, ${}^{3}J_{PC} = 12.5$ Hz, ${}^{o}C_{Ar}$ -CH₃), 26.1, 25.7, 25.0, 24.9, 24.7, 24.4, 24.0, 23.4, 22.9, 22.7, 20.9. ³¹P{¹H} NMR (161.9 MHz, C₆D₆): δ = 96.3. HRMS (ESI, m/z) calc. for: C₃₇H₅₀N₂PCI: 589.3473 [M + H]⁺; found: 589.3495.

Figure S32 $^{13}C{^{1}H}$ NMR of 4 in C₆D₆.

Figure S33. ${}^{31}P{}^{1}H$ NMR of 4 in C₆D₆.

Figure S34. HRMS of 4.

Synthesis of 5:

NaOCP (150 mg, 0.5 mmol) was added in several portions to a toluene (16 mL) solution of 4 (280 mg, 0.5 mmol). After stirred for 1 hour, the remaining precipitate was filtered off and solvent was removed under reduced pressure. The remaining residue was washed with a minimum amount of acetonitrile (1 mL) and dried in vacuo to afford 5 (169 mg, 55 %) as a white powder. M. p. = 129.6 °C (Decomposition). ¹H NMR (600.2 MHz, C_6D_6): $\delta = 7.27 \sim 7.25$ (m, 2 H, $C_{Ar}H$), 7.18 (t, J = 7.7 Hz, 1 H, $C_{Ar}H$), 7.13 (d, J = 7.1 Hz, 1 H, $C_{Ar}H$), 7.06 (d, J =7.8 Hz, 1 H, $C_{Ar}H$), 7.03 (d, J = 7.1 Hz, 1 H, $C_{Ar}H$), 6.54 (s, 2 H, $^{Mes}C_{Ar}H$), 3.78 (m, 1 H, PCH), 3.61 (m, 1 H, CH(CH₃)₂), 3.57 (m, 1 H, CH(CH₃)₂), 3.37 (m, 2 H, NCH₂), 3.29 (m, 2 H, NCH₂), 3.22 (m, 1 H, CH(CH₃)₂), 3.16 (m, 1 H, CH(CH₃)₂), 2.23 (s, 6 H, C_{Ar}CH₃), 1.93(s, 3 H, C_{Ar}CH₃), 1.73 (d, J = 6.9 Hz,3 H, CH(CH₃)₂), 1.54 (d, J = 6.7 Hz, 3 H, CH(CH₃)₂), 1.28 (d, J = 6.9 Hz, 3 H, CH(CH₃)₂), 1.20 (d, J = 6.9 Hz, 3 H, CH(CH₃)₂), 1.17 (d, J = 6.9 Hz, 3 H, CH(CH₃)₂), 1.14 (d, *J* = 6.8 Hz, 3 H, CH(CH₃)₂), 1.11 (d, *J* = 6.9 Hz, 3 H, CH(CH₃)₂), 0.93 (d, *J* = 6.8 Hz, 3 H, CH(CH₃)₂). ¹³C{¹H} NMR (150.8 MHz, C₆D₆): $\delta = 201.1$ (dd, ¹J_{PC} = 113.8Hz, ²J_{PC} = 20.7Hz, *C*(O)), 160.4 (dd, ²*J*_{PC} = 40.4 Hz, ³*J*_{PC} = 3.3Hz, N*C*N), 149.1 (*C*_{Ar}), 148.9 (*C*_{Ar}), 148.7 $(d, J_{PH} = 3.5 \text{ Hz}, P-C_{Ar}), 146.9 (C_{Ar}), 142.0 (C_{Ar}), 141.9 (C_{Ar}), 139.2 (d, J_{PH} = 3.6 \text{ Hz}, P-C_{Ar}),$ 137.5 (dd, ${}^{1}J_{PH} = 32.6$ Hz, ${}^{2}J_{PH} = 11.5$ Hz, P-C_{Ar}), 135.3 (C_{Ar}), 129.8 (C_{Ar}), 129.4 (C_{Ar}), 128.9 (C_{Ar}) , 128.4 (C_{Ar}) , 125.1 (C_{Ar}) , 125.0 (C_{Ar}) , 124.4 (C_{Ar}) , 61.1 $(dd, {}^{1}J_{PC} = 25.7 \text{ Hz}, {}^{2}J_{PC} = 13.6 \text{ Hz}$ Hz, PP-CH=), 52.3 (NCH₂), 49.9 (NCH₂), 29.5, 28.8, 28.6, 25.8, 25.7, 25.1, 24.9, 24.7, 24.2, 23.7, 23.6, 23.6, 23.5, 22.7. ³¹P{¹H} NMR (242.9 MHz, C₆D₆): $\delta = -41.0$ (-*PPCO*, ¹*J*_{PP} = 170.9 Hz), -248.6 (-PPCO, ${}^{1}J_{PP}$ = 170.9 Hz). HRMS (ESI, m/z) calc. for: (C₃₈H₅₀N₂P₂O)₂: 1225.6870 $[M + H]^+$; found: 1225.6834. IR (ATR, cm⁻¹): 2964, 1929 (CO), 1535, 1455, 873, 806, 703.

Figure S36. ¹³C{¹H} NMR of **5** in C₆D₆. [#]Toluene, *silicon grease.

<40.6 41.3 $< \frac{-248.2}{-248.9}$

5 -140 -16 fl (ppm) -20 -40 -60 -80 -100 -120 -160 -180 -200 -220 -240 -260 -280 -30

Figure S37. ${}^{31}P{}^{1}H$ NMR of **5** in C₆D₆.

Figure S38 31 P NMR of **5** in C₆D₆.

Figure S39. ³¹P{¹H} NMR spectra of **5** over a period of 16 h in C_6D_6 at room temperature.

Figure S41. IR spectrum of 5.

Synthesis of 6a:

Potassium bis(trimethylsilyl)amide (60 mg, 0.3 mmol) in tetrahydrofuran (4 mL) was added to a stirred solution of **3a** (300 mg, 0.3 mmol) in tetrahydrofuran (12 mL) at room temperature. After stirring for 0.5 hour, the solvent was removed under reduced pressure. Then, the residue was washed with hexane (1 mL) and dried *in vacuo* to afford **6a** (311 mg, yield = 95 %) as a yellow powder. Light orange crystals of **6a** were obtained from a saturated fluorobenzene solution layered hexane on top at -30 °C for 6 days. M. p. = 143.5 °C (Decomposition). ¹H NMR (600.2 MHz, C_6D_6): $\delta = 7.14$ (t, J = 6.6 Hz, 2 H, $C_{Ar}H$), 7.08 (t, J = 8.1 Hz, 2 H, $C_{Ar}H$), 7.03 (t, J = 6.8 Hz, 2 H, C_{Ar}H), 7.00 (t, J = 7.0 Hz, 1 H, C_{Ar}H), 6.98~6.90 (m, 4 H, C_{Ar}H), 6.86 (d, J = 7.5 Hz, 1 H, C_{Ar}H), 4.86 (s, 1 H, =CHC(O)), 3.87 (m, 2 H, NCH₂), 3.72 (m, 2 H, NCH₂), 3.58 (m, 3 H, NCH₂ & CH(CH₃)₂), 3.45 (m, 2 H, NCH₂), 3.34 (m, 1 H, CH(CH₃)₂), 3.27 (m, 3 H, NCH₂ & CH(CH₃)₂), 3.18 (m, 1 H, CH(CH₃)₂), 3.13 (m, 1 H, CH(CH₃)₂), 3.10 (m, 1 H, $CH(CH_3)_2$), 2.88 (t, ${}^{2}J_{PH} \approx {}^{3}J_{PH} = 8.9$ Hz, 1 H, =CHPP), 1.72 (d, J = 6.6 Hz, 3 H, $CH(CH_3)_2$), 1.54 (d, J = 6.6 Hz, 6 H, CH(CH₃)₂), 1.48 (d, J = 6.8 Hz, 3 H, CH(CH₃)₂), 1.43 (d, J = 6.6 Hz, 3 H, CH(CH₃)₂), 1.35 (d, J = 6.6 Hz, 6 H, CH(CH₃)₂), 1.30 (d, J = 7.2 Hz, 3 H, CH(CH₃)₂), 1.29 (d, J = 7.2 Hz, 3 H, CH(CH₃)₂), 1.25 (d, J = 6.9 Hz, 3 H, CH(CH₃)₂), 1.21 (m, 9 H, CH(CH₃)₂), 1.14~1.10 (m, 9 H, CH(CH₃)₂), 0.42 (br. s, 9 H, -Si(CH₃)₂)), 0.28 (br. s, 9 H, -Si(CH₃)₂)). ¹³C{¹H} NMR (150.8 MHz, C₆D₆): $\delta = 217.6$ (dd, ¹J_{PC} = 81.9 Hz, ²J_{PC} = 7.5 Hz, CO), 152.2 (C_{Ar}), 150.8 (d, ${}^{2}J_{PC}$ = 25.0 Hz, NCNCHC(O)P), 150.4 (C_{Ar}), 150.3 (C_{Ar}), 150.0 (C_{Ar}) , 149.8 (dd, ${}^{3}J_{PC} = 30.2$ Hz, ${}^{2}J_{PC} = 7.4$ Hz, NCNCHPP), 148.7 (C_{Ar}), 148.7 (C_{Ar}), 148.3 (*C*Ar), 146.7 (*C*Ar), 144.6 (*C*Ar), 144.4 (*C*Ar), 136.7 (*C*Ar), 136.0 (*C*Ar), 128.9 (*C*Ar), 128.7 (*C*Ar), 128.4 (CAr), 125.5 (CAr), 125.3 (CAr), 124.7 (CAr), 124.6 (CAr), 124.5 (CAr), 124.0 (CAr), 123.6 (C_{Ar}) , 123.0 (C_{Ar}) , 122.9 (C_{Ar}) , 87.4 $(dd, {}^{1}J_{PC} = 74.8 \text{ Hz}, {}^{2}J_{PC} = 4.5 \text{ Hz}, CHPP)$, 74.6 $(d, {}^{3}J_{PC} = 74.8 \text{ Hz}, {}^{2}J_{PC} = 4.5 \text{ Hz}, CHPP)$, 74.6 $(d, {}^{3}J_{PC} = 74.8 \text{ Hz}, {}^{2}J_{PC} = 4.5 \text{ Hz}, CHPP)$, 74.6 $(d, {}^{3}J_{PC} = 74.8 \text{ Hz}, {}^{2}J_{PC} = 4.5 \text{ Hz}, CHPP)$, 74.6 $(d, {}^{3}J_{PC} = 74.8 \text{ Hz}, {}^{2}J_{PC} = 4.5 \text{ Hz}, CHPP)$, 74.6 $(d, {}^{3}J_{PC} = 74.8 \text{ Hz}, {}^{2}J_{PC} = 4.5 \text{ Hz}, CHPP)$, 74.6 $(d, {}^{3}J_{PC} = 74.8 \text{ Hz}, {}^{2}J_{PC} = 4.5 \text{ Hz}, CHPP)$, 74.6 $(d, {}^{3}J_{PC} = 74.8 \text{ Hz}, {}^{2}J_{PC} = 4.5 \text{ Hz}, CHPP)$, 74.6 $(d, {}^{3}J_{PC} = 74.8 \text{ Hz}, {}^{2}J_{PC} = 4.5 \text{ Hz}, CHPP)$, 74.6 $(d, {}^{3}J_{PC} = 74.8 \text{ Hz}, {}^{2}J_{PC} = 4.5 \text{ Hz}, CHPP)$, 74.6 $(d, {}^{3}J_{PC} = 74.8 \text{ Hz}, {}^{2}J_{PC} = 4.5 \text{ Hz}, CHPP)$, 74.6 $(d, {}^{3}J_{PC} = 74.8 \text{ Hz}, {}^{2}J_{PC} = 4.5 \text{ Hz}, CHPP)$, 74.6 $(d, {}^{3}J_{PC} = 74.8 \text{ Hz}, {}^{2}J_{PC} = 4.5 \text{ Hz}, CHPP)$, 74.6 $(d, {}^{3}J_{PC} = 74.8 \text{ Hz}, {}^{2}J_{PC} = 4.5 \text{ Hz}, CHPP)$, 74.6 $(d, {}^{3}J_{PC} = 74.8 \text{ Hz}, {}^{2}J_{PC} = 4.5 \text{ Hz}, CHPP)$, 74.6 $(d, {}^{3}J_{PC} = 74.8 \text{ Hz}, {}^{2}J_{PC} = 4.5 \text{ Hz}, CHPP)$, 74.6 $(d, {}^{3}J_{PC} = 74.8 \text{ Hz}, {}^{2}J_{PC} = 4.5 \text{ Hz}, CHPP)$, 74.6 $(d, {}^{3}J_{PC} = 74.8 \text{ Hz}, {}^{3}J_{PC} = 4.5 \text{ Hz}, CHPP)$, 74.6 $(d, {}^{3}J_{PC} = 74.8 \text{ Hz}, {}^{3}J_{PC} = 4.5 \text{ Hz}, CHPP)$, 74.6 $(d, {}^{3}J_{PC} = 74.8 \text{ Hz}, {}^{3}J_{PC} = 4.5 \text{ Hz}, CHPP)$, 74.6 $(d, {}^{3}J_{PC} = 74.8 \text{ Hz}, {}^{3}J_{PC} = 4.5 \text{ Hz}, CHPP)$, 74.6 $(d, {}^{3}J_{PC} = 74.8 \text{ Hz}, {}^{3}J_{PC} = 4.5 \text{ Hz}, CHPP)$, 74.6 $(d, {}^{3}J_{PC} = 74.8 \text{ Hz}, {}^{3}J_{PC} = 4.5 \text{ Hz}, CHPP)$, 74.6 $(d, {}^{3}J_{PC} = 74.8 \text{ Hz}, {}^{3}J_{PC} = 4.5 \text{ Hz}, CHPP)$, 74.6 $(d, {}^{3}J_{PC} = 74.8 \text{ Hz}, {}^{3}J_{PC} = 4.5 \text{ Hz}, CHPP)$ 28.2 Hz, CHC(O)PP), 53.2 (NCH₂), 53.1 (NCH₂), 49.6 (NCH₂), 49.2 (NCH₂), 29.3, 28.8, 28.7, 28.6, 28.3, 28.2, 26.5, 25.9, 25.9, 25.6, 25.6, 25.5, 25.4, 25.0, 24.8, 24.8, 24.8, 24.7, 24.5, 24.3, 23.8, 23.7, 6.5 (Si(*C*H₃)₃), 4.9 (Si(*C*H₃)₃). ³¹P{¹H} NMR (242.9 MHz, C₆D₆): $\delta = 61.6$ (d, ¹*J*_{PP} = 276.8 Hz, (N(TMS)₂)*P*P), 29.7 (d, ¹*J*_{PP} = 276.8 Hz, (N(TMS)₂)*PP*). UV/Vis (toluene, λ (nm) ϵ (M⁻¹cm⁻¹)): 314.5 (35226), 428.5 (41434). HRMS (ESI, m/z) calc. for: C₆₃H₉₆N₅OP₂Si₂⁻: 1056.6634 [M]⁻; found: not detected. IR (ATR, cm⁻¹): 2959, 2867, 1568, 1505, 1448, 869, 805.

Figure S42. ¹H NMR of **6a** in C₆D₆. [#]Hexane, *silicone grease.

Figure S43. ¹³C{¹H} NMR of **6a** in C₆D₆. [#]Hexane, *silicone grease, [&]tetrahydrofuran.

Figure S45. ³¹P NMR of **6a** in C_6D_6 .

Figure S46. IR spectrum of 6a.

Synthesis of 7a:

Trimethylsilyl trifluoromethanesulfonate (66 mg, 0.3 mmol) in tetrahydrofuran (4 mL) was added to a stirred solution of **6a** (300 mg, 0.3 mmol) in tetrahydrofuran (20 mL) at room temperature. After stirring for 10 minutes, the solvent was removed under reduced pressure and the residue was extracted with hexane. Then, the solvent was removed under reduced pressure, the residue was washed with acetonitrile (1 mL) and dried *in vacuo* to afford **7a** (121 mg, yield = 36 %) as a yellow powder. M. p. = 183.7 °C (Decomposition). ¹H NMR (600.2 MHz, C₆D₆): δ = 7.33 (t, *J* = 7.7 Hz, 1 H, C_{Ar}*H*), 7.28 (d, *J* = 7.7 Hz, 1 H, C_{Ar}*H*), 7.24~7.21 (m, 3 H, C_{Ar}*H*), 7.18 (d, *J* = 7.5 Hz, 2 H, C_{Ar}*H*), 7.14 (d, *J* = 6.8 Hz, 1 H, C_{Ar}*H*), 7.12 (t, *J* = 8.0 Hz, 2 H, C_{Ar}*H*), 7.04 (d, *J* = 7.7 Hz, 1 H, C_{Ar}*H*), 7.02 (d, *J* = 7.7 Hz, 1 H, C_{Ar}*H*), 4.02 (d, ²*J*_{PH} = 18.2 Hz, =C*H*PP), 3.82 (d, ³*J*_{PH} = 9.4 Hz, =C*H*C(OSi(CH₃)₃)P), 3.64 (m, 1 H, C*H*(CH₃)₃), 3.57 (m, 1 H, C*H*(CH₃)₃), 3.52 (m, 1 H, C*H*(CH₃)₃), 3.49 (m, 2 H, C*H*(CH₃)₃), 3.42 (m, 4 H, NC*H*₂), 3.35~3.23 (m, 1 H, C*H*(CH₃)₃) & 4 H, NC*H*₂), 3.17 (m, 1 H, C*H*(CH₃)₃), 3.05 (m, 1 H,

 $CH(CH_3)_3$, 1.64 (d, J = 6.9 Hz, 3 H, $CH(CH_3)_3$), 1.52 (d, J = 6.9 Hz, 3 H, $CH(CH_3)_3$), 1.49 (d, J = 6.7 Hz, 3 H, CH(CH₃)₃), 1.46 (m, 6 H, CH(CH₃)₃), 1.37 (m, 6 H, CH(CH₃)₃), 1.31 (m, 12) H, CH(CH₃)₃), 1.26 (d, *J* = 3.5 Hz, 3 H, CH(CH₃)₃), 1.24 (d, *J* = 3.8 Hz, 3 H, CH(CH₃)₃), 1.18 $(m, 6 H, CH(CH_3)_3), 1.16 (d, J = 6.9 Hz, 3 H, CH(CH_3)_3), 0.24 (s, 9 H, NSi(CH_3)_3), 0.10 (s, 9)$ H, NSi(CH₃)₃), 0.01 (s, 9 H, OSi(CH₃)₃). ¹³C{¹H} NMR (150.8 MHz, C₆D₆): δ = 193.8 (dd, ${}^{1}J_{PC} = 85.4 \text{ Hz}, {}^{2}J_{PC} = 13.3 \text{ Hz}, CO$, 154.3 (d, ${}^{3}J_{PC} = 4.0 \text{ Hz}, \text{ NCN=CH-CO-}$), 153.5 (dd, ${}^{2}J_{PC}$ = 35.6 Hz, ${}^{3}J_{PC}$ = 12.7 Hz, NCN-PP), 149.3 (C_{Ar}), 148.9 (C_{Ar}), 148.8 (C_{Ar}), 148.8 (C_{Ar}), 148.7 (CAr), 148.6 (CAr), 147.1 (CAr), 146.0 (CAr), 146.0 (CAr), 145.4 (CAr), 138.7 (CAr), 138.4 (CAr), 138.4 (C_{Ar}), 137.5 (C_{Ar}), 136.8 (C_{Ar}), 129.0 (C_{Ar}), 128.4 (C_{Ar}), 125.8 (C_{Ar}), 125.5 (C_{Ar}), 124.8 (C_{Ar}) , 124.6 (C_{Ar}) , 124.3 (C_{Ar}) , 124.1 (C_{Ar}) , 123.9 (C_{Ar}) , 86.2 $(d, {}^{2}J_{PC} = 21.0 \text{ Hz}$, =CHC(OTMS)P), 71.1 (dd, ${}^{1}J_{PC}$ = 37.4 Hz, ${}^{2}J_{PC}$ = 24.1 Hz, =CHPP), 54.9 (NCH₂), 52.8 (NCH₂), 50.2 (NCH₂), 49.5 (NCH₂), 29.0, 28.9, 28.8, 28.7, 28.7, 28.6, 28.1, 27.0, 26.5, 26.2, 26.1, 26.0, 25.9, 25.4, 25.2, 24.8, 24.8, 24.4, 24.4, 24.3, 24.0, 23.9, 23.6, 23.5, 7.5 (br., PNSiCH₃)₃), 5.2 (d, ${}^{3}J_{PC} = 13.6$ Hz, PNSi(CH₃)₃), 2.45 (COSi(CH₃)). ${}^{31}P{}^{1}H{}$ NMR (242.9 MHz, C₆D₆): $\delta = 140.8$ (d, ¹*J*_{PP} = 245.5 Hz, CH-*P*[N(TMS)₂]-P-), 29.9 (d, ¹*J*_{PP} = 245.5 Hz, CH- $P[N(TMS)_2]-P$ -). ³¹P NMR (242.9 MHz, C₆D₆): $\delta = 140.8$ (dq, ¹J_{PP} = 245.5 Hz, CH- $P[N(TMS)_2]-P-)$, 29.9 (d, ${}^1J_{PP} = 245.5$ Hz, CH- $P[N(TMS)_2]-P-$). UV/Vis (toluene, λ (nm) ϵ $(M^{-1}cm^{-1})$: 325.5 (37785), 425.0 (5080). HRMS (ESI, m/z) calc. for: $C_{66}H_{105}N_5OP_2Si_3$: 1129.7102 [M]⁺; found: not detected. IR (ATR, cm⁻¹): 2959, 2866, 1548, 877, 863, 843, 801.

Figure S47. ³¹P{¹H} NMR of the reaction mixture for the preparation of **7a** in tetrahydrofuran, the NMR spectroscopic yield is about 91%.

Figure S48. ¹H NMR of 7a in C₆D₆.

Figure S50. ${}^{31}P{}^{1}H$ NMR of **7a** in C₆D₆.

450 400 350 300 250 200 150 100 50 0 -50 -100 -150 -200 -250 -300 f1 (ppm)

Figure S52. IR spectrum of 7a.

Synthesis of 8a:

Methyl trifluoromethanesulfonate (49 mg, 0.3 mmol) in tetrahydrofuran (4 mL) was added to a stirred solution of 6a (300 mg, 0.3 mmol) in tetrahydrofuran (20 mL) at room temperature. After stirring for 0.5 hour, the solvent was removed under reduced pressure and the residue was extracted with hexane (20 mL). Then, the residue was washed with acetonitrile (1 mL) and dried *in vacuo* to afford **8a** (167 mg, yield = 49 %) as a light yellow powder. Light yellow crystals of 8a were obtained from a saturated acetonitrile solution stored at -30 °C for 5 days. M. p. = 162.1 °C (Decomposition). ¹H NMR (400.1 MHz, C_6D_6): $\delta = 7.26 \sim 7.17$ (m, 6 H, $C_{Ar}H$), 7.13~7.08 (m, 5 H, $C_{Ar}H$), 7.00 (d, J = 7.2 Hz, 1 H, $C_{Ar}H$), 4.41 (s, 1 H, PC(O)CH=), 3.65 (d, ${}^{2}J_{PH} = 8.8 \text{ Hz}, 1 \text{ H}, PPCH=$), 3.56 (m, 3 H, CH(CH₃)₂), 3.41 (m, 4 H, NCH₂), 3.36 (m, 1 H, CH(CH₃)₂), 3.26 (m, 4 H, NCH₂), 3.15 (m, 3 H, CH(CH₃)₂), 3.01 (m, 1 H, CH(CH₃)₂), 1.54 (d, $J_{\text{HH}} = 6.7 \text{ Hz}, 3 \text{ H}, \text{CH}(\text{CH}_3)_2), 1.51 \sim 1.47 \text{ (m, 6 H, CH}(\text{CH}_3)_2), 1.44 \sim 1.39 \text{ (m, 12 H, CH}(\text{CH}_3)_2),$ $1.31 \sim 1.28$ (m, 6 H, CH(CH₃)₂), $1.24 \sim 1.16$ (m, 21 H, CH(CH₃)₂), 1.01 (d, J = 6.7 Hz, 3 H, P(CH₃)), 0.17 (s, 9 H, Si(CH₃)₃), 0.05 (s, 9 H, Si(CH₃)₃). ¹³C{¹H} NMR (150.8 MHz, C₆D₆): δ = 201.7 (dd, ${}^{1}J_{PC}$ = 32.9 Hz, ${}^{2}J_{PC}$ = 10.4 Hz, CO), 157.9 (dd, ${}^{2}J_{PC}$ = 38.6 Hz, ${}^{3}J_{PC}$ = 9.1 Hz, (NCN)=CHPP-), 155.9 (d, ${}^{3}J_{PC}=9.5$ Hz, (NCN)=CHC(O)PP-), 149.2 (C_{Ar}), 148.8 (C_{Ar}), 148.8 (*C*Ar), 148.6 (*C*Ar), 148.5 (*C*Ar), 146.3 (*C*Ar), 145.8 (*C*Ar), 145.7 (*C*Ar), 140.6 (*C*Ar), 140.6 (*C*Ar), 138.4 (CAr), 135.7 (CAr), 135.2 (CAr), 129.4 (CAr), 128.8 (CAr), 128.4 (CAr), 128.0 (CAr), 125.6 (C_{Ar}) , 124.9 (C_{Ar}) , 124.8 (C_{Ar}) , 124.7 (C_{Ar}) , 124.5 (C_{Ar}) , 124.2 (C_{Ar}) , 124.0 (C_{Ar}) , 81.7 $(d, {}^{1}J_{PC})$ = 45.9 Hz, =*C*H-PP-), 69.4 (dd, ${}^{2}J_{PC}$ = 29.2 Hz, ${}^{3}J_{PC}$ = 24.5 Hz, =*C*HC(O)P), 53.1 (N*C*H₂), 53.0 (NCH₂), 49.9 (NCH₂), 49.5 (NCH₂), 29.3, 29.2, 29.0, 28.9, 28.9, 28.6, 28.5, 28.4, 26.5, 25.9, 25.9, 25.6, 25.4, 25.3, 25.1, 24.9, 24.7, 24.5, 24.2, 24.1, 24.1, 24.1, 24.0, 23.6, 8.7 (t, ${}^{1}J_{\text{PC}} \approx$ ${}^{2}J_{PC} = 24.2$ Hz, -PP(CH₃)-), 6.7 (d, ${}^{3}J_{PC} = 6.7$ Hz, -PNSi(CH₃)₂), 5.2 (d, ${}^{3}J_{PC} = 15.0$ Hz, -PNSi(*C*H₃)₂). ³¹P{¹H} NMR (242.9 MHz, C₆D₆): $\delta = 40.3$ (d, ¹*J*_{PP} = 170.5 Hz, -C(O)-P(CH₃)-*P*-), -20.4 (d, ${}^{1}J_{PP} = 170.5$ Hz, -C(O)-*P*(CH₃)-P-). ${}^{31}P$ NMR (242.9 MHz, C₆D₆): $\delta = 40.3$ (d, ${}^{1}J_{PP} = 170.5 \text{ Hz}, -C(O)-P(CH_{3})-P-), -20.4 \text{ (d, } {}^{1}J_{PP} = 170.5 \text{ Hz}, -C(O)-P(CH_{3})-P-). UV/Vis$ (toluene, λ (nm) ε (M⁻¹cm⁻¹)): 304.5 (32237), 335.0 (34665), 379.5 (12458). HRMS (ESI, m/z) calc. for: C₆₄H₉₉N₅OP₂Si₂: 1110.6495 [M+K]⁺; found: 1110.6481. IR (ATR, cm⁻¹): 2960, 2927, 2868, 1515, 1053, 882, 850, 840, 800, 760.

Figure S53. ³¹P{¹H} NMR of the reaction mixture for the preparation of **8a** in tetrahydrofuran, the NMR spectroscopic yield is about 90%.

Figure S54. ¹H NMR of **8a** in C₆D₆. # silicon grease.

Figure S56. ${}^{31}P{}^{1}H$ NMR of **8a** in C₆D₆.

00 90 80 70 60 50 40 30 20 ò -10 -20 -30 -40 -50 -60 -70 -80 -90 -1(10 f1 (ppm)

Figure S57. ³¹P NMR of **8a** in C₆D₆.

Figure S58. HRMS of 8a.

Figure S59. IR spectrum of 8a.

Synthesis of S1:

Triethylamine hydrochloride (Et₃NHCl) (2 mg) was added slowly to a stirred solution of **6a** (20 mg) in tetrahydrofuran (0.5 mL) at room temperature. After stirring for 0.5 h, monitor the solution ³¹P{¹H} and ³¹P NMR signal. ³¹P{¹H} NMR (242.9 MHz, tetrahydrofuran): δ = 485.4 (d, ¹*J*_{PP} = 530.6 Hz), 381.63 (d, ¹*J*_{PP} = 530.6 Hz), 35.8 (d, ¹*J*_{PP} = 158.2 Hz, (TMS)*P*-PH), -39.1 (d, ¹*J*_{PP} = 158.2 Hz, (TMS)*P*-PH). ³¹P NMR (242.9 MHz, tetrahydrofuran): δ = 35.8 (d, ¹*J*_{PP} = 158.2 Hz, (TMS)*P*-PH), -39.1 (d, ¹*J*_{PP} = 158.2 Hz, (TMS)*P*-PH).

Figure S60. ³¹P{¹H} NMR of the reaction between **6a** and Et₃NHCl in tetrahydrofuran.

Figure S61. ³¹P NMR of the reaction between **6a** and Et₃NHCl in tetrahydrofuran.

Synthesis of 6b:

Potassium tert-butoxide ('BuOK) (37 mg, 0.3 mmol) in tetrahydrofuran (4 mL) was added to a stirred solution of **3a** (300 mg, 0.3 mmol) in tetrahydrofuran (12 mL) at room temperature. After stirring for 0.5 hour, the solvent was removed under reduced pressure. Then, the residue was washed with hexane $(2 \times 2 \text{ mL})$ and dried *in vacuo* to afford **6b** (314 mg, yield = 93 %) as a yellow powder. M. p. = 113.6 °C (Decomposition). ¹H NMR (400.1 MHz, C₆D₆): δ = 7.14~7.11 (3 H, C_{Ar}H), 7.08~7.03 (4 H, C_{Ar}H), 6.98~6.89 (3 H, C_{Ar}H), 6.88~6.86 (2 H, C_{Ar}H), 4.90 (s, 1 H, =CHC(O)-), 4.02 (br., 1 H, =CHPP-), 3.69 (m, 2 H, NCH₂), 3.64 (m, 1 H, CH(CH₃)₃), 3.50 (m, 4 H, CH(CH₃)₃), 3.39~3.28 (m, 3 H, CH(CH₃)₃ & 4 H, NCH₂), 3.17 (m, 2 H, NCH₂), 1.51 (d, J = 6.7 Hz, 3 H, CH(CH₃)₂), 1.49~1.43 (m, 9 H, CH(CH₃)₂), 1.41~1.38 (m, 6 H, CH(CH₃)₂), $1.36 \sim 1.32$ (m, 6 H, CH(CH₃)₂ & 9 H, $-OC(CH_3)_3$), 1.31 (d, J = 6.9 Hz, 3 H, CH(CH₃)₂), 1.27~1.22 (m, 18 H, CH(CH₃)₂), 1.20~1.17 (m, 6 H, CH(CH₃)₂). $^{13}C{^{1}H}$ NMR $(150.8 \text{ MHz}, C_6D_6): \delta = 219.1 \text{ (m, PPCO}^-), 151.7 \text{ (br., PPC(O}^-)CH=C), 150.8 \text{ (br., PPCH=C)}, 150.8 \text{ (b$ 150.1 (CAr), 149.5 (CAr), 148.7 (CAr), 148.3 (CAr), 147.5 (CAr), 144.6 (CAr), 143.4 (CAr), 136.6 (C_{Ar}) , 125.2 (C_{Ar}) , 124.7 (C_{Ar}) , 124.4 (C_{Ar}) , 124.3 $(OC(CH_3)_3)$, 123.0 (C_{Ar}) , 88.3 (d (br.), ${}^{2}J_{PC}$ = 69.8 Hz, PPC(O⁻)CH=), 74.8 (br., PPCH=), 53.5 (NCH₂), 52.4 (NCH₂), 50.0 (NCH₂), 49.9 (NCH₂), 31.7, 31.6, 29.1, 29.0, 28.9, 28.8, 28.7, 28.7, 28.6, 28.5, 25.8, 25.4, 25.3, 25.2, 25.2, 25.1, 25.0, 25.0, 24.9, 24.6, 24.6, 24.5, 24.5, 24.4, 24.3. ³¹P{¹H} NMR (242.9 MHz, C₆D₆): δ = 104.9 (d, ${}^{1}J_{PP}$ = 301.8 Hz, PPC(O⁻)), 82.1 (br., PPC(O⁻)). ${}^{31}P{}^{1}H{}$ NMR (242.9 MHz, tetrahydrofuran): $\delta = 107.6$ (d, ${}^{1}J_{PP} = 301.8$ Hz, $PPC(O^{-})$), 82.1 (d, ${}^{1}J_{PP} = 301.8$ Hz, $PPC(O^{-})$). UV/Vis (toluene, λ (nm) ϵ (M⁻¹cm⁻¹)): 327.5 (14384), 423.5 (15269), 515.0 (3582). HRMS (ESI, m/z) calc. for: $C_{61}H_{87}N_4O_2P_2$: 969.6310 [M]⁻; found: not detected. IR (ATR, cm⁻¹): 2961, 2928, 2868, 1504, 1455, 1324, 805.

Figure S63. ${}^{13}C{}^{1}H$ NMR of **6b** in C₆D₆. [#]Hexane.

Figure S65. ³¹P{¹H} NMR of **6b** in tetrahydrofuran.

fl (ppm)

Figure S66. ³¹P NMR of **6b** in tetrahydrofuran.

Figure S67. IR spectrum of 6a.

Synthesis of 7b:

Trimethylsilyl trifluoromethanesulfonate (TMS-OTf) (66 mg, 0.3 mmol) in tetrahydrofuran (4 mL) was added to the solution of **6b** (300 mg, 0.3 mmol) in tetrahydrofuran (12 mL) at room temperature. After stirring for 0.5 h, the solvent was removed under reduced pressure, and the residue was extracted with hexane (20 mL). Then, the residue was washed with acetonitrile (1 mL) and dried *in vacuo* to afford 7b (156 mg, yield = 52 %) as an orange powder. Orange crystals of **7b** were obtained from a saturated acetonitrile solution stored at -30 °C for 5 days. M. p. = 154.3 °C (Decomposition). ¹H NMR (400.1 MHz, C_6D_6): $\delta = 7.38$ (t, J = 7.6 Hz, 1 H, $C_{Ar}H$, 7.28 (d, J = 7.8 Hz, 2 H, $C_{Ar}H$), 7.20~7.19 (m, 4 H, $C_{Ar}H$), 7.12~7.08 (m, 4 H, $C_{Ar}H$), 6.98 (t, J = 7.4 Hz, C_{Ar}H), 3.84 (s, 1 H, P=C-CH=), 3.76 (m, 1 H, PP-CH=), 3.53 (m, 4 H, NCH₂), 3.40 (m, 8 H, NCH₂ & CH(CH₃)₂), 3.25 (m, 2 H, CH(CH₃)₂), 3.16 (m, 1 H, CH(CH₃)₂), 3.07 (m, 1 H, CH(CH₃)₂), 1.59~1.55 (m, 9 H, CH(CH₃)₂), 1.44~1.40 (m, 6 H, CH(CH₃)₂), 1.37~1.25 (m, 24 H, CH(CH₃)₂), 1.22~1.17 (m, 9 H, CH(CH₃)₂), 1.03 (s, 9 H, -OC(CH₃)₃), 0.02 (s, 9 H, -Si(CH₃)₃). ¹³C{¹H} NMR (100.5 MHz, C₆D₆): $\delta = 196.1$ (dd, ¹*J*_{PC} = 77.9 Hz, ²*J*_{PC} = 11.8 Hz, P-P=C(O)-), 157.00 (d, ${}^{3}J_{PC}$ = 3.2 Hz, NCN), 156.0 (dd, ${}^{2}J_{PC}$ = 32.1 Hz, ${}^{3}J_{PC}$ = 16.2 Hz, NCN), 149.9 (CAr), 149.2 (CAr), 148.7 (CAr), 148.6 (CAr), 148.4 (CAr), 148.4 (CAr), 147.9 (*C*_{Ar}), 147.7 (*C*_{Ar}), 145.5 (*C*_{Ar}), 139.9 (*C*_{Ar}), 139.9 (*C*_{Ar}), 139.0 (*C*_{Ar}), 136.9 (*C*_{Ar}), 136.5 (*C*_{Ar}), 128.9 (CAr), 128.6 (CAr), 128.1 (CAr), 127.9 (CAr), 125.2 (CAr), 124.9 (CAr), 124.8 (CAr), 124.7 (C_{Ar}) , 124.5 (C_{Ar}) , 124.2 (C_{Ar}) , 86.4 $(d, {}^{2}J_{PC} = 20.1 \text{ Hz}, -P-O-C(CH_{3})_{3})$, 73.3 $(d, {}^{2}J_{PC} = 4.2 \text{ Hz},$ -P-O- $C(CH_3)_3$), 72.5 (dd, ${}^{1}J_{PC} = 43.5 \text{ Hz}$, ${}^{2}J_{PC} = 13.8 \text{ Hz}$, =CH-PP), 54.6(NCH₂), 52.5 (NCH₂), 50.0 (NCH₂), 49.3 (NCH₂), 30.8 (d, ${}^{3}J_{PC} = 7.6$ Hz, -OC(CH₃)₃), 29.0, 29.0, 28.9, 28.8, 28.7, 28.7, 28.6, 28.2, 26.7, 26.1, 25.9, 25.7, 25.7, 25.5, 25.4, 25.1, 25.0, 24.8, 24.7, 24.7, 24.6, 24.6, 24.5, 23.5, 1.3 (-Si(CH₃)₃). ³¹P{¹H} NMR (242.9 MHz, C₆D₆): $\delta = 148.2$ (d, ¹J_{PP} = 247.2 Hz, *PP-C*(OTMS)), 87.6 (d, ${}^{1}J_{PP} = 247.2$ Hz, *PP-C*(OTMS)). ${}^{31}P$ NMR (242.9 MHz, C₆D₆): $\delta =$ 148.2 (d, ${}^{1}J_{PP} = 247.2$ Hz, PP-C(OTMS)), 87.6 (d, ${}^{1}J_{PP} = 247.2$ Hz, PP-C(OTMS)). UV/Vis (toluene, λ (nm) ϵ (M⁻¹cm⁻¹)): 331.0 (6804), 432.0 (8996). HRMS (ESI, m/z) calc. for: $C_{61}H_{87}N_4O_2P_2SiC_3H_9$: 1043.6851 [M + H]⁺; found: 1043.6777. IR (ATR, cm⁻¹): 2961, 2928, 2868, 1504, 1455, 805.

Figure S68. ³¹P{¹H} NMR of the reaction mixture for the preparation of **7b** in tetrahydrofuran, the NMR spectroscopic yield is nearly quantitative.

Figure S69. ¹H NMR of **7b** in C₆D₆. [#]Silicone grease.

Figure S70. ¹³C{¹H} NMR of **7b** in C₆D₆. [#]Silicone grease.

Figure S71. ${}^{31}P{}^{1}H$ NMR of **7b** in C₆D₆.

-8 ò -40 -20 -60 f1 (ppm)

Figure S72. ³¹P NMR of **7b** in C_6D_6 .

Figure S73. HRMS of **7b**.

Figure S74. IR spectrum of 7b.

Synthesis of 8b:

Methyl trifluoromethanesulfonate (Me-OTf) (49 mg, 0.3 mmol) in tetrahydrofuran (4 mL) was added to a stirred solution of **6b** (300 mg, 0.3 mmol) in tetrahydrofuran (12 mL) at room temperature. After stirring for 0.5 h, the solvent was removed under reduced pressure. Then, the residue was extracted with hexane (20 mL), washed with acetonitrile (1 mL) and dried *in vacuo* to afford **8b** (167 mg, yield = 56 %) as a yellow powder. M. p. = 133.5 °C (Decomposition). ¹H NMR (400.1 MHz, C₆D₆): δ = 7.22 (t, *J* = 7.7 Hz, 3 H, C_{Ar}*H*), 7.14~7.08 (m, 6 H, C_{Ar}*H*), 7.04 (d, *J* = 7.3 Hz, 3 H, C_{Ar}*H*), 4.52 (s, 1 H, C(O)C*H*=), 3.57 (m, 2 H, NC*H*₂), 3.38 (m, 6 H, NC*H*₂), 3.26 (m, 8 H, C*H*₂(CH₃)₂), 3.10 (br., 1 H, =C*H*PP), 1.50 (d, *J* = 6.8 Hz, 3 H, CH(C*H*₃)₂), 1.21~1.18 (m, 12 H, CH(C*H*₃)₂), 1.34 (m, 9 H, CH(C*H*₃)₂), 1.27 (br., 15 H, CH(C*H*₃)₂), 0.96 (m, 3 H, P(C*H*₃)). ¹³C{¹H} NMR (150.8 MHz, C₆D₆): δ = 197.8 (d, ¹*J*_{PC} = 34.1 Hz, PC(O)), 155.6 (d, ³*J*_{PC} = 15.6 Hz, PC(O)CH=*C*), 153.6 (m, *C*=CHP(O'Bu)P), 149.2

(*C*_{Ar}), 149.0 (*C*_{Ar}), 148.4 (*C*_{Ar}), 148.1 (*C*_{Ar}), 145.9 (*C*_{Ar}), 145.3 (*C*_{Ar}), 139.6 (*C*_{Ar}), 138.8 (*C*_{Ar}), 136.0 (*C*_{Ar}), 135.1 (*C*_{Ar}), 129.4 (*C*_{Ar}), 125.0 (*C*_{Ar}), 124.7 (*C*_{Ar}), 124.6 (*C*_{Ar}), 124.5 (*C*_{Ar}), 124.0 (*C*_{Ar}), 123.9 (*C*_{Ar}), 123.6 (*C*_{Ar}), 83.5 (d, ²*J*_{PC} = 64.4 Hz, =CHC(O)P), 73.3 (m, =CHPP), 66.9 (m, PP(OC(CH₃)₃), 53.5 (NCH₂), 52.0 (NCH₂), 49.9 (NCH₂), 49.9 (NCH₂), 30.8 (d, ³*J*_{PC} = 8.1 Hz, P(OC(CH₃)₃)), 29.3, 29.0, 28.8, 28.7, 28.7, 28.5, 26.4, 25.6, 25.2, 25.0, 24.8, 24.6, 24.5, 23.8, -1.5 (d, ¹*J*_{PC} = 25.9 Hz, P(CH₃)). ³¹P NMR (242.9 MHz, C₆D₆): δ = 90.1 (d, ¹*J*_{PP} = 311.0 Hz, *PP*(CH₃)C(O)), 5.3 (d, ¹*J*_{PP} = 311.0 Hz, *PP*(CH₃)C(O)). ³¹P{¹H} NMR (242.9 MHz, C₆D₆): δ = 90.1 (d, ¹*J*_{PP} = 311.0 Hz, *PP*(CH₃)C(O)), 5.3 (d, ¹*J*_{PP} = 311.0 Hz, *PP*(CH₃)C(O)). ³¹P{¹H} NMR (242.9 MHz, C₆D₆): δ = 90.1 (d, ¹*J*_{PP} = 311.0 Hz, *PP*(CH₃)C(O)), 5.3 (d, ¹*J*_{PP} = 311.0 Hz, *PP*(CH₃)C(O)). ³¹P{¹H} NMR (242.9 MHz, C₆D₆): δ = 90.1 (d, ¹*H*_P = 311.0 Hz, *PP*(CH₃)C(O)), 5.3 (d, ¹*J*_{PP} = 311.0 Hz, *PP*(CH₃)C(O)). ³¹P{¹H} NMR (242.9 MHz, C₆D₆): δ = 90.1 (d, ¹*H*_{PP} = 311.0 Hz, *PP*(CH₃)C(O)), 5.3 (d, ¹*J*_{PP} = 311.0 Hz, *PP*(CH₃)C(O)), 5.3 (d, ¹*J*_{PP} = 311.0 Hz, *PP*(CH₃)C(O)). UV/Vis (toluene, λ (nm) ε (M⁻¹cm⁻¹)): 332.5 (77091.0). HRMS (ESI, m/z) calc. for: C₆₂H₉₀N₄O₂P₂: 985.6621 [M + H]⁺; found: 985.6621. IR (ATR, cm⁻¹): 2961, 2926, 2866, 1510, 1054, 805, 764, 795.

Figure S75. ³¹P{¹H} NMR of the reaction mixture for the preparation of **8b** in THF, the NMR spectroscopic yield is about 70%.

Figure S77. ¹³C $\{^{1}H\}$ NMR of **8b** in C₆D₆. *Silicone grease.

Figure S79. ³¹P{¹H} NMR of **8b** in C₆D₆.

Figure S81. IR spectrum of 8b.

Synthesis of 9a:

Methyl trifluoromethanesulfonate (Me-OTf) (18 mg, 0.1 mmol) in hexane (10 mL) was added to a stirred solution of **3a** (100 mg, 0.1 mmol) in hexane (30 mL) at room temperature. After stirring at room temperature for 0.5 h, the resulting precipitates were collected via filtration, then washed with hexane $(2 \times 1 \text{ mL})$ and dried *in vacuo* to afford **9a** (103 mg, yield = 99 %) as a purple powder. M. p. 115 °C (Decomposition). ¹H NMR (400.1 MHz, CD₃CN): $\delta = 7.46$ -7.41(m, 4 H, $C_{Ar}H$), 7.30 (d, J = 7.8 Hz, 4 H, $C_{Ar}H$), 7.24 (d, J = 7.8 Hz, 4 H, $C_{Ar}H$), 6.11 (t, ${}^{2}J_{\text{PH}} \approx {}^{3}J_{\text{PH}} = 14.1 \text{ Hz}, 1 \text{ H}, CHPP$), 4.85 (s, 1 H, CHCO), 4.05 (s, 4 H, NCH₂), 3.97 (s, 4 H, NCH₂), 3.01 (m, 4 H, CH(CH₃)₂), 2.93 (m, 4 H, CH(CH₃)₂), 2.82 (s, 3 H, PCO(CH₃)), 1.27 (d, J = 6.8 Hz, 24 H, CH(CH₃)₂), 1.08 (d, J = 6.8 Hz, 12 H, CH(CH₃)₂), 1.01 (d, J = 6.8 Hz, 12 H, CH(CH₃)₂). ¹³C{¹H} NMR (150.8 MHz, CD₃CN): $\delta = 195.0$ (d, ¹J_{PC} = 84.6 Hz, ²J_{PC} = 18.5 Hz, -PP(O)C⁺), 162.7 (m, NCN), 161.6 (NCN), 148.3 (CAr), 146.6 (CAr), 134.4 (CAr), 133.8 (CAr), 131.4 (C_{Ar}), 130.9 (C_{Ar}), 126.1 (CF_3), 126.0 (C_{Ar}), 103.9 (t, ${}^{1}J_{PC} \approx {}^{2}J_{PC} = 54.3$ Hz, CHPP), 87.9 (d, ${}^{2}J_{PC} = 15.8$ Hz, CHC(OCH₃)P), 59.6 (d, ${}^{3}J_{PC} = 24.4$ Hz, (CH₃O)CP), 53.4 (NCH₂), 52.2 (NCH₂), 29.7, 29.6, 25.1, 24.8, 24.5, 24.4. ³¹P{¹H} NMR (242.9 MHz, CD₃CN): δ = 471.3 (d, ${}^{1}J_{PP} = 500.6 \text{ Hz}, -P=P-C^{+}-), 229.7 \text{ (d, } {}^{1}J_{PP} = 500.6 \text{ Hz}, -P=P-C^{+}-).$ ${}^{31}P \text{ NMR}$ (242.9 MHz, CD₃CN): $\delta = 471.3$ (d, ${}^{1}J_{PP} = 500.6$ Hz, $-P=P-C^{+}-$), 229.7 (d, ${}^{1}J_{PP} = 500.6$ Hz, $-P=P-C^{+}-$). ${}^{19}F{}^{1}H{}$ NMR (376 MHz, CD₃CN): $\delta = -79.3$. UV/Vis (acetonitrile, λ (nm) ϵ (M⁻¹cm⁻¹)): 569.0(21688). HRMS (ESI, m/z) calc. for: C₅₈H₈₁N₄OP₂⁺: 911.5880 [M]; found: 911.5881. IR (ATR, cm⁻¹): 2963, 2929, 2870, 1435, 1263, 1030, 805, 637, 539.

Figure S83. ${}^{13}C{}^{1}H$ NMR of **9a** in CD₃CN.

Figure S85. ¹H-¹³C HMBC NMR of **9a** in CD₃CN.

Figure S87. ³¹P NMR of 9a in CD₃CN.

Figure S88. $^{19}F\{^{1}H\}$ NMR of 9a in CD₃CN.

Figure S90. IR spectrum of 9a.

Synthesis of 9b:

Trimethylsilyl trifluoromethanesulfonate (TMS-OTf) (24 mg, 0.1 mmol) in hexane (10 mL) was added to a stirred solution of 3a (100 mg, 0.1 mmol) in hexane (30 mL) at room temperature. After stirring at room temperature for 0.5 h, the resulting precipitates were collected via filtration, then washed with hexane $(2 \times 1 \text{ mL})$ and dried in vacuo to afford **9b** (98 mg, yield = 90 %) as a purple powder. ¹H NMR (600.2 MHz, CD₃CN): δ = 7.41 (t, J = 7.1 Hz, 2 H, $C_{Ar}H$), 7.33 (t, J = 7.8 Hz, 2 H, $C_{Ar}H$), 7.28 (d, J = 7.1 Hz, 4 H, $C_{Ar}H$), 7.20(d, J = 7.8Hz, 4 H, $C_{Ar}H$), 6.06 (t, ${}^{2}J_{PH} \sim {}^{3}J_{PH} = 11.0$ Hz, 1 H, CH-PP), 4.70 (d, ${}^{3}J_{PH} = 19.5$ Hz, 1 H, CH-C(O)-P), 4.18 (s, 4 H, NCH₂), 3.98 (s, 4 H, NCH₂), 3.07 (m, 4 H, CH(CH₃)₂), 2.89 (m, 4 H, $CH(CH_3)_2$), 1.28 (d, J = 7.0 Hz, 12 H, $CH(CH_3)_2$), 1.20 (d, J = 6.8 Hz, 12 H, $CH(CH_3)_2$), 1.11~1.09 (m, 24 H, CH(CH₃)₂), -0.34 (s, 9 H, Si(CH₃)₃). ¹³C{¹H} NMR (150.8 MHz, CD₃CN): $\delta = 188.1$ (m, ⁺C-O-), 167.7 (NCN), 163.1 (NCN), 148.5 (C_{Ar}), 147.3 (C_{Ar}), 134.5 (C_{Ar}), 133.2 (C_{Ar}), 131.4 (C_{Ar}), 131.1 (C_{Ar}), 126.1 (CF_3), 126.0 (C_{Ar}), 101.0 (t, ${}^{1}J_{PC} = {}^{2}J_{PC} = 51.7$ Hz, =CHPP), 98.8 (d, ${}^{2}J_{PC}$ = 22.2 Hz, =CHC(OTMS)P), 53.3 (NCH₂), 52.2 (NCH₂), 29.7, 29.6, 26.1, 24.9, 24.5, 23.9, 0.2 (Si(CH₃)₃). ³¹P{¹H} NMR (242.9 MHz, CD₃CN): δ = 477.5 (d, 493.4 Hz, CHPP), 252.0 (d, 493.4 Hz, CHPP). 31 P NMR (242.9 MHz, CD₃CN): δ = 477.5 (d, 493.4 Hz, CHPP), 252.0 (d, 493.4 Hz, CHPP). ¹⁹F {¹H} NMR (565 MHz, CD₃CN): δ = -79.3. UV/Vis (acetronitrile, λ (nm) ϵ (M⁻¹cm⁻¹)): 426.5 (11963), 555.0 (21071). HRMS (ESI, m/z) calc. for: C₆₀H₈₇N₄SiOP₂⁺: 969.6119 [M]; found: 969.6115. IR (ATR, cm⁻¹): 2962, 2928, 2869, 1508, 1499, 1459, 1273, 1148, 1031, 804, 637.

Figure S92. ${}^{13}C{}^{1}H$ NMR of **9b** in CD₃CN.

Figure S94. ${}^{35}P{}^{1}H$ NMR of **9b** in CD₃CN.

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm) 10

---79.3

Figure S97. IR spectrum of 9b.

Synthesis of S2:

Trifluoromethanesulfonic acid (H-OTf) (3 mg, 0.02 mmol) in acetonitrile (0.1 mL) was added slowly to a stirred solution of **3a** (18 mg, 0.02 mmol) in tetrahydrofuran (1 mL) at room temperature. The reaction mixture was monitored with NMR spectroscopy revealing that **S2** was too unstable to be isolated. ³¹P{¹H} NMR (161.9 MHz): $\delta = 509.2$ (d, ¹*J*_{PP} = 503.6 Hz), 267.9 (d, ¹*J*_{PP} = 503.6 Hz). ³¹P NMR (161.9 MHz): $\delta = 509.2$ (d, ¹*J*_{PP} = 503.6 Hz), 267.9 (d, ¹*J*_{PP} = 503.6 Hz).

Figure S98. ³¹P{¹H} NMR spectrum of the reaction mixture.

Figure S99. ³¹P NMR spectrum of the reaction mixture.

Figure S100 ³¹P{¹H} NMR spectra the reaction mixture within one hour.

Synthesis of 10:

4,5-Dimethyl-1,3-diisopropylimidazol-2-ylidene (Meipr, 16 mg, 0.1 mmol) in tetrahydrofuran (4 mL) was added to a stirred solution of 9a (100 mg, 0.1 mmol) in tetrahydrofuran (20 mL) at room temperature. After stirring at room temperature for 0.5 h, the solvent was removed in vacuo, the residue was dispersed in hexane (6 mL). The resulting precipitates were collected via filtration, and then washed with hexane $(2 \times 1 \text{ mL})$ and dried in vacuo to afford 10 (102) mg, yield = 88 %) as a dark red powder. M. p. 102 °C (decompose). ¹H NMR (600.2 MHz, CD_2Cl_2): $\delta = 7.36$ (t, J = 7.7 Hz, 2 H, $C_{Ar}H$), 7.30 (t, J = 7.7 Hz, 1 H, $C_{Ar}H$), 7.27 – 7.23 (m, 2 H, $C_{Ar}H$), 7.21 (d, J = 8.0 Hz, 3 H, $C_{Ar}H$), 7.13 (m, 2 H, $C_{Ar}H$), 7.08 (d, J = 7.5 Hz, 1 H, $C_{Ar}H$), 7.02 (d, J = 7.6 Hz, 1 H, C_{Ar}H), 5.15 (br., 1 H, =C(CH₃)), 4.98 (br., 1 H, =C(CH₃)), 4.51 (m, 1 H, $CH(CH_3)_2$), 4.40 (d, ${}^{1}J_{PC} = 7.4$ Hz, 1 H, =CHPP), 3.99 (m, 1 H, $CH(CH_3)_2$ or/and NCH_2), 3.88 (m, 3 H, CH(CH₃)₂ or/and NCH₂), 3.75 (m, 2 H, CH(CH₃)₂ or/and NCH₂), 3.60 (m, 1 H, CH(CH₃)₂ or/and NCH₂), 3.55 (m, 1 H, CH(CH₃)₂ or/and NCH₂), 3.36 (m, 1 H, CH(CH₃)₂ or/and NCH₂), 3.20 (m, 1 H, CH(CH₃)₂ or/and NCH₂), 3.11 (m, 3 H, CH(CH₃)₂ or/and NCH₂), 2.88 (m, 3 H, CH(CH₃)₂ or/and NCH₂), 2.54 (d, ²J_{PC} = 4.5 Hz, 1 H, =CHC(OCH₃)PP), 2.42 (s, 2 H, =C(CH₃)), 2.30 (s, 2 H, =C(CH₃)), 2.14 (br., 4 H, -PCO(CH₃) & CH(CH₃)₂), 1.63 (d, J =6.8 Hz, 3 H, $CH(CH_3)_2$), 1.35 – 1.18 (m, 48 H, $CH(CH_3)_2$), 1.01 (m, 6 H, $CH(CH_3)_2$), 0.72 (d, J = 6.9 Hz, 3 H, CH(CH₃)₂). ¹³C{¹H} NMR (150.8 MHz, CD₂Cl₂): $\delta = 205.8$ (dd, ¹ $J_{PC} = 97.5$, $^{2}J_{PC} = 9.5$ Hz, C(OCH₃)), 160.5 (d, $^{2}J_{PC} = 39.3$ Hz, NCN), 156.2 (d, $^{3}J_{PC} = 18.0$ Hz, NCN), $152.8 (d, {}^{1}J_{PP} = 80.8 Hz, NCN), 149.5 (C_{Ar}), 149.2 (C_{Ar}), 148.0 (C_{Ar}), 147.9 (C_{Ar}), 147.0 (C_{Ar}), 147.$ 146.8 (C_{Ar}), 146.2 (C_{Ar}), 138.6 (C_{Ar}), 134.9 (C_{Ar}), 128.9 (C_{Ar}), 128.6 (C_{Ar}), 128.1 (C_{Ar}), 126.3 (CF3), 124.9 (CAr), 124.8 (CAr), 124.6 (CAr), 124.5 (CAr), 124.0 (CAr), 123.4 (CAr), 81.4 (dd, ${}^{1}J_{PC} = 52.2, {}^{2}J_{PC} = 9.3 \text{ Hz}, =CHPP$), 60.6 (d, ${}^{1}J_{PC} = 24.3 \text{ Hz}, =CHC(OCH_{3})PP$), 52.2 (NCH₂), 51.6 (NCH₂), 51.0 (NCH₂), 50.7 (d, ${}^{3}J_{PC} = 5.6$ Hz, NC(CH₃)), 50.5 (d, ${}^{3}J_{PC} = 5.6$ Hz, NC(CH₃)),

49.5 (NCH₂), 28.7, 28.5, 28.4, 28.3, 28.2, 25.6, 25.5, 24.9, 24.5, 24.4, 24.3, 24.1, 24.1, 23.8, 23.4, 23.3, 22.7, 22.6, 22.2, 8.4. ³¹P{¹H} NMR (242.9 MHz, CD₂Cl₂): $\delta = 35.0$ (d, ¹*J*_{PP} = 265.2 Hz, =CHPPC(OCH₃)), -54.1 (d, ¹*J*_{PP} = 265.2 Hz, =CHPPC(OCH₃)). ³¹P NMR (242.9 MHz, CD₂Cl₂): $\delta = 35.0$ (d, *J* = 265.2 Hz, =CHPPC(OCH₃)), -54.1 (d, *J* = 265.2 Hz, =CHPPC(OCH₃)). ¹⁹F{¹H} NMR (565 MHz, CD₂Cl₂): $\delta = -79.3$. UV/Vis (acetonitrile, λ (nm) ϵ (M⁻¹cm⁻¹)): 390.5 (3322), 464.0 (4546). HRMS (ESI, m/z) calc. for: C₆₉H₁₀₁N₆OP₂⁺: 1091.7507 [M]; found: 1091.7501. IR (ATR, cm⁻¹): 2962, 2930, 2868, 1507, 1480, 1456, 1262, 1146, 1031, 805, 637.

Figure S101. ¹H NMR of **10** in CD₂Cl₂.

Figure S103. ${}^{31}P{}^{1}H$ NMR of **10** in CD₂Cl₂.

Figure S105. ${}^{19}F{}^{1}H$ NMR of **10** in CD₂Cl₂.

Figure S107. IR spectrum of 10.

Synthesis of 11:

Lithium aluminium hydride (LiAlH₄, 2 mg, 0.05 mmol) in tetrahydrofuran (1 mL) was added to a stirred solution of **9a** (50 mg, 0.05 mmol) in tetrahydrofuran (10 mL) at room temperature. After stirring for 0.5 hour, the solvent was removed under reduced pressure and the residue was extracted with hexane (20 mL). Then, the solvent was removed under reduced pressure to afford crude product 11 (31 mg, yield = 62 %) as a light yellow oil. ¹H NMR (600.2 MHz, C_6D_6): $\delta = 7.30$ (t, J = 7.7 Hz, 1 H, $C_{Ar}H$), 7.26 (t, J = 7.6 Hz, 1 H, $C_{Ar}H$), 7.14 (d, J = 4.6 Hz, 1 H, CArH), 7.10-7.12 (m, 2 H, CArH), 7.09-7.04 (m, 4 H, CArH), 7.00-6.97(m, 2 H, CArH), 6.94-6.93 (m, 1 H, C_{Ar}H), 4.35 (s, 1 H, C(OMe)-CH=), 3.77 (d, ${}^{2}J_{PH} = 6.3$ Hz, 1 H, =CH-P(H)P), 3.32-3.47 (m, NCH₂ or CH(CH₃)₂ or P(H), 10 H), 3.23 (m, NCH₂ or CH(CH₃)₂ or P(H), 3 H), 3.15 (m, NCH₂ or CH(CH₃)₂ or P(H), 1 H), 3.09 (m, NCH₂ or CH(CH₃)₂ or P(H), 1 H), 3.04 (m, NCH₂ or CH(CH₃)₂ or P(H), 2 H), 2.96 (d, ${}^{4}J_{PH} = 1.7$ Hz, 1 H, OCH₃), 1.46 (d, J = 6.8 Hz, 3 H, CH(CH₃)₂), 1.40 (t, J = 6.4 Hz, 6 H, CH(CH₃)₂), 1.35 (d, J = 6.9 Hz, 3 H, CH(CH₃)₂), 1.29 $(d, J = 7.0 \text{ Hz}, 3 \text{ H}, \text{CH}(\text{C}H_3)_2), 1.26 (m, 6 \text{ H}, \text{CH}(\text{C}H_3)_2), 1.23 (d, J = 4.8 \text{ Hz}, 6 \text{ H}, \text{CH}(\text{C}H_3)_2),$ 1.21 (d, J = 7.2 Hz, 15 H, CH(CH₃)₂), 1.16 (d, J = 6.7 Hz, 3 H, CH(CH₃)₂), 1.13 (d, J = 6.9 Hz, 3 H, CH(CH₃)₂). ¹³C{¹H} NMR (150.8 MHz, C₆D₆): $\delta = 205.3$ (dd, ¹*J*_{PC} = 72.6, ²*J*_{PC} = 10.1 Hz, $P(H)-P=C(OCH_3)$, 156.9 (dd, ${}^{2}J_{PC} = 22.7$, ${}^{2}J_{PC} = 8.9$ Hz, $C=CHP(H)-P=C(OCH_3)$), 156.1 (=C(OCH₃)-CH=*C*), 149.2 (*C*_{Ar}), 148.8 (*C*_{Ar}), 148.7 (*C*_{Ar}), 148.6 (*C*_{Ar}), 148.3 (*C*_{Ar}), 148.2 (*C*_{Ar}), 147.8 (CAr), 146.4 (CAr), 145.9 (CAr), 145.9 (CAr), 140.1 (CAr), 140.0 (CAr), 138.8 (CAr), 138.7 (*C*Ar), 137.2 (*C*Ar), 136.7 (*C*Ar), 135.8 (*C*Ar), 128.6 (*C*Ar), 124.6 (*C*Ar), 124.4 (*C*Ar), 82.4 (dd, ¹*J*_{PC} = 27.6, ²*J*_{PC} = 11.3 Hz, P(H)-P-C(OCH₃)-CH=). 55.4 (NCH₂), 55.1 (NCH₂), 53.6 (NCH₂), 52.9 $(dd, {}^{2}J_{PC} = 28.1, {}^{3}J_{PC} = 9.2 \text{ Hz}, =CHP(H)-P-), 52.2 (OCH_3), 51.9 (NCH_2), 50.5 (NCH_2), 50.2$ (NCH₂), 49.9 (NCH₂), 49.8 (NCH₂), 29.1, 29.0, 29.0, 28.9, 28.9, 28.8, 28.7, 25.7, 25.4, 25.3, 25.2, 24.9, 24.8, 24.6, 24.3, 24.1, 24.0, 23.7. ${}^{31}P{}^{1}H{}$ NMR (243 MHz, C₆D₆): $\delta = 49.9$ (d, ${}^{1}J_{PP}$ $= 218.9 \text{ Hz}, \text{HP-}P-C(\text{OCH}_3)), -105.4 \text{ (d}, {}^{1}J_{\text{PP}} = 218.9 \text{ Hz}, \text{HP-}P-C(\text{OCH}_3)), {}^{31}P \text{ NMR} (243 \text{ MHz},$ C_6D_6): $\delta = 49.9$ (d, ${}^{1}J_{PP} = 218.9$ Hz, HP-*P*-C(OCH₃)), -105.4 (d, ${}^{1}J_{PP} = 218.9$ Hz, ${}^{1}J_{PH} = 179.8$

Hz, H*P*-P-C(OCH₃)). UV/Vis (toluene, λ (nm) ϵ (M⁻¹cm⁻¹)): 308.5 (19707), 433.5 (20806), 504.0 (16207). HRMS (ESI, m/z) calc. for: C₅₈H₈₂N₄OP₂: 913.6037 [M + H]⁺; found: 913.6010.

Figure S109. ${}^{13}C{}^{1}H$ NMR of **11** in C₆D₆. ${}^{\#}Silicon$ grease.

50 130 110 70 30 -10 -30 f1 (ppm) -50 -70 -90 -110 -130 90 50 10 -150 -170 -190

Figure S111. ³¹P NMR of **11** in C_6D_6 .

Figure S112. HRMS of 11.

Synthesis of 14:

Methyl trifluoromethanesulfonate (Me-OTf) (18 mg, 0.1 mmol) in hexane (10 mL) was added to a stirred solution of **12** (100 mg, 0.1 mmol) in hexane (30 mL) at room temperature. After stirring at room temperature for 0.5 h, the resulting precipitates were collected via filtration, then washed with hexane (2 × 2 mL) and dried *in vacuo* to afford **14** (103 mg, yield = 91 %) as a yellow powder. Yellow crystals of **14** were obtained from a saturated solution of fluorobenzene and hexane stored at -30 °C for 7 days. ¹H NMR (600.2 MHz, CD₃CN): δ = 7.43 (t, *J* = 7.7 Hz, 3 H, C_{Ar}*H*), 7.31 (t, *J* = 7.7 Hz, 3 H, C_{Ar}*H*), 7.11 (d, J = 7.7 Hz, 6 H, C_{Ar}*H*), 4.35 (s, 1 H, C=C*H*), 4.17 (br., 2 H, NC*H*₂), 4.03 (br., 2 H, NC*H*₂), 3.73(s, 4 H, NC*H*₂), 3.65 (m, 1 H, C⁺-C*H*), 2.95 (m, 8 H, C*H*(CH₃)₂), 2.56 (br., 3 H, PC*H*₃), 1.27 (d, *J* = 6.9 Hz, 9 H, CH(C*H*₃)₂), 1.19 (d, *J* = 6.6 Hz, 9 H, CH(C*H*₃)₂), 1.14 (d, *J* = 6.7 Hz, 18 H, CH(C*H*₃)₂), 1.09 (br., 3 H, CH(C*H*₃)₂), 0.76 (m, 6 H, CH(C*H*₃)₂), 0.30 (d, *J* = 6.8 Hz, 3 H, CH(C*H*₃)₂). ¹³C{¹H} NMR (150.8 MHz, CD₃CN): δ = 172.6 (m, NCN⁺), 162.30 (d, ²*J*_{PC} = 15.4 Hz, NCN), 147.2 (*C*_{Ar}), 135.1 (*C*_{Ar}), 132.2 (*C*_{Ar}), 131.2 (*C*_{Ar}), 130.4 (*C*_{Ar}), 126.2 (*C*F₃), 53.2 (NCH₂), 51.5 (NCH₂), 50.1 (dd, ¹*J*_{PC} = 53.6 Hz, ²*J*_{PC} = 3.9 Hz, C=CHPP), 35.3 (dd, ¹*J*_{PC} = 49.6, ¹*J*_{PC} = 38.9 Hz, PCHP), 29.6, 29.0, 26.0, 25.2, 24.9, 24.5, 24.2, 6.71 (d, ¹*J*_{PC} = 45.7 Hz,PCH₃). ³¹P{¹H} NMR (242.9 MHz, CD₃CN): δ = -120.2 (d, ¹*J*_{PP} = 184.6 Hz, *P*(CH₃)PCH), -124.9 (d, ¹*J*_{PP} = 184.5 Hz, P(CH₃)*P*CH). ³¹P NMR (242.9 MHz, CD₃CN): δ = -120.2 (d, ¹*J*_{PP} = 184.6 Hz, *P*(CH₃)PCH), -124.9 (dd, ¹*J*_{PP} = 184.5 Hz, ²*J*_{PH} = 5.8Hz, P(CH₃)*P*CH). ¹⁹F{¹H} NMR (565 MHz, CD₃CN): δ = -79.3. UV/Vis (acetonitrile, λ (nm) ε (M⁻¹cm⁻¹)): 328.0 (54024.3), 472.0 (5748.5). HRMS (ESI, m/z) calc. for: C₅₇H₈₁N₄P₂⁺: 883.5931 [M]; found: 883.5927.

Figure S113. ¹H NMR of **14** in CD₃CN. [#]Toluene.

Figure S115. ${}^{31}P{}^{1}H$ NMR of 14 in CD₃CN.

fl (ppm)

Figure S117. 19 F $\{^{1}$ H $\}$ NMR of 14 in CD₃CN.

Figure S118. HRMS of 14.

Figure S119. (a) UV-Vis absorption spectra of the acetonitrile solution of **1a**, **1b**, and toluene solution of **3a**, **3b**, **6a**, **6b**, **7a**, **7b**. (b) UV-Vis absorption spectra of the acetonitrile solution of **9a**, **9b**, **10**, **14**, and toluene solution of **11**.

S2. X-Ray diffraction studies

These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/cgi-bin/catreq.cgi, or by emailing data_request@ccdc.cam.ac.uk. The CCDC reference numbers are 2343829, 2343830, 2343833-2343835, 2346470, and 2385608.

Figure S120. Solid-state structure of **3a_dimer** (Ellipsoids are set to 50% probability; H atoms are omitted for clarity). Selected distances (Å): P1-P2 2.2431(5), P1-P3 2.2563(6), P2-P4 2.2018(6), P3-P4 2.2441(5), P2-C1 1.8811(17), C1-O1 1.238(2), C1-C2 1.426(2), C2-C3 1.376(2), P1-C4 1.7877(17), C4-C5 1.359(2).

	•		
Compounds	3 a	3b	6a
CCDC	2343829	2346470	2343833
Empirical formula	C57H78N4OP2	$C_{63}H_{82}N_4OP_2$	$C_{69}H_{100}FKN_5OP_2Si_2$
Formula weight	897.17	973.26	1191.75
Temperature/K	149.99(10)	100.00(10)	150.00
Crystal system	tetragonal	orthorhombic	triclinic
Space group	P-421c	P212121	P-1
a/Å	27.95760(10)	10.5100(2)	12.0896(6)
b/Å	27.95760(10)	18.2431(3)	16.0159(8)
c/Å	15.51230(10)	30.1703(7)	21.5597(11)

Table S1. The summary of crystal data and structure refinement

α/°	90	90	98.712(2)
β/°	90	90	103.862(2)
γ/°	90	90	98.212(2)
Volume/Å ³	12124.84(12)	5784.7(2)	3935.8(3)
Ζ	8	4	2
$ ho_{calc}g/cm^3$	0.983	1.118	1.006
µ/mm ⁻¹	0.919	1.001	1.038
F(000)	3888.0	2104.0	1286.0
Crystal size/mm ³	$0.18 \times 0.16 \times 0.16$	$0.09 \times 0.08 \times 0.08$	$0.15 \times 0.08 \times 0.04$
Radiation	Cu Ka (λ = 1.54184)	Cu Ka ($\lambda = 1.54184$)	GaKa ($\lambda = 1.34138$)
2Θ range for data collection/°	6.322 to 148.658	5.662 to 151.826	3.742 to 118.882
	$-23 \le h \le 34, -34 \le k \le 34,$	$-12 \le h \le 11, -22 \le k \le 22,$	$-15 \le h \le 15, -20 \le k \le 20,$
Index ranges	$-19 \le 1 \le 12$	$-36 \le 1 \le 36$	$-27 \le l \le 27$
Reflections collected	73809	33798	74751
In daman dant nof lastions	12206 [$R_{int} = 0.0426$,	11179 [$R_{int} = 0.0622$,	17203 [$R_{int} = 0.0569$,
Independent reflections	$R_{sigma} = 0.0268$]	$R_{sigma} = 0.0598]$	$R_{sigma} = 0.0474]$
Data/restraints/parameters	12206/0/593	11179/8/658	17203/42/770
Goodness-of-fit on F ²	1.068	1.049	1.079
Final R indexes [I>=2\sigma(I)]	$R_1 = 0.0330, wR_2 = 0.0896$	$R_1 = 0.0708, wR_2 = 0.1789$	$R_1 = 0.0459, wR_2 = 0.1243$
Final R indexes [all data]	$R_1 = 0.0342, wR_2 = 0.0904$	$R_1 = 0.0893, wR_2 = 0.1909$	$R_1 = 0.0636, wR_2 = 0.1360$
Largest diff. peak/hole / e Å ⁻³	0.23/-0.24	0.83/-0.37	0.39/-0.42
Flack parameter	0.011(5)	0.022(10)	
Compounds	7h	89	14
CCDC	2343835	2343834	2385608
Empirical formula	C66H99N5O2P2Si	C64H00N5OP2Si2	$C_{73}H_{03}E_6N_4O_2P_2S$
Formula weight	1084 53	1072 60	1282 51
Temperature/K	100 00(10)	1572.00	1/0 0(6)
Crystal system	monoclinic	orthorhombic	triclinic
Ci jour oyouni	monochine	oraiomono	

90

90

P212121

15.1737(2)

20.6058(2)

20.9842(3)

triclinic P-1

13.0834(2)

13.3184(2)

20.9406(3)

79.7010(10)

86.7710(10)

18.5772(2)

16.1173(2)

21.8954(2)

99.6100(10)

90

 $P2_1/n$

Space group

a/Å

b/Å

c/Å

α/°

β/°

γ/°	90	90	80.6750(10)
Volume/Å ³	6463.80(12)	6561.05(14)	3541.26(9)
Z	4	4	2
$\rho_{calc}g/cm^3$	1.114	1.086	1.203
µ/mm ⁻¹	1.126	1.261	1.352
F(000)	2360.0	2336.0	1366.0
Crystal size/mm ³	$0.06 \times 0.05 \times 0.03$	$0.18 \times 0.16 \times 0.15$	$0.09 \times 0.08 \times 0.06$
Radiation	Cu Ka (λ = 1.54184)	Cu Ka ($\lambda = 1.54184$)	Cu K α (λ = 1.54184)
2Θ range for data collection/°	5.784 to 103.646	7.19 to 144.804	6.828 to 145.374
Index ranges	$-18 \le h \le 18, -16 \le k \le 16,$ $-22 \le 1 \le 22$	$\label{eq:heat} \begin{array}{l} -16 \leq h \leq 18, -22 \leq k \leq 25, \\ -23 \leq l \leq 25 \end{array}$	$-16 \le h \le 16, -16 \le k \le 15,$ $-25 \le 1 \le 25$
Reflections collected	67186	21497	63032
Independent reflections	7107 [$R_{int} = 0.0337$, $R_{sigma} = 0.0136$]	12465 [$R_{int} = 0.0283$, $R_{sigma} = 0.0347$]	13789 [$R_{int} = 0.0274$, $R_{sigma} = 0.0185$]
Data/restraints/parameters	7107/0/708	12465/0/690	13789/0/828
Goodness-of-fit on F ²	1.038	1.046	1.038
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0319, wR_2 = 0.0794$	$R_1 = 0.0436$, $wR_2 = 0.1140$	$R_1 = 0.0587, wR_2 = 0.1671$
Final R indexes [all data]	$R_1 = 0.0346, wR_2 = 0.0809$	$P R_1 = 0.0460, w R_2 = 0.1172$	$R_1 = 0.0652, wR_2 = 0.1743$
Largest diff. peak/hole / e Å ⁻³	0.18/-0.25	0.87/-0.24	0.99/-0.65
Flack parameter		0.010(6)	

Compounds	3a_dimer
CCDC	2343830
Empirical formula	$C_{114}H_{156}N_8O_2P_4$
Formula weight	1794.34
Temperature/K	149.99(10)
Crystal system	monoclinic
Space group	I2/c
a/Å	27.6579(4)
b/Å	15.0908(2)
c/Å	57.5737(9)
α/°	90
β/°	97.571(2)

γ/°	90
Volume/Å ³	23820.6(6)
Ζ	8
$\rho_{calc}g/cm^3$	1.001
µ/mm ⁻¹	0.936
F(000)	7776.0
Crystal size/mm ³	$0.21\times0.16\times0.13$
Radiation	Cu Kα (λ = 1.54184)
2Θ range for data collection/°	6.448 to 150.8
Index ranges	$\label{eq:1.1} \begin{array}{l} -30 \leq h \leq 34, -16 \leq k \leq 18, \\ -70 \leq l \leq 71 \end{array}$
Reflections collected	110629
Independent reflections	23738 [$R_{int} = 0.0903$, $R_{sigma} = 0.0608$]
Data/restraints/parameters	23738/0/1185
Goodness-of-fit on F ²	1.078
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0529, wR_2 = 0.1312$
Final R indexes [all data]	$R_1 = 0.0652, wR_2 = 0.1423$
Largest diff. peak/hole / e Å ⁻³	0.59/-0.56

S3: Theoretical details

Geometry optimizations were performed using the Gaussian16 optimizer.^[2] All geometry optimizations were computed using the functional M06-2X functional. The Def2-SVP basis set was used for all the atoms. Frequency calculations at the same level of theory were performed to identify the number of imaginary frequencies (zero for local minimum and one for transition states) and provide the thermal corrections of Gibbs free energy. Transition states were submitted to intrinsic reaction coordinate (IRC) calculations to determine two corresponding minima. The single-point energy calculations were performed at the M06-2X/Def2-TZVP level of theory for solution-phase (toluene) for organic compounds. The gas-phase geometry was

used for all the solution phase calculations. The SMD method was used with the corresponding solvent, while the Bondi radii were chosen as the atomic radii to define the molecular cavity.^[3] The Gibbs energy corrections from frequency calculations were added to the single-point energies to obtain the Gibbs free energies in solution, respectively. All the solution-phase free energies reported in the paper correspond to the reference state of 1 mol/L, 298K. TD-DFT calculations were performed at the PBE0-SMD(toluene)/def2tzvp level of theory. NBO calculations were carried out using NBO 7.0 program^[4] at the M06-2X/Def2TZVP//M06-2X/Def2-SVP level of theory.

Figure S121. Second order perturbation analysis of **3a**^M at M062X/Def2-TZVP level of theory.

Figure S123. Major Kohn-Sham orbitals of **3a** for transitions at 481 nm from TD-DFT calculations.

Figure S124. Electronic transitions of 9a as modeled by TD-DFT.

Figure S125. Major Kohn-Sham orbitals of **9a** for transitions at 546 nm from TD-DFT calculations.

Figure S126. Optimized geometry of 3a^M.

Table S2. Calculated ¹H and ³¹P NMR chemical shifts (ppm) of **3a**^M at the B97-2/def2TZVP-SMD(benzene)//M062X/Def2SVP level of theory.

Atomic	Calculated GIAO	Predicted chemical	Experimental
number	magnetic shielding tensor	shifts	chemical shifts
H12	26.0491	5.5604 ^a	4.77
H20	25.0390	6.5705 ^a	5.77
P1	-112.957	413.9188 ^b	385.0
P2	-210.318	511.2799 ^b	487.5

^a Relative to TMS with calculated average GIAO magnetic shielding tensor ${}^{1}H_{cal.} = 31.6095$ ppm, ${}^{13}C_{cal.} = 186.9552$; ^b Relative to PH₃ with calculated GIAO magnetic shielding tensor ${}^{31}P_{cal.} = 567.0622$ ppm and experimentally observed ${}^{31}P_{exp.} = -266.1$ ppm. The predicted ${}^{31}P$ chemical shifts were calculated according to formular: ${}^{31}P_{pred.}$ (sample) = ${}^{31}P_{cal.}$ (PH₃) + ${}^{31}P_{exp.}$ (PH₃) – ${}^{31}P_{cal.}$ (sample).^[4]

Figure S127. Optimized geometry of 9a^M.

Table S3. Calculate	$d^{-1}H$ and ^{31}P NMR	chemical shifts	(ppm) of $9a^{M}$	at the B97-2/0	def2TZVP-
SMD(benzene)//M0)62X/Def2SVP lev	el of theory.			

Atomic	Calculated GIAO	Predicted chemical	Experimental
number	magnetic shielding tensor	shifts	chemical shifts
H28, 29, 30	27.5547	4.0548	2.82
H12	25.9258	5.6837	4.85
H20	24.0929	7.5166	6.11
C27	127.0909	59.8643	59.6
C10	-18.2827	205.2379	195.0
C11	103.0425	83.9127	87.9
C19	74.0868	112.8684	103.9
P1	64.6911	236.2711	229.7
P2	-215.3132	516.2754	471.3

Figure S128. Optimized geometry of 11^M.

Atomic number	Calculated GIAO magnetic shielding tensor	Predicted chemical shifts	Experimental chemical shifts
C27	131.3167	55.6385	55.2
C10	-26.3173	213.2725	205.3
C11	108.5255	78.4297	82.0
C19	133.9734	52.9818	52.5
P1	264.9559	36.0063	49.6
P2	400.9159	-99.9537	-105.9

Table *S4***.** Calculated ¹H and ³¹P NMR chemical shifts (ppm) of **11**^M at the B97-2/def2TZVP-SMD(benzene)//M062X/Def2SVP level of theory.

Figure S129. Optimized geometry of **3a_dimer^M** and its regioisomer **3a_dimer_iso^M**, and their free energy difference calculated at the M062X/Def2-TZVP-SMD(toluene)//M062X/Def2SVP level of theory.

Cart	tesian	Coordinates	:
Cur		e e e e a mares	•

3a				С	-3.65632400	1.04169700	2.6539540
Р	0.19079200	2.05146600	-0.6901610	Н	-3.79001800	0.19690200	1.9668430
Р	0.95734800	0.27745300	-0.0137120	С	-3.49125600	-2.23257200	-0.7366180
0	-2.31206400	2.65546900	-1.1943810	С	-3.31021400	-3.18419400	0.2858700
N	-4.17816100	-1.02783400	-0.4318340	С	-4.01207100	2.32403000	1.9164400
N	-4.58240900	1.13535000	-0.1538960	С	2.17192700	-2.47910500	2.0813440
N	3.77229200	-1.48433700	0.5232570	С	-5.61769100	-0.97050500	-0.2251580
N	5.06465200	0.29924500	0.2684850	Н	-5.90482800	-1.36301700	0.7676110
С	-3.59012800	0.21178200	-0.3480850	Н	-6.13948600	-1.56335600	-0.9895900
С	3.74981000	-0.13563700	0.2774930	С	-4.71233600	4.74488700	0.6777590
С	-4.43830200	2.35421800	0.5744870	Η	-4.97537700	5.69063100	0.2004340
С	-1.66423500	1.70619600	-0.7765310	С	5.45845600	1.49847600	-0.3996520
С	-3.03487300	-2.46474400	-2.0503870	С	5.34353900	1.58821000	-1.7998060
С	2.63703600	-2.31021800	0.7682490	С	-3.93374400	3.53816000	2.6086270
С	-2.23182900	0.42425700	-0.4193360	Н	-3.59924000	3.53735200	3.6484150
Н	-1.58963200	-0.45170000	-0.3276430	С	-5.89796500	0.53297000	-0.3564350

Η	-6.29442000	0.78288100	-1.3555040
Н	-6.60429300	0.90274400	0.3984860
С	2.01633200	-2.93415400	-0.3326670
С	-4.77600600	3.56393300	-0.0622660
С	2.67727700	0.69858000	0.0472960
Н	2.96266700	1.73181100	-0.1709210
С	-2.41381000	-3.68786500	-2.3226540
Н	-2.04979200	-3.88811400	-3.3332210
С	6.36080600	3.72513000	-0.2797930
Η	6.76339100	4.56088700	0.2928270
С	-5.19126300	3.59356700	-1.5210640
Н	-4.89827000	2.62464600	-1.9496670
С	2.44039900	-2.58556100	-1.7512640
Н	2.64851000	-1.50273500	-1.7543790
С	-4.28979200	4.73713400	2.0039340
Η	-4.23104500	5.67093800	2.5652930
С	1.12614800	-3.38398100	2.2947480
Η	0.74858600	-3.54233200	3.3078720
С	5.73296200	2.78418500	-2.4123500
Η	5.64242900	2.88563500	-3.4960010
С	5.10520800	-1.92109400	0.9199560
Η	5.31871500	-2.92616600	0.5320710
Η	5.20553800	-1.94660300	2.0203470
С	-3.70218800	-2.88826800	1.7239500
Η	-4.14673000	-1.88488000	1.7464780
С	0.96464900	-3.81233800	-0.0761860
Η	0.44484400	-4.29772000	-0.9017200
С	5.97313400	2.55479200	0.3766460
С	6.23440200	3.84168400	-1.6624560
Η	6.53272500	4.76656400	-2.1584690
С	-2.27576700	-4.66097700	-1.3362180
Η	-1.81340500	-5.62022000	-1.5774590
С	0.54383200	-4.05800600	1.2293950
Η	-0.27209500	-4.75959900	1.4066540
С	5.98047000	-0.83454700	0.3040340
Η	6.87304900	-0.60673900	0.9030580
Η	6.30663500	-1.10640900	-0.7176580
С	-3.21830400	-1.44725700	-3.1640860
Η	-3.73136000	-0.57206800	-2.7431340
С	-2.72108100	-4.40840200	-0.0422330
Η	-2.60109800	-5.17054100	0.7317800
С	2.70568300	-1.65168500	3.2385350
Н	3.48783600	-0.98292300	2.8493730

С	-2.46580100	-2.83975300	2.6268430
Н	-2.00202800	-3.83484900	2.7148220
Н	-2.74403800	-2.50868800	3.6394520
Н	-1.70868100	-2.14842900	2.2260100
С	6.05011300	2.41906100	1.8892620
Н	6.33683800	1.37759000	2.1046950
С	3.32425000	-2.52798400	4.3311050
Н	2.56834900	-3.19381100	4.7747370
Н	3.73736800	-1.90614500	5.1388650
Н	4.13125700	-3.16039300	3.9322970
С	-1.87119700	-0.96535300	-3.7108530
Н	-1.24688700	-0.54155400	-2.9105270
Н	-2.02631700	-0.18426900	-4.4694120
Н	-1.31828300	-1.79152100	-4.1856480
С	-4.59478000	0.80399100	3.8419290
Η	-4.48563000	1.59133400	4.6030130
Н	-4.36769800	-0.16018400	4.3230820
Η	-5.64755600	0.79159800	3.5222590
С	4.82409700	0.44173200	-2.6554550
Н	4.59559800	-0.40968700	-1.9977420
С	-4.09989600	-2.01238900	-4.2828960
Η	-3.62161300	-2.87681200	-4.7684200
Н	-4.27453900	-1.24874500	-5.0549080
Η	-5.07522200	-2.34221200	-3.8959680
С	-2.18857400	1.03861900	3.0936150
Η	-1.51855400	1.16699800	2.2307590
Η	-1.93761000	0.08768400	3.5878850
Η	-1.99028600	1.85199900	3.8087430
С	-6.70878700	3.77097700	-1.6525970
Η	-7.26298700	2.99265100	-1.1070790
Η	-7.01612300	3.73809300	-2.7089150
Н	-7.01817400	4.74443200	-1.2406800
С	-4.74326900	-3.87878900	2.2507780
Η	-5.64217500	-3.89013200	1.6169550
Η	-5.04490000	-3.61355200	3.2749250
Η	-4.33909200	-4.90247200	2.2760430
С	-4.44334400	4.67210500	-2.3077530
Η	-4.73228200	5.68386500	-1.9837750
Η	-4.68419800	4.59069100	-3.3784610
Η	-3.36150200	4.54563200	-2.1766870
С	1.59800200	-0.75420000	3.8027980
Н	1.16795500	-0.12045700	3.0133740
Η	1.99684600	-0.10191400	4.5938400

Η	0.78387700	-1.35555600	4.2365580	
С	5.89267000	-0.02505300	-3.6504940	
Η	6.13781900	0.76988700	-4.3709030	
Η	5.53173100	-0.89342300	-4.2214610	
Η	6.82357000	-0.30965500	-3.1378910	
С	3.72697700	-3.30656700	-2.1652490	
Η	4.56008300	-3.06618800	-1.4897990	
Η	4.02179300	-3.00986200	-3.1835620	
Η	3.58129400	-4.39771300	-2.1552010	
С	3.52461800	0.81421000	-3.3774080	
Η	2.74091600	1.11612400	-2.6678190	
Η	3.15179500	-0.04716800	-3.9533360	
Η	3.68883100	1.64275800	-4.0834560	
С	4.67076800	2.65229700	2.5192040	
Η	4.32578600	3.67644700	2.3096790	
Η	4.71922600	2.52376900	3.6111850	
Η	3.92106700	1.95506400	2.1199880	
С	1.32919000	-2.82852900	-2.7705070	
Η	1.14409900	-3.90374400	-2.9230510	
Η	1.61144600	-2.40166100	-3.7441070	
Η	0.38766000	-2.35956000	-2.4487640	
С	7.09414500	3.33357700	2.5271640	
Η	8.07777000	3.22786600	2.0470250	
Η	7.20292500	3.09067300	3.5937070	
Н	6.79401000	4.39045400	2.4647870	

2b^M

Р	0.35449000	-0.82223600	0.0437880
N	-2.32254200	-1.63380100	-1.3475120
N	-3.54327900	0.01065600	-0.4324410
С	-2.24897200	-0.42783800	-0.6818800
С	-1.09223000	0.21725000	-0.2691920
С	-3.70271300	-1.95336600	-1.6669320
Н	-3.91500600	-3.02478800	-1.5425300
Н	-3.92599000	-1.67570800	-2.7146770
С	-4.47039700	-1.08388300	-0.6883100
Η	-5.42610500	-0.72209800	-1.0925980
Η	-4.67473600	-1.63641300	0.2482600
С	-1.29904900	-2.12849300	-2.2450120
Η	-0.63337700	-1.30784700	-2.5494960
Η	-0.68206800	-2.91121000	-1.7817680
Η	-1.78915100	-2.54088900	-3.1401940
С	-3.84653100	0.82281400	0.7357140

Н	-3.25762700	0.49448000	1.6089890
Η	-3.64557500	1.88711400	0.5628690
Н	-4.91519100	0.70886800	0.9597600
С	1.68972300	0.36173600	0.0979430
С	3.00050500	0.09199500	-0.1912040
Н	1.44923200	1.41033800	0.2630190
Ν	3.61082800	-1.12563200	-0.4106980
Ν	3.96767900	1.07827400	-0.3358400
С	5.03702200	-0.93862000	-0.6128090
С	3.14022000	-2.37209500	0.1597680
С	5.10482000	0.51978900	-1.0420060
С	3.59339300	2.44745900	-0.5831420
Н	5.43318300	-1.62595200	-1.3737510
Н	5.59486500	-1.10106400	0.3295740
Н	2.59183600	-2.19181000	1.0970900
Н	2.47872400	-2.92269500	-0.5240520
Н	4.01117300	-3.00397100	0.3865270
Н	6.04296500	1.01193900	-0.7498530
Н	4.98441600	0.61419000	-2.1397040
Н	2.98067500	2.55769700	-1.4974640
Н	3.02035400	2.84980100	0.2630300
Н	4.50623000	3.04814900	-0.6871040
Р	0.01267500	-1.27111000	2.3420630
С	-0.44351000	-2.81785200	1.9123630
0	-0.75883000	-3.89401200	1.6219960
С	-1.13066700	1.66311900	0.0497720
С	-0.66837000	2.18856400	1.2688540
С	-1.62769700	2.57190700	-0.9010560
С	-0.71937000	3.55572700	1.5317820
Н	-0.27582800	1.50817600	2.0277030
С	-1.69181000	3.93812100	-0.6356650
Н	-1.97820600	2.18377900	-1.8599260
С	-1.23592000	4.43970800	0.5836020
Н	-0.36093900	3.93225600	2.4916620
Н	-2.09117900	4.61743900	-1.3912200
Н	-1.27899200	5.50976500	0.7920030

TS1-b

Р	0.04316200	-1.09001900	0.6509810
N	-2.73558400	-2.21354700	-0.4093490
N	-3.87562600	-0.28220800	-0.2361530
С	-2.60302900	-0.85140200	-0.1676470
С	-1.44087700	-0.16618400	0.1108920

С	-4.11553500	-2.52852900	-0.7366710
Н	-4.43237000	-3.48948200	-0.3060050
Η	-4.25048100	-2.58017600	-1.8343860
С	-4.86371600	-1.34653800	-0.1539460
Η	-5.77589700	-1.09629300	-0.7134570
Н	-5.14284300	-1.53904400	0.9006590
С	-1.71681200	-2.99893200	-1.0782300
Η	-1.03002900	-2.34319300	-1.6359000
Η	-1.11681900	-3.59577900	-0.3781100
Η	-2.21102400	-3.67783900	-1.7901060
С	-4.20399700	0.92547900	0.4977230
Н	-3.78551600	0.90417100	1.5197230
Η	-3.83362100	1.82640600	-0.0054780
Η	-5.29791600	0.99671100	0.5612770
С	1.37532900	-0.05402400	-0.0941290
С	2.62943800	-0.42197600	-0.5682860
Η	1.04252700	0.93263000	-0.4225770
N	3.25357700	-1.64079300	-0.5282620
N	3.52495400	0.50437500	-1.0088750
С	4.68988000	-1.44853000	-0.6768960
С	2.76362500	-2.77231200	0.2308250
С	4.75572600	-0.12877200	-1.4403770
С	3.18246100	1.86895600	-1.3230090
Η	5.14819700	-2.28455000	-1.2221880
Η	5.17611900	-1.35827100	0.3125750
Η	2.60415100	-2.52009100	1.2943390
Η	1.81406000	-3.13440300	-0.1797780
Η	3.50611700	-3.57733300	0.1570660
Η	5.63142900	0.47641400	-1.1696270
Η	4.76364400	-0.29333300	-2.5342700
Η	2.49692300	1.94206700	-2.1850270
Η	2.71489700	2.35049000	-0.4533250
Η	4.10589200	2.41250100	-1.5578000
Р	0.64227300	-0.28055000	2.6573880
С	1.94104300	0.52097100	1.8189970
0	2.93012100	1.15030700	1.8541250
С	-1.37049800	1.30306100	-0.1063620
С	-1.11942200	2.22579900	0.9232520
С	-1.49971000	1.80273200	-1.4144880
С	-1.00550000	3.58922100	0.6522600
Η	-1.02548400	1.86495700	1.9473430
С	-1.40223100	3.16667900	-1.6845580
Η	-1.68475500	1.09485700	-2.2256070

C -1.14830100	4.06795100	-0.6501440
Н -0.81442500	4.28507700	1.4712770
Н -1.51818700	3.52674700	-2.7087030
Н -1.06555600	5.13617200	-0.8572060

IN1-b

Р	0.01839700	-1.07506500	0.8291950
N	-2.71045100	-2.23198900	-0.3872320
N	-3.84666400	-0.28858300	-0.3386950
С	-2.58114000	-0.86156700	-0.1770870
С	-1.43749200	-0.17337900	0.1560120
С	-4.06481900	-2.54031600	-0.8120060
Н	-4.41860500	-3.49492000	-0.3962590
Н	-4.12337300	-2.60007000	-1.9164730
С	-4.84207600	-1.34781000	-0.2947940
Н	-5.71912900	-1.10507000	-0.9110760
Н	-5.18280200	-1.52270400	0.7448390
С	-1.65457500	-3.04004700	-0.9637150
Н	-0.96260700	-2.41277500	-1.5485100
Н	-1.06331400	-3.56580300	-0.2024980
Н	-2.11220000	-3.78271000	-1.6345690
С	-4.21466000	0.93116100	0.3557140
Н	-3.85895400	0.92440300	1.4014320
Н	-3.81162200	1.82391900	-0.1368800
Н	-5.31025500	1.00639900	0.3516000
С	1.41661000	0.03090900	0.2031530
С	2.60254200	-0.42295500	-0.5098320
Н	0.99355600	0.90335000	-0.3091710
N	3.25269600	-1.56859200	-0.3169070
N	3.30244700	0.39506500	-1.3046900
С	4.46611200	-1.61027600	-1.1276060
С	2.84541600	-2.67664800	0.5271200
С	4.64602700	-0.13825800	-1.5125100
С	3.03485300	1.82149700	-1.4216750
Н	4.31524800	-2.25623000	-2.0088680
Н	5.30649600	-2.00618700	-0.5429500
Н	2.35755500	-2.29219700	1.4336270
Н	2.15820100	-3.35869400	0.0064880
Н	3.75144300	-3.22274000	0.8199640
Н	5.35151800	0.37855700	-0.8405190
Н	4.97391800	-0.00208600	-2.5510800
Н	2.02831200	1.99204700	-1.8260320
Н	3.12476700	2.30339700	-0.4371500

Η	3.76399300	2.24566600	-2.1221480
Р	0.69959100	-0.14437600	2.7546180
С	1.92285800	0.52172800	1.6366940
0	2.96795200	1.13847800	1.7461470
С	-1.35313000	1.29148100	-0.0720950
С	-1.14030400	2.22084600	0.9607620
С	-1.40565600	1.77903000	-1.3915890
С	-0.98198300	3.57810700	0.6796630
Н	-1.10187200	1.86777800	1.9910260
С	-1.26662900	3.13770700	-1.6708180
Н	-1.56734300	1.06537600	-2.2031440
С	-1.04532800	4.04491800	-0.6330900
Н	-0.81665400	4.27889800	1.4999550
Н	-1.32662500	3.48925800	-2.7029300
Н	-0.92906000	5.10885800	-0.8461860

TS2-b

Р	0.14665500	-0.39830300	-0.9888670
N	-0.79891100	2.51149800	-0.3788260
N	-2.96552600	2.03135200	-0.5315310
С	-1.71160000	1.49349100	-0.3993550
С	-1.42966600	0.11483700	-0.3282550
С	-1.46100200	3.80477700	-0.4213320
Η	-0.96075800	4.50035700	-1.1103640
Η	-1.45717700	4.25953300	0.5863340
С	-2.87239800	3.44410000	-0.8700950
Η	-3.64645700	4.03711800	-0.3634920
Η	-2.99234600	3.57938900	-1.9604220
С	0.52178200	2.43457100	0.2094040
Η	0.59487200	1.55216800	0.8584480
Η	1.31306500	2.35179800	-0.5495390
Η	0.69127600	3.33907700	0.8152890
С	-4.09339800	1.27668600	-1.0499440
Η	-3.76284000	0.56246100	-1.8195420
Η	-4.60681300	0.71355900	-0.2595590
Η	-4.80259300	1.98563900	-1.4967080
С	1.90011800	-1.07389000	0.4269670
С	2.98805400	-0.19447600	0.4750650
Η	1.27424700	-1.11296000	1.3187740
N	3.90795000	-0.01411200	-0.4954820
N	3.19690600	0.74195000	1.4663450
С	4.76031300	1.12490800	-0.2018310
С	3.87159400	-0.61786900	-1.8126030

С	4.51968200	1.32350500	1.2927250
С	2.69422400	0.55209000	2.8065980
Н	4.44211600	2.00693300	-0.7878280
Н	5.81185600	0.91292200	-0.4389780
Н	2.83487800	-0.67542800	-2.1762770
Н	4.45747200	0.01292900	-2.4935280
Н	4.27142700	-1.64116500	-1.7893160
Н	5.26783400	0.77078500	1.8921970
Н	4.53953100	2.37885300	1.5976410
Н	1.60865500	0.39200000	2.7896240
Н	3.16813400	-0.30638600	3.3153900
Н	2.89073800	1.46288100	3.3874010
Р	0.21953700	-2.54103000	-1.1529870
С	1.88906200	-2.31922500	-0.4316010
0	2.87044400	-3.03626600	-0.5461250
С	-2.45287000	-0.77882500	0.2653430
С	-2.89493400	-1.94709100	-0.3744330
С	-3.00209000	-0.47284400	1.5234260
С	-3.85163500	-2.77100500	0.2166820
Н	-2.49752000	-2.19766400	-1.3588870
С	-3.96634800	-1.28793200	2.1104070
Η	-2.66339200	0.42779700	2.0421990
С	-4.39473300	-2.44548300	1.4583080
Η	-4.17692200	-3.67380800	-0.3028250
Η	-4.37869300	-1.02469400	3.0863240
Н	-5.14489100	-3.09073300	1.9180610

3b^M

P -0.26916000	0.23554900	-0.2069620
N -2.24491200	2.66863300	0.0443350
N -4.08650600	1.51074500	-0.4743060
C -2.75019400	1.40018200	-0.1329480
C -2.04808700	0.20020300	-0.0100550
C -3.29989500	3.65953400	-0.0866950
Н -2.95929200	4.55304000	-0.6289900
Н -3.64905200	3.97559700	0.9143770
C -4.37705100	2.89173100	-0.8315540
Н -5.39471000	3.18147100	-0.5354600
Н -4.27932100	3.03258000	-1.9248150
C -1.13249400	2.99525600	0.9148630
Н -0.96550000	2.18421800	1.6383810
Н -0.19762400	3.15313100	0.3606980
Н -1.38079400	3.91498400	1.4661960

С	-4.78055900	0.49316700	-1.2447000
Н	-4.14686600	0.10602800	-2.0602940
Н	-5.09373300	-0.35251100	-0.6209680
Н	-5.67843600	0.95306600	-1.6775080
С	2.90218700	-0.31438600	0.3607540
С	4.22189300	0.04983400	0.1720940
Н	2.41104900	0.04107100	1.2625380
N	4.98416000	-0.10551000	-0.9480900
N	4.98986500	0.66597900	1.1438800
С	6.31076800	0.45134700	-0.7377220
С	4.44818500	-0.14019600	-2.2949230
С	6.39077200	0.53506400	0.7810720
С	4.62588400	0.58474700	2.5371630
Н	6.38263300	1.45421400	-1.1990060
Н	7.09430900	-0.18517000	-1.1723620
Н	3.42313600	0.25370500	-2.2958290
Н	5.07755200	0.50121100	-2.9307360
Н	4.41272800	-1.15814900	-2.6990730
Н	6.82246200	-0.39145600	1.2068490
Н	6.98305000	1.39025100	1.1351420
Н	3.66329700	1.08133000	2.7141110
Н	4.54964700	-0.46011800	2.8896020
Н	5.38677400	1.10984300	3.1289350
Р	0.38576300	-1.68395300	0.0024490
С	2.20138000	-1.30131400	-0.4335670
0	2.69358600	-1.99624500	-1.3066090
С	-2.81148600	-1.04889700	0.2583420
С	-2.79790200	-2.13901400	-0.6251780
С	-3.57929700	-1.15565900	1.4270640
С	-3.54747000	-3.28210000	-0.3624900
Н	-2.19618000	-2.07600200	-1.5338600
С	-4.33581600	-2.29727700	1.6904870
Н	-3.58802300	-0.31858900	2.1287430
С	-4.32436700	-3.36495500	0.7945200
Н	-3.52728700	-4.11465100	-1.0677400
Н	-4.93205800	-2.35456100	2.6029730
Н	-4.91246700	-4.26105500	0.9987500

TS1-c

Р	0.17720600	-1.39960200	0.5822040
N	-2.82383100	-1.54771500	-0.8368130
N	-3.17445400	0.63836200	-0.9814460
С	-2.25232700	-0.32038400	-0.6267590

C -1.04418300	-0.04940800	0.0369740
C -4.10540900	-1.40993700	-1.5059290
Н -4.82912200	-2.14574000	-1.1296880
Н -3.99594700	-1.55066500	-2.5980150
C -4.47974500	0.01833600	-1.1610400
Н -5.05232300	0.51877200	-1.9536800
Н -5.05495800	0.06402300	-0.2181330
C -2.15600200	-2.83104500	-0.8800360
Н -1.30078800	-2.83650400	-1.5719740
Н -1.80158000	-3.12939300	0.1157910
Н -2.89230600	-3.57059700	-1.2205890
C -3.16723800	2.03679400	-0.5753280
Н -2.98936500	2.14718600	0.5020830
Н -2.41955800	2.61880400	-1.1268060
Н -4.15932400	2.44356200	-0.8101480
C 1.69959600	-0.48177000	0.8317220
C 2.87247700	-0.63208900	0.1468730
Н 1.67557800	0.34744400	1.5389500
N 3.23137200	-1.57412500	-0.8060710
N 3.96041500	0.21860500	0.3182850
C 4.64920400	-1.44472600	-1.0984240
C 2.64274300	-2.89232500	-0.8670670
C 4.89524100	0.01780000	-0.7706730
C 3.76654800	1.55283100	0.8312440
Н 4.86584900	-1.69532400	-2.1463880
Н 5.25762100	-2.10028200	-0.4449330
Н 2.57191000	-3.35861700	0.1319460
Н 1.63036900	-2.86408200	-1.2898860
Н 3.27356900	-3.52002300	-1.5109550
Н 5.92916000	0.22336600	-0.4597830
Н 4.65141700	0.66130800	-1.6398830
Н 3.01513500	2.11847800	0.2483530
Н 3.43661300	1.52273300	1.8786980
Н 4.72737100	2.08325200	0.7993790
P -0.77966300	-1.36708800	2.5994810
C -1.94992300	-0.27238800	1.9362760
O -2.95227300	0.32837300	2.0557170
C -0.42287800	1.29891600	-0.1213020
C -0.21072400	2.16700500	0.9603420
C 0.03129900	1.70275100	-1.3857300
C 0.39208400	3.40960300	0.7749010
Н -0.53711300	1.86691800	1.9582580
C 0.63406400	2.94584200	-1.5754270

Η	-0.10367200	1.02637200	-2.2329450
С	0.81020400	3.81008600	-0.4949530
Н	0.53079500	4.07352900	1.6301170
Н	0.96630700	3.24080200	-2.5725720
Η	1.27472100	4.78680700	-0.6398730

IN1-c

Р	0.19190100	-1.76668500	0.6467640
N	3.14494600	-0.31490300	1.1983930
N	3.02165500	1.22352900	-0.3649790
С	2.37660500	0.20719000	0.2297500
С	1.03567200	-0.22995700	-0.2457280
С	4.48539600	0.26869200	1.1512600
Н	5.17447800	-0.43957100	0.6605040
Н	4.85347700	0.47299100	2.1645190
С	4.26762800	1.52813400	0.3225130
Н	4.14239700	2.42917300	0.9485010
Н	5.07352500	1.71504700	-0.3989180
С	2.97492200	-1.55091300	1.9487440
Н	2.06817000	-1.52049600	2.5589660
Н	2.91158300	-2.41043900	1.2621290
Н	3.85029500	-1.65388400	2.6014340
С	2.55700100	2.10770400	-1.4206880
Н	1.89356800	1.55794700	-2.0923460
Н	2.05184900	2.99360400	-1.0039140
Н	3.43918400	2.42295200	-1.9938480
С	-1.47622700	-1.65532700	-0.0407080
С	-2.54195600	-0.90341200	0.3642410
Н	-1.61572700	-2.21286100	-0.9667820
N	-2.64271000	-0.00635900	1.4175750
N	-3.75735200	-0.87087900	-0.3139280
С	-3.99796600	0.49873200	1.5137980
С	-1.90405400	-0.13417400	2.6449200
С	-4.51380400	0.29562100	0.0972660
С	-3.85924500	-1.33150800	-1.6729650
Н	-4.00345900	1.55352700	1.8277090
Н	-4.59391900	-0.08843900	2.2408760
Н	-2.26208800	-0.97793500	3.2657440
Н	-0.83677900	-0.29206700	2.4457420
Н	-2.01337200	0.79818800	3.2183440
Н	-5.59627200	0.10649200	0.0570810
Н	-4.28251800	1.17561300	-0.5334490
Н	-3.18242300	-0.78292000	-2.3558460

Η	-3.61688000	-2.40082100	-1.7369700
Н	-4.89475600	-1.19975100	-2.0133500
Р	1.23975600	-2.78503900	-1.0487950
С	1.37737100	-1.07908200	-1.5656550
0	1.69836500	-0.53627400	-2.6067350
С	0.09411200	0.93585600	-0.3637340
С	-0.78117300	1.05569200	-1.4504610
С	0.00961100	1.87577700	0.6720460
С	-1.71898900	2.08537700	-1.4894610
Н	-0.70602300	0.33896300	-2.2693280
С	-0.92715900	2.90706700	0.6336370
Н	0.67855400	1.78534400	1.5344030
С	-1.80012000	3.01237400	-0.4484530
Н	-2.39165200	2.16817500	-2.3458600
Н	-0.97881600	3.62650200	1.4531600
Н	-2.53568900	3.81796300	-0.4855150

TS2-c

Р	-0.10896500	-1.40285300	-1.1120850
N	3.18608300	-1.08626500	0.5384290
N	2.61585000	0.68829600	1.7225520
С	2.39408500	0.01532600	0.5559070
С	1.46201000	0.34978500	-0.4646640
С	4.15715300	-1.04112300	1.6178360
Η	5.12705300	-0.65813800	1.2507940
Η	4.31545900	-2.04260800	2.0399390
С	3.48920400	-0.07944200	2.5980410
Н	2.90911600	-0.61827600	3.3674410
Н	4.20435800	0.58136500	3.1052980
С	3.41409800	-1.98187400	-0.5735430
Η	2.48542100	-2.14529800	-1.1306500
Η	4.15291900	-1.56000700	-1.2744220
Н	3.76518700	-2.94308900	-0.1748740
С	2.35189100	2.08566300	1.9844930
Η	2.14992700	2.61091300	1.0454910
Η	1.49036400	2.23593300	2.6535240
Н	3.24592700	2.52765300	2.4493400
С	-1.79151900	-0.92131000	-1.1814400
С	-2.70976200	-1.00509400	-0.1369020
Н	-2.08733600	-0.26513200	-2.0020120
N	-2.60704000	-1.69991400	1.0352980
N	-3.89774900	-0.32344600	-0.1289580
С	-3.84009900	-1.58433000	1.7986180

С	-1.72299300	-2.82483400	1.2489830
С	-4.45792700	-0.32107400	1.2100870
С	-4.17442200	0.75840100	-1.0461850
Н	-3.64038300	-1.50046400	2.8757120
Н	-4.48797100	-2.46482400	1.6295230
Н	-0.70966200	-2.50336800	1.5274780
Н	-2.13921500	-3.44040800	2.0581330
Н	-1.63624900	-3.43702900	0.3379140
Н	-5.55595400	-0.35033700	1.1892690
Н	-4.13793000	0.57928000	1.7676940
Н	-3.41669600	1.55776100	-0.9778870
Н	-4.20590000	0.38710600	-2.0792820
Н	-5.16215400	1.17102800	-0.8049000
Р	0.70880500	-0.65208400	-2.9576160
С	1.96422500	0.13987100	-1.8912410
0	3.09252800	0.49991600	-2.1958870
С	0.39851700	1.34528500	-0.1878510
С	0.07285500	2.34854000	-1.1143580
С	-0.37585800	1.26706700	0.9867230
С	-0.95442000	3.25695400	-0.8563660
Н	0.64155500	2.41447900	-2.0431310
С	-1.38726900	2.18438100	1.2528210
Н	-0.17874200	0.45631200	1.6946920
С	-1.68007700	3.19492900	0.3335140
Н	-1.17807100	4.03260700	-1.5912410
Η	-1.95576300	2.10752800	2.1829020
Н	-2.47124500	3.91832900	0.5378060

3c^M

Р	0.30322600	-0.87947200	-2.0943420	
Р	1.19212300	-0.55639600	-0.2888790	
0	-1.98916000	-2.17638600	-1.8021220	
N	-3.40608500	-1.87755300	0.7008140	
N	-4.20371300	0.20104500	0.6935850	
N	3.96824100	-0.04831800	1.5069230	
N	5.29414200	-0.27550900	-0.2664630	
С	-3.18802600	-0.61460700	0.2464200	
С	3.97437300	-0.28786100	0.1510760	
С	-1.45728900	-1.14549900	-1.4210060	
С	-2.09314800	-0.18835900	-0.5173320	
С	-4.56157300	-1.92417500	1.5790090	
Η	-4.23171400	-1.97079900	2.6332480	
Н	-5.19289800	-2.80202100	1.3803520	

-5.26763000	-0.60906800	1.2692560
-6.07440000	-0.75624000	0.5279370
-5.70390900	-0.13888400	2.1618810
2.91562500	-0.50918300	-0.7035230
3.19466600	-0.68025400	-1.7448070
5.30187500	0.32491200	1.9476360
5.50490200	-0.04544100	2.9618560
5.43322500	1.42409800	1.9392440
6.17031600	-0.33489900	0.8872360
7.11188000	0.20148800	0.7056340
6.40634700	-1.38153300	1.1632910
-4.57563900	1.42552900	0.0085790
-4.34188600	1.35669800	-1.0643570
-5.65720400	1.57489300	0.1289420
-4.05188600	2.30197100	0.4146150
-2.38599900	-2.89435800	0.8173910
-1.39281300	-2.42098700	0.8492860
-2.55064700	-3.44676300	1.7538990
-2.39927300	-3.58094400	-0.0391890
2.82001700	0.43192200	2.2418400
2.33161900	1.28410400	1.7371860
2.06623500	-0.35563100	2.3690070
3.16101700	0.75180900	3.2352600
5.70563000	-0.87172400	-1.5113130
5.46799400	-1.95009900	-1.5621700
5.22113800	-0.36928100	-2.3591020
6.78980700	-0.74022400	-1.6199110
-1.65757700	1.22542800	-0.4353810
-1.40224800	1.98863800	-1.5862200
-1.46687500	1.84245100	0.8115730
-0.96778100	3.30839300	-1.4954140
-1.54928200	1.53060900	-2.5668310
-1.04780200	3.16822100	0.9066110
-1.64523000	1.25961000	1.7183790
-0.79071900	3.90797000	-0.2478580
-0.77244000	3.87609000	-2.4068940
-0.90882800	3.62326800	1.8893800
	-5.26763000 -6.07440000 2.91562500 3.19466600 5.30187500 5.50490200 5.43322500 6.17031600 7.11188000 6.40634700 4.57563900 -4.57563900 -4.34188600 -2.38599900 -1.39281300 -2.3927300 2.82001700 2.33161900 2.33161900 2.33161900 2.33161900 2.33161900 5.46799400 5.46799400 5.22113800 6.78980700 -1.40224800 -1.46687500 -0.96778100 -1.54928200 -1.04780200 -1.64523000 -0.77244000 -0.77244000	-5.26763000-0.60906800-6.07440000-0.75624000-5.70390900-0.138884002.91562500-0.509183003.19466600-0.680254005.301875000.324912005.50490200-0.045441005.433225001.424098006.17031600-0.334899007.111880000.201488006.406347001.38153300-4.575639001.42552900-4.341886001.35669800-5.657204001.57489300-4.051886002.30197100-2.38599900-2.89435800-1.39281300-2.42098700-2.39927300-3.580944002.331619001.284104002.06623500-0.355631003.161017000.751809005.70563000-0.871724005.46799400-1.950099005.22113800-0.36928100-1.402248001.98863800-1.402248001.84245100-0.9067781003.30839300-1.47802003.16822100-1.047802003.6232680-0.790719003.90797000

A

 P
 0.07898991
 0.84662693
 0.00000866

 P
 1.61084344
 -0.47526019
 -0.00001295

 O
 -2.43084375
 -0.20594878
 -0.00003611

C -1.26910284 -0.48344037 0.00004324 H 2.62630588 0.52601023 0.00000429 H -0.91243916 -1.54827888 0.00008952

B

O 2.06332914 -2.56834011 -0.19767495 N 3.69150373 1.27662453 -0.82876916 N 4.07639759 -0.40833009 0.55412653 N -3.31815493 1.13701576 0.58223472 N -4.83381525 -0.35452262 -0.12916910 C 3.12341473 0.16287683 -0.23749392 C -3.47536044 -0.14822675 0.08784731 C 1.32401606 -1.59170742 -0.29332991 C 1.81307269 -0.22178544 -0.42363943 Н 1.15358903 0.50715487 -0.88946368 $C \quad 4.93767526 \quad 1.61229710 \quad \text{-}0.17164496$ H 4.78679853 2.34239758 0.64861471 H 5.66212819 2.03244358 -0.88323377 C 5.35792547 0.24605625 0.37075310 Н 5.99280100 -0.29315503 -0.35531508 H 5.90090223 0.31203501 1.32371696 C -2.50552827 -1.07610878 -0.17528188 H -2.84183001 -2.06193877 -0.49530126 C -4.61975822 1.76359733 0.74460419 H -4.59703601 2.82962197 0.47623306 H -4.97113234 1.67439862 1.79074678 C -5.48917137 0.93836989 -0.19204344 H -6.53634489 0.87680000 0.13526349 H -5.46502570 1.35315199 -1.21974982 C -1.08182936 -0.85606085 -0.13383487 H -0.72889335 0.16223447 0.04615277 C -0.14343804 -1.80777815 -0.33267452 H -0.43272764 -2.85256682 -0.47880728 C -2.26289652 1.50301842 1.50337863 H -1.84636395 0.60928330 1.99044129 H -1.43979188 2.04593841 1.01359995 H -2.68120577 2.15773774 2.28238145 C -5.27960217 -1.39431882 -1.02079702 H -4.86021309 -1.28441864 -2.03884899 H -4.99426792 -2.38147646 -0.63385640 H -6.37534784 -1.36331221 -1.07882785 C 2.92424628 2.26109559 -1.53577657 H 3.60905594 2.93211888 -2.07152124

H 2.28007645 1.76822281 -2.27668849
H 2.28508414 2.87112814 -0.86896511
C 3.86111681 -1.42631925 1.55130498
H 2.83629111 -1.33955813 1.93575584
H 3.97421877 -2.44387971 1.15503535
H 4.56778642 -1.25318948 2.37684575

С

O1.78609545-0.12197138-0.00020336C0.680936710.348718230.00033045C-0.56401570-0.452644050.00013479C-1.757172150.14447965-0.0008433H-0.44449351-1.539102070.00020772H-1.832589481.23630786-0.00015071H-2.69011219-0.42143111-0.00019537H0.519938411.45667336-0.00052021

9a

Р	-0.08343200	-1.99436000	-0.640408
Р	-0.96349000	-0.25616600	0.110526
0	2.55573200	-2.51317400	-0.809355
N	3.92492600	1.40577600	-0.281518
N	4.64799400	-0.63279000	0.149211
N	-3.88647400	1.29087200	0.605487
N	-5.01718700	-0.54038500	0.126250
С	3.56355900	0.10490600	-0.178921
С	-3.77185300	-0.00752100	0.252334
С	4.67741100	-1.93884700	0.737215
С	1.68557200	-1.53894800	-0.570420
С	2.81934300	2.54411900	-2.156792
С	-2.84747600	2.23209500	0.879423
С	2.21009100	-0.27310100	-0.367337
Η	1.52268900	0.57090100	-0.396433
С	3.44248000	-1.04277000	2.812810
Η	3.51076100	-0.10322300	2.245315
С	3.11566500	2.47279000	-0.784923
С	2.71887500	3.46982000	0.130541
С	4.08115100	-2.15372000	1.992562
С	-2.50012900	2.49179100	2.214226
С	5.37959400	1.54713600	-0.247984
Η	5.67878200	2.44412600	0.309418
Η	5.76505400	1.63053700	-1.279200
С	5.43875600	-4.21419700	0.640785

Η	5.97591100	-5.01756400 0.131865
С	-5.28905400	-1.75773200 -0.576736
С	-5.13366400	-1.78943700 -1.974754
С	4.14294000	-3.44741800 2.523936
Η	3.67961600	-3.64910200 3.491988
С	5.79476300	0.24409500 0.422227
Η	6.71948100	-0.18734500 0.017543
Η	5.90773300	0.35473200 1.514600
С	-2.26535300	2.92409900 -0.202154
С	5.38041400	-2.94792100 0.054346
С	-2.60942000	-0.76220600 0.000939
Н	-2.83067800	-1.78061600 -0.330862
С	2.11893600	3.66921300 -2.609282
Η	1.87248200	3.75586300 -3.669603
С	-6.00098600	-4.04904400 -0.538227
Η	-6.34819600	-4.93145800 -0.000812
С	6.04471100	-2.70271500 -1.291159
Η	5.91485300	-1.64014900 -1.542751
С	-2.57246000	2.52820200 -1.638774
Η	-2.71731300	1.43665600 -1.647946
С	4.81054200	-4.46942100 1.857417
Η	4.85614800	-5.46698800 2.296374
С	-1.62874000	3.55787000 2.464831
Η	-1.35635600	3.79944900 3.494587
С	-5.40630200	-2.99511200 -2.629396
Η	-5.28832600	-3.05635900 -3.713203
С	-5.27937100	1.62892500 0.911065
Η	-5.52549800	2.62766700 0.528937
Η	-5.44043800	1.62450600 2.002474
С	2.98810100	3.29709500 1.617887
Η	3.98758100	2.84455900 1.723355
С	-1.38128900	3.96076700 0.096044
Η	-0.90707800	4.51599200 -0.712761
С	-5.73063300	-2.87131200 0.161989
С	-5.83331900	-4.11206000 -1.920163
Η	-6.04519400	-5.04224100 -2.449108
С	1.74887200	4.68168200 -1.733295
Η	1.22586900	5.56209500 -2.111702
С	-1.09480900	4.29880800 1.418004
Η	-0.42612100	5.13493700 1.630475
С	-6.03940600	0.50165500 0.215557
Η	-6.91192900	0.15131900 0.781913
Н	-6.37210700	0.78652900 -0.798609

С	3.22197000	1.46372200	-3.146866
Н	3.78259200	0.68501500	-2.607753
С	2.04143300	4.58066500	-0.373613
Н	1.74298700	5.38483500	0.299215
С	-2.97857800	1.61603200	3.359492
Н	-3.65437700	0.85091600	2.947830
С	1.97395600	2.32021200	2.230799
Н	0.95540800	2.72621200	2.150707
Н	2.19944000	2.15064300	3.295251
Н	1.97609600	1.34609600	1.722151
С	-5.85650800	-2.79045300	1.675224
Н	-6.20595500	-1.77424100	1.918590
С	-3.74620800	2.41360500	4.416832
Н	-3.09829700	3.16469700	4.892766
Н	-4.11810100	1.74675800	5.207701
Н	-4.60428800	2.94457400	3.979356
С	1.98253600	0.79629100	-3.755008
Н	1.32734100	0.37661400	-2.977321
Н	2.27969800	-0.01951400	-4.429807
Н	1.39710500	1.52082500	-4.341838
С	4.21226800	-0.83093700	4.122486
Н	4.14179200	-1.71627200	4.771581
Н	3.79591300	0.02366300	4.675903
Н	5.27888800	-0.63785900	3.937043
С	-4.69812200	-0.57483400	-2.781500
Η	-4.56225700	0.27370700	-2.093382
С	4.14073400	2.02139800	-4.239198
Η	3.62034900	2.77401000	-4.849692
Η	4.46767900	1.21539800	-4.911526
Η	5.03385800	2.49853400	-3.810498
С	1.95906200	-1.30361900	3.091901
Η	1.37999100	-1.41363500	2.163544
Η	1.52875000	-0.46901700	3.665492
Η	1.82675400	-2.21981500	3.687398
С	7.54673600	-2.99831800	-1.230412
Η	8.04044500	-2.42489400	-0.432066
Η	8.02710300	-2.74590100	-2.186548
Η	7.73420500	-4.06489100	-1.036516
С	2.99444300	4.61253200	2.393290
Η	3.66602000	5.35415100	1.938240
Η	3.32558500	4.43652100	3.425983
Η	1.98566600	5.04878200	2.447318
С	5.36641900	-3.50626000	-2.405440

N -5.01718700 -0.54038500 0.12625000
C 3.56355900 0.10490600 -0.17892100
C -3.77185300 -0.00752100 0.25233400
C 1.68557200 -1.53894800 -0.57042000
C 2.21009100 -0.27310100 -0.36733700
Н 1.52268900 0.57090100 -0.39643300
C 5.37959400 1.54713600 -0.24798400
H 5.67878200 2.44412600 0.30941800
Н 5.76505400 1.63053700 -1.27920000
C 5.79476300 0.24409500 0.42222700
Н 6.71948100 -0.18734500 0.01754300
Н 5.90773300 0.35473200 1.51460000
C -2.60942000 -0.76220600 0.00093900
Н -2.83067800 -1.78061600 -0.33086200
C -5.27937100 1.62892500 0.91106500
H -5.52549800 2.62766700 0.52893700
H -5.44043800 1.62450600 2.00247400
C -6.03940600 0.50165500 0.21555700
Н -6.91192900 0.15131900 0.78191300
Н -6.37210700 0.78652900 -0.79860900
C 2.17460000 -3.88267300 -0.75688500
Н 1.48832500 -4.12871100 -1.57935300
Н 3.10518200 -4.45094800 -0.85789100
Н 1.69925100 -4.11153400 0.20782700
C 4.67817856 -1.97292507 0.75255740
Н 3.81752377 -2.10341131 1.37476851
Н 4.67462654 -2.71240316 -0.02078570
Н 5.56435647 -2.07843280 1.34285972
C 3.09342242 2.50211693 -0.79875911
H 2.50711869 2.14786816 -1.62074192
Н 2.44509375 2.85424870 -0.02379257
Н 3.72281102 3.30225048 -1.12823793
C -2.81725132 2.25947538 0.88739186
H -2.19544444 1.88549826 1.67377428
H -2.22816825 2.40689855 0.00639949
Н -3.24986389 3.19106691 1.18719778
C -5.29630846 -1.79021550 -0.59549437
H -4.88809557 -1.73074764 -1.58277640
Н -4.84976226 -2.61074114 -0.07373372
Н -6.35423754 -1.93889790 -0.65532410

11^M

P -0.1926530 1.5380980 0.8429610

Н	5.42285200	-4.58756500	-2.205082
Н	5.86400300	-3.31993000	-3.368154
Н	4.30977000	-3.22165200	-2.503422
С	-1.78825100	0.87007400	3.975424
Н	-1.25353200	0.28616200	3.211335
Н	-2.12983300	0.18252600	4.762701
Н	-1.07288700	1.57490700	4.426596
С	-5.77955200	-0.17095900	-3.790031
Н	-5.93433700	-0.95957100	-4.541124
Н	-5.48504700	0.74454500	-4.323663
Н	-6.74451800	0.01138800	-3.294982
С	-3.87028700	3.16881700	-2.141420
Н	-4.72931500	2.88964800	-1.513711
Н	-4.08540900	2.84313400	-3.170346
Η	-3.79066100	4.26624400	-2.138380
С	-3.35385400	-0.80780900	-3.480144
Η	-2.56234700	-1.06919000	-2.762348
Η	-3.04436000	0.10185600	-4.017457
Η	-3.42896300	-1.62116800	-4.217626
С	-4.48444700	-2.97445000	2.337210
Η	-4.07991000	-3.97039000	2.100966
Η	-4.57044100	-2.89131000	3.430715
Η	-3.75958300	-2.22441700	1.989553
С	-1.40975900	2.82121700	-2.586128
Η	-1.26939000	3.90191800	-2.742679
Η	-1.60449500	2.37093600	-3.570284
Η	-0.46521400	2.40975200	-2.197240
С	-6.86804700	-3.77984700	2.251129
Η	-7.84042600	-3.71082600	1.743273
Η	-7.02279600	-3.57717400	3.319946
Η	-6.50920300	-4.81633700	2.167124
С	2.17460000	-3.88267300	-0.756885
Η	1.48832500	-4.12871100	-1.579353
Н	3.10518200	-4.45094800	-0.857891

9a^M

 P
 -0.08343200
 -1.99436000
 -0.64040800

 P
 -0.96349000
 -0.25616600
 0.11052600

 O
 2.55573200
 -2.51317400
 -0.80935500

 N
 3.92492600
 1.40577600
 -0.28151800

 N
 4.64799400
 -0.63279000
 0.14921100

 N
 -3.88647400
 1.29087200
 0.60548700

 $H \quad 1.69925100 \quad -4.11153400 \quad 0.207827$

P -1.0247450 -0.5353440 0.8030650 O 2.3947850 2.1641300 0.4383310 N 4.0461430 -1.5856370 0.5694950 N 3.9810500 0.0680550 -0.9039250 N -3.5949630 -0.5951690 -1.2716410 N -5.1081920 -0.0760700 0.2988750 C 3.3155190 -0.4924010 0.1523350 C -3.7439460 -0.2684080 0.0693260 C 1.4911990 1.1713500 0.6334810 C 2.1096530 -0.1252260 0.7126150 H 1.6073720 -0.8819140 1.3101010 C 5.0334630 -1.9398430 -0.4298490 H 4.6428260 -2.6921100 -1.1432820 H 5.9441150 -2.3408010 0.0363160 C 5.2578740 -0.5893240 -1.1121050 Н 6.0865060 -0.0339440 -0.6370810 H 5.4748820 -0.6834420 -2.1852600 C -2.7839930 -0.1548990 1.0274740 H -3.1226040 0.1685160 2.0112650 C -4.8794780 -0.5154400 -1.9427320 H -4.9868190 -1.2947140 -2.7111600 H -5.0196960 0.4724330 -2.4241990 C -5.8486170 -0.6919640 -0.7844730 H -6.8136370 -0.1921630 -0.9495890 H -6.0368660 -1.7676180 -0.5907170 C 1.9274110 3.4785290 0.2705120 H 1.4018200 3.8270690 1.1743740 H 2.8085190 4.1054810 0.0877900 Н 1.2264830 3.5449580 -0.5787890 C 3.4444980 1.0184150 -1.8415800 Н 2.3475930 0.9935210 -1.7972030 H 3.7733850 2.0497930 -1.6418530 H 3.7609290 0.7318070 -2.8565430 C 3.5329640 -2.5540840 1.4982770 Н 3.1433190 -2.0422790 2.3888480 H 2.7221530 -3.1715010 1.0686290 H 4.3508310 -3.2156070 1.8130690 C -2.3998500 -0.2770450 -2.0271930 H -1.8915090 0.6085940 -1.6101300 H -1.6791280 -1.1061050 -2.0384200 H -2.6904620 -0.0522620 -3.0640500 C -5.6378850 -0.1671830 1.6333930 H -5.4186020 -1.1421450 2.1100060

H -5.2212890 0.6271620 2.2673090 H -6.7260550 -0.0256730 1.5927110 H -0.7625150 -0.8745300 2.1643010

3a_dimer^M

P 1.5240760 -1.1116120 -0.180737 P -0.6211040 -0.7755440 -0.804439 P 1.5238260 1.1116130 0.180346 P -0.6212060 0.7751660 0.804129 O -0.8536160 -3.3674620 -0.133908 O -0.8542300 3.3671280 0.133919 N 3.3844410 -3.5008550 -1.502149 N 4.0276690 -2.2611070 -3.248332 N -3.2994870 -4.3271300 1.365441 N -4.1314860 -2.6449550 2.567860 N 4.0258560 2.2621400 3.248858 N 3.3836320 3.5015940 1.502136 N -3.3002120 4.3264290 -1.365630 N -4.1316010 2.6441350 -2.568303 C -1.3950100 -2.2835350 0.038601 C -2.5972390 -2.0281980 0.790615 Н -2.8311390 -0.9866330 1.001163 C -3.2989500 -2.9726590 1.518051 C 2.4468160 -1.2156930 -1.719955 Н 2.4332720 -0.3509460 -2.384242 С 3.2207850 -2.2726020 -2.109755 C -1.3953330 2.2830930 -0.038847 C -2.5974560 2.0275890 -0.790960 H -2.8311290 0.9859920 -1.001618 C -3.2993020 2.9719730 -1.518377 C 2.4465100 1.2160790 1.719551 H 2.4329660 0.3514550 2.384005 C 3.2199640 2.2732740 2.109657 C -4.1945640 -4.9427200 2.331979 Н -3.7662650 -5.8609070 2.758168 H -5.1569370 -5.2002200 1 850922 C -4.3697710 -3.8360170 3.365535 H -5.3698260 -3.8271890 3.820705 Н -3.6173670 -3.9245780 4.172584 C 5.0140340 - 3.3166590 - 3.126026 Н 5.9161120 - 2.9674900 - 2.583577 Н 5.3235930 - 3.6966890 - 4.109998 C 4.2529540 -4.3434200 -2.300923

Η	3.6644630 -5.0187450	-2.952588
Н	4.9133980 -4.9587340	-1.672637
С	-4.1955350 4.9418250	-2.332078
Н	-3.7675890 5.8602430	-2.758117
Н	-5.1580040 5.1988710	-1.850971
С	-4.3703350 3.8352180	-3.365805
Н	-5.3703910 3.8261010	-3.820959
Η	-3.6179750 3.9241920	-4.172848
С	5.0112200 3.3187670	3.128107
Η	5.9143190 2.9708490	2.586566
Η	5.3192070 3.6988030	4.112581
С	4.2499070 4.3449550	2.302507
Η	3.6596980 5.0191570	2.953775
Η	4.9103870 4.9614250	1.675393
С	-4.0179040 1.3634740	-3.228033
Η	-2.9868610 1.1626760	-3.569766
Η	-4.3172690 0.5510420	-2.552637
Η	-4.6980020 1.3526830	-4.089183
С	-3.0570250 5.0041320	-0.107689
Η	-3.0908940 4.2802050	0.715061
Η	-2.0735460 5.4875310	-0.082322
Η	-3.8510420 5.7534150	0.039398
С	4.4273140 -1.0133490	-3.844469
Η	4.9603070 -0.3557810	-3.131340
Η	5.0852130 -1.2252320	-4.697830
Η	3.5517700 -0.4698250	-4.223626
С	2.3987780 -4.1224720	-0.639252
Η	2.5880510 -3.9171670	0.424415
Η	1.3782000 -3.7765960	-0.864097
Η	2.4396050 -5.2107210	-0.797004
С	2.3984670 4.1221960	0.637897
Η	1.3775430 3.7776570	0.863406
Η	2.4404340 5.2107240	0.793198
Η	2.5876170 3.9143280	-0.425270
С	4.4255410 1.0146500	3.845488
Η	3.5499910 0.4709990	4.224489
Η	4.9589210 0.3569920	3.132738
Η	5.0830980 1.2269010	4.699016
С	-3.0560010 -5.0049240	0.107619
Η	-2.0725170 -5.4883320	0.082524
Η	-3.8499750 -5.7542320	-0.039607
Η	-3.0896850 -4.2810640	-0.715190
С	-4.0181080 -1.3642800	3.227607

Н-	2.9873520 -1.1636860	3.570343
н -	4.3166400 -0.5518450	2.551863
н -	4.6990510 -1.3532640	4.088089

3a_dimer_iso^M

Р	-1.3218600 -0.6452360 0.7367780
Р	0.6401590 -1.3276660 1.5936120
Р	1.3219280 0.6451540 0.7367720
Р	-0.6400660 1.3276120 1.5935960
0	0.4313940 -3.1266120 -0.4488840
0	-0.4313040 3.1266160 -0.4488900
Ν	-3.9998860 -2.3992690 0.2484640
N	-4.8474790 -2.0447040 2.2943500
N	2.9606700 -3.5778050 -2.1417290
Ν	4.4436390 -1.9806510 -1.6591900
Ν	4.8475380 2.0447180 2.2943660
Ν	3.9999170 2.3993260 0.2485010
Ν	-2.9607730 3.5778110 -2.1416960
N	-4.4438280 1.9807850 -1.6589580
С	1.2279810 -2.4371740 0.1690170
С	2.6439270 -2.2842990 -0.0635390
Н	3.1516500 -1.5562600 0.5684240
С	3.3043740 -2.6287960 -1.2271710
С	-2.6129610 -1.1564850 1.8815140
Н	-2.5647390 -0.8365610 2.9226920
С	-3.7313710 -1.8339270 1.4855780
С	-1.2278720 2.4371420 0.1689960
С	-2.6438020 2.2842030 -0.0635990
Н	-3.1514920 1.5561810 0.5684010
С	-3.3044040 2.6288110 -1.2270950
С	2.6130390 1.1564390 1.8814830
Н	2.5648480 0.8364160 2.9226340
С	3.7314450 1.8338880 1.4855580
С	3.9266560 -3.6040380 -3.2270550
Н	3.4399890 -3.7252230 -4.2052980
Н	4.6344860 -4.4428340 -3.0867590
С	4.6233030 -2.2555190 -3.0756990
Н	5.6860930 -2.2878470 -3.3530480
Н	4.1234960 -1.4816830 -3.6893710
С	-5.9809320 -2.3451760 1.4414780
Н	-6.4922760 -1.4181250 1.1085500
Н	-6.7164590 -2.9814590 1.9535110
С	-5.3027630 -3.0389030 0.2701970

Н -5.2041780 -4.1258770 0.4566060 H -5.8425270 -2.9010620 -0.6785980 C -3.9269110 3.6041130 -3.2268880 H -3.4403620 3.7253320 -4.2051840 H -4.6347170 4.4429050 -3.0864550 C -4.6235280 2.2555960 -3.0754740 H -5.6863270 2.2878760 -3.3527970 H -4.1236990 1.4817570 -3.6891290 C 5.9809550 2.3453500 1.4415090 6.4924090 1.4183640 1.1085530 Н H 6.7164150 2.9816900 1.9535720 5.3027380 3.0390500 0.2702320C 5.2041010 4.1260280 0.4566050 Н 5.8425450 2.9012250 -0.6785480 Η 2.2277610 -4.7862120 -1.8224460 С Н 2.1010130 -4.8623130 -0.7374880 1.2277130 -4.7916770 -2.2731660 Н 2.8056460 - 5.6525830 - 2.1846430 Н 4.7618350 -0.6610260 -1.1556060 Н 3.9084350 0.0365430 -1.2422920 5.0462370 -0.7064080 -0.0947960 Н 5.6193080 -0.2688700 -1.7183610 Н C -2.9821960 -2.9543260 -0.6274820 H -2.0312580 -3.1165840 -0.1002890 Н -3.3383750 -3.9255640 -1.0060580 H -2.7657860 -2.3017160 -1.4865410 -5.0667600 -1.2130950 3.4493170 С H -4.2600800 -1.3502150 4.1810620 Н -5.1187940 -0.1378680 3.1890690 H -6.0084770 -1.5128620 3.9276490 C -4.7620050 0.6611400 -1.1554280 H -5.6198190 0.2692210 -1.7178360 Н -3.9087850 -0.0365920 -1.2425970 H -5.0459030 0.7064290 -0.0944790 C -2.2277800 4.7862030 -1.8225090 H -2.1008750 4.8623090 -0.7375710 H -1.2277900 4.7916360 -2.2733610 Н -2.8056830 5.6525870 -2.1846400 5.0669480 1.2129710 3.4492090 С 6.0085520 1.5129040 3.9276640 Н 4.2601870 1.3497620 4.1809230 Н 5.1192910 0.1378000 3.1887890 Н С 2.9821650 2.9541640 -0.6274950 Н 2.7655190 2.3012910 -1.4862900 2.0313080 3.1166790 -0.1002190 Н 3.3383930 3.9252250 -1.0064540 Н

S4: References

a) A. J. Arduengo, III, F. Davidson, H. V. R. Dias, J. R. Goerlich, D. Khasnis, W. J. Marshall, T. K. Prakasha, J. Am. Chem. Soc. 1997, 119, 12742-12749; b) I. C. Watson, A. Schumann, H. Yu, E. C. Davy, R. McDonald, M. J. Ferguson, C. Hering-Junghans, E. Rivard, Chem. Eur. J. 2019, 25, 9678 – 9690; c) C. Hering-Junghans, P. Andreiuk, M. J. Ferguson, R. McDonald, E. Rivard, Angew. Chem. Int. Ed. 2017, 56, 6272–6275; d) J. Lin, S. Liu, J. Zhang, H. Grützmacher, C.-Y. Su, Z. Li, Chem. Sci. 2023, 14, 10944–10952; e) D. Rottschäfer, M. K. Sharma, B. Neumann, H. Stammler, D. M. Andrada, R. S. Ghadwal, Chem.Eur.J. 2019, 25, 8127–8134; f) H. Klöcker, M. Layh, A. Hepp, W. Uhl, Dalton Trans., 2016, 45, 2031-2043. g) Kuhn, N.; Kratz, T. Synthesis

of Imidazol-2-ylidenes by Reduction of Imidazole-2(3H)-thiones. *Synthesis 1993*, **1993**, 561-562.

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision C.01 ed., Gaussian, Inc., Wallingford CT, **2016**.
- [3] A. Bondi, J. Phys. Chem. 1964, 68, 441.
- [4] NBO 7.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis, and F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI (2018).