Supplemental material for:

Total Syntheses of Atropodiastereomers of Heterodimeric *Amaryllidaceae* Alkaloids: Narcipavline and Narcikachnine

Souvik Pal,^a Satyajit Majumder,^a Sovan Niyogi,^b Pranay Shyamal,^b Debabrata Mondal,^b Bishnu Das,^b and Alakesh Bisai^{*a, b}

^{*a*}Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Kalyani, Nadia – 741 246, West Bengal, INDIA

^bDepartment of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal – 462 066, Madhya Pradesh, INDIA e-Mail: <u>alakesh@iiserkol.ac.in</u>, <u>alakeshb@gmail.com</u>

Table of Contents

Materials and Methods	S 2
Synthesis of pinacolato borane compound (SI-1)	S 4
Synthesis of (17)	S5 - S6
Synthesis of galanthaindole (7)	S6 - S7
Synthesis of azide compound (SI-5)	S7 - S8
Synthesis of benzyl amine (12)	S8 - S10
Synthesis of α -substituted enone (SI-3)	S10 - S11
Synthesis of (+)-16	S12 - S13
Synthesis of (+)- SI-4	S13 - S14
Synthesis of (–)-14	S15 - S16
Synthesis of (–)-13	S16 - S18
Synthesis of (–)-10	S18 - S19
Synthesis of (8a and 8b)	S19 - S21
Synthesis of (18a and 18b)	S21 - S23
Synthesis of (–)-11	S23 - S24
Synthesis of (–)-20	S25 - S26
Synthesis of galanthamine [(–)- 6a]	S27 - S30
Synthesis of lycoramine [(–)- 6b]	S31 - S34
Synthesis of (–)-23	S36 - S37
Synthesis of (–)-24	S38 - S39
Synthesis of (25a and 25b)	S39 - S41
Synthesis of (26a and 26b)	S41 - S43
Synthesis of narcipavlines (1a and 1b)	S43 - S45
Synthesis of narcikachnines (2a and 2b)	S45 - S47
Comparision table of narcipavlines (1) and narcikachnines (2)	S47 - S56
Theoretical Studies	S57 - S70
Spectral Traces	S71 - S137
Single Crystal XRD data	S138 - S137
References	S164

Materials and Methods

Unless otherwise stated, reactions were carried out using oven dried glass ware with Teflon coated magnetic stirring bars were used to stir the reactions. The Syringe was used to transfer the solvents and liquid reagents. Tetrahydrofuran (THF), Diethyl ether (Et₂O), PhMe was distilled over sodium/benzophenone ketyl. Dichloromethane (CH₂Cl₂) was distilled over calcium hydride. All other solvents like MeOH, EtOAc, DMF, Dichloroethane (DCE) and reagents were used as received. Reaction temperatures above 25 °C were maintained by using oil bath on a magnetic stirrer. Thin layer chromatography (TLC) analysis was performed by using silica gel precoated plates (0.25 mm) 60 (F-254), Visualized by UV irradiation, yellow dip stain and other stains. Silica gel of particle size 230-400 and 100-200 mesh were used to perform flash chromatography. Digital melting point apparatus is used to record the melting points. ¹H-NMR spectra were recorded by using 400, 500 MHz spectrometers, ¹³C-NMR operating frequencies are 101 MHz, 126 MHz respectively. Chemical shifts (δ) are reported in ppm relative to the residual solvents (CDCl₃) signal ($\delta = 7.29$ ppm for ¹H NMR and $\delta = 77.0$ ppm for ¹³C NMR) and (CD₃OD) signal ($\delta = 3.33$ for ¹H NMR and $\delta = 49.0$ for ¹³C NMR). Data for ¹H NMR spectra are reported as follows: chemical shift (multiplicity, coupling) constants, and number of hydrogen). Abbreviations are as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). IR spectra were recorded on a FT-IR system (Spectrum BX) and are reported in frequency of absorption (cm⁻¹). Only selected IR absorbencies are reported. High Resolution Mass Spectrometry (HRMS) data was recorded on MicrOTOF-Q-II mass spectrometer using methanol as solvent. Optical rotations were measured on an automatic polarimeter. Enantiomeric excess was determined by chiral HPLC analysis performed on HPLC system with Daicel Chiralpak IA, IC-3, OD-H column.

Synthesis of galanthindole and corresponding benzylamine:

For the synthesis of galanthindole, we followed Hsieh's procedure.^{1a} However, we have modified the procedure a bit where **SI-2** was converted to **17** under Suzuki coupling uding $Pd(PPh_3)_4$ as catalyst [as compared to the literature use of Pd(II)]. Further, compound **17** was reduced to galanthindole **7** just by NaBH₄ reduction [as compared to the literature use of LiAlH₄ reduction]. Overall yield of galanthindole **7** from piperonal is 56% over 4 steps. Further, the reductive amination of aldehyde **17** afforded benzyl amine **12** in 54% yield.

Preparation of α -substituted enone (SI-3) via Trost's procedure:

- Trost have prepared SI-3 in three steps from cyclohexanone.
- Our developed methodology can access SI-3 in only 1 step with good yield.
- Asymmetric reduction of SI-3 was done using (S)-CBS reagent.

Bis(pinacolato)diboron (2.66 g, 10.46 mmol, 1.2 equiv.), 6-bromobenzo[*d*][1,3]dioxole-5carbaldehyde (**SI-1**) (2 gm, 8.72 mmol, 1.0 equiv), PdCl₂(dppf) (192 mg, 0.26 mmol, 3 mol %) and KOAc (2.56 g, 26 mmol, 3.0 equiv) were stirred in a sealed tube in dry 1,4-dioxane (25 mL) under N₂ atmosphere at 80 °C for 36 h. Upon completion of the reaction (as judged by running TLC), the reaction mixture was diluted with water (20 mL) and extracted with EtOAc (20 mL X 2). The combined organic layers were dried over Na₂SO₄ and concentrated under the reduced pressure. Next, purification through a column chromatography (10% EtOAc in hexane)] to afford **SI-2** (2.02 g, 84%) as a white solid.

6-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzo[*d*][1,3]dioxole-5-carbaldehyde (SI-2): Compound SI-2 was obtained as a white solid (8.72 mmol scale of reaction, 2.02 gm of product, 84% yield); $R_f = 0.6$ (20% EtOAc in *n*-hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 10.41 (s, 1H), 7.35 (s, 1H), 7.21 (s, 1H), 5.95 (s, 2H), 1.27 (s, 12H).

¹³C {¹H} NMR (126 MHz, CDCl₃): δ 192.8, 151.8, 150.3, 138.1, 114.7, 108.3, 106.66, 101.9, 84.4, 24.8.

IR (film)v_{max}: 3450, 2970, 2925, 2900, 1696, 1600, 1252 cm⁻¹.

Suzuki coupling between 7-bromo *N*-methyl indole and pinacolatoborane compound (SI-2):

Pinacolato-borane derivative **SI-2** (1.97 mg, 7.54 mmol, 1.25 equiv.), and 7-bromo *N*-methyl indole (**A**) (1.2 g, 5.72 mmol, 1.0 equiv.), and Na₂CO₃ (1.5 g, 14.3 mmol, 2.5 equiv.) were stirred in a sealed tube in PhH: EtOH: H₂O (4:2:1) (15 mL) under N₂ atmosphere and degassed for 10 min. Next, Pd(PPh₃)₄ (165 mg, 0.143 mmol, 5 mol %) was added to the reaction mixture under inert atmosphere. Then, capped the sealed tube and heated at 80 °C for 12 h. Upon complete consumption of starting materials, the organic layers were separated and washed with brine. The combined organic layers were dried over Na₂SO₄ and the organic layers were concentrated under reduced pressure. Purification through a column chromatography (10% EtOAc in hexane)] afforded **17** (1.3 gm, 82% yield) as a yellow gel.

6-(1-Methyl-1*H***-indol-7-yl)benzo[***d***][1,3]dioxole-5-carbaldehyde** [(\pm)-17]: Compound 17 was obtained as a yellow gel (5.72 mmol scale of reaction, 1.3 g of product, 82% yield); $R_f = 0.45$ (20% EtOAc in *n*-hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 9.56 (d, *J* = 1.8 Hz, 1H), 7.70 (d, *J* = 7.9 Hz, 1H), 7.51 (s, 1H), 7.15 (t, *J* = 7.6 Hz, 1H), 7.05 – 6.98 (m, 2H), 6.93 (s, 1H), 6.58 (dd, *J* = 3.4, 1.6 Hz, 1H), 6.16 (d, *J* = 8.0 Hz, 2H), 3.33 (s, 2H).

¹³C {¹H} NMR (126 MHz, CDCl₃): δ 190.7, 151.7, 148.2, 141.3, 134.8, 131.2, 130.4, 129.7, 125.0, 121.3, 120.8, 119.0, 111.4, 105.5, 102.2, 101.4, 36.2.

HRMS (ESI-TOF) *m*/*z*: [M+H]⁺Calcd for [C₁₇H₁₃NO₃ + H]⁺ 280.0974; Found 280.0984.

IR (film)v_{max}: 2927, 1683, 1600, 1509, 1353, 1266, 1137, 1061 cm⁻¹.

Synthesis of galanthindole [(±)-7]:

Compound **17** (1 gm, 3.58 mmol, 1.0 equiv.) was dissolved in MeOH and stirred it in 0 °C. Then, NaBH₄ (162 mg, 4.3 mmol, 1.2 equiv.) was added portion wise to the reaction mixture at 0 °C. Then ice bath was removed and stirred the reaction mixture for another 20 minutes. Upon completion of the reaction, it was quenched with saturated NH₄Cl solution and the organic layer was extracted with EtOAc (20 mL X 2). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The crude reaction mixture was purified using column chromatography (22% EtOAc/*n*-hexane) to afford **7** (986 mg, 98% yield), as a white solid.

Attempts towards asymmetric reduction of 17 using (S)-CBS and Borane.DMS:

	0 0 Me-N (17)	BH ₃ Me ₂ S (1.2 CH ₂ Cl ₂ , tempa time	2 eq.) reture 0 Me	OH N	
(S)-CBS	Solvent	Temp	Time	Yield ^b	ee^{c}
20 mol%	CH ₂ Cl ₂	22 °C	1 h	85%	0
20 mol%	CH ₂ Cl ₂	0 °C	3 h	78%	0

(S) - CBS (0.2 eq.)

20 mol%	CH_2Cl_2	−78 °C	3 h	60%	0

^{*a*}All reactions were carried out using 0.18 mmol of **17** with 1.2 eqiv. Of BH₃.Me₂S. ^{*b*}Yields are reported after column chromatography. ^{*c*}HPLC analysis were done using ChiralPak IA column.

To a stirred solution of (*S*)-CBS [36 μ L (1*M* in toluene), 0.036 mmol, 0.2 equiv.] in dry CH₂Cl₂ (3 mL) was added BH₃.Me₂S [22 μ L (1*M* in THF), 0.22 mmol, 1.2 equiv.] dropwise at 25 °C. After 10 min of stirring at this temperature, the reaction mixture transferred to 0 °C chiller, then a solution of aldehyde **13** (50 mg, 0.18 mmol, 1.0 equiv.) in CH₂Cl₂ (2 mL) was added slowly to the mixture. Following completion of the reaction, the reaction mixture was quenched with 2(*M*) HCl (1 mL) and extracted with CH₂Cl₂ (5 mL X 2). The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo under reduced pressure. The crude reaction mixture was purified using column chromatography (22% EtOAc/n-hexane) to afford **7** (986 mg, 98% yield), as a white solid.

(6-(1-Methyl-1*H*-indol-7-yl)benzo[*d*][1,3]dioxol-5-yl)methanol [(±)-7]: Compound 7 was obtained as a white solid (3.58 mmol scale of reaction, 986 mg of product, 98% yield); $R_f = 0.4$ (30% EtOAc in *n*-hexane).

¹**H** NMR (500 MHz, CDCl₃): δ 7.65 (d, *J* = 7.9 Hz, 1H), 7.12 (t, *J* = 7.5 Hz, 1H), 7.07 (s, 1H), 7.00 – 6.93 (m, 2H), 6.85 (s, 1H), 6.55 (d, *J* = 3.1 Hz, 1H), 6.06 (d, *J* = 8.9 Hz, 2H), 4.32 (d, *J* = 3.5 Hz, 2H), 3.31 (s, 3H).

¹³C {¹H} NMR (126 MHz, CDCl₃): δ 147.6, 146.4, 134.3, 133.8, 132.3, 131.0, 129.8, 124.0, 123.9, 120.7, 119.3, 111.1, 108.1, 101.4, 101.3, 63.3, 35.9.

HRMS (ESI-TOF) m/z: [M+H]⁺Calcd for [C₁₇H₁₅NO₃ + H]⁺ 282.1130; Found 282.1136.

IR (film)v_{max}: 3357, 2935, 1481, 1021 cm⁻¹.

Melting point: 128-130 °C.

HPLC analysis was done using a Chiralpak IA column [*n*-hexane/2-propanol = 85/15; flow rate: 1.0 mL/min; detection: at 254 nm, $t_R = 8.376 \text{ min}$, $t_R = 9.699 \text{ min}$, (50:50)].

HPLC data of (±)-7 [reaction using *S*-CBS at 22 °C]: $t_R = 8.409 \text{ min}$, $t_R = 9.788 \text{ min}$, (50:50) HPLC data of (±)-7 [reaction using *S*-CBS at 0 °C], $t_R = 8.391 \text{ min}$, $t_R = 9.721 \text{ min}$, (50:50) HPLC data of (±)-7 [reaction using *S*-CBS at -78 °C], $t_R = 8.374 \text{ min}$, $t_R = 9.792 \text{ min}$, (50:50)

Alternative approach to galanthindolyl benzylic amine (12) from galanthindole (7): Synthesis of azide compound (SI-5):

An oven dried round bottom flask charged with **7** (900 mg, 3.2 mmol, 1.0 equiv.) in CH₂Cl₂ followed by addition of triethylamine (TEA) (900 μ L, 6.4 mmol, 2.0 equiv.) at 0 °C. After 5minute of stirring, methane sulfonyl chloride (372 μ L, 4.8 mmol, 1.5 equiv.) was added at 0 °C over 2 minutes and allowed to stir the reaction mixture for 2 h. Upon complete consumption of starting materials (monitored by TLC analysis), the reaction mixture was quenched with water and it was extracted with dichloromethane (30 mL X 2). Next, organic layers were dried over Na₂SO₄ and concentrated under reduced pressure, to afford the crude mesylate derivative.

The crude product was taken in a 50 mL RB and dissolved in DMF (5 mL) under N_2 atmosphere. Sodium azide (208 mg, 6.4 mmol, 2.0 equiv.) was added to it and the reaction mixture was warm at 70 °C for 4 h. Upon complete consumption of starting materials (as monitored by TLC analysis), organic layer was extracted with 40% EtOAc in hexane and concentrated under reduced pressure. The crude reaction mixture was purified using column chromatography (6% EtOAc/*n*-hexane) to afford **SI-5** (830 mg, 85%), as a colorless gel.

7-(6-(Azidomethyl) benzo[*d*][**1,3**]**dioxol-5-yl)-1-methyl-1***H***-indole** (**SI-5**): Compound **SI-5** was obtained as a colorless gel (3.2 mmol scale of reaction, 830 mg of product, 85% yield); $R_f = 0.65$ (10% EtOAc in *n*-hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 7.67 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.14 (t, *J* = 7.5 Hz, 1H), 6.99 (s, 2H), 6.95 (d, J = 6.7 Hz, 1H), 6.88 (s, 1H), 6.56 (d, J = 3.2 Hz, 1H), 6.08 (dd, J = 8.5, 1.3 Hz, 2H), 4.07 (s, 2H), 3.32 (s, 3H).

¹³C {¹H} NMR (126 MHz, CDCl₃): δ 147.8, 147.0, 134.2, 133.4, 131.0, 129.9, 128.6, 124.33, 123.4, 120.9, 119.3, 111.3, 108.6, 101.6, 101.4, 52.7, 36.0.

HRMS (ESI-TOF) *m*/*z*: [M+H]⁺Calcd for [C₁₇H₁₄N₄O₂ + H]⁺ 307.1195; Found 307.1197.

IR (film)v_{max}: 2294, 1723, 1536, 1156, 856 cm⁻¹.

Synthesis of benzylic amine (12):

In a 50 mL round bottom flask, compound **SI-5** (800 mg, 2.6 mmol, 1.0 equiv.) was dissolved in THF: H₂O (8:1) (20 mL), and triphenyl phosphine (1.2 gm, 3.9 mmol, 1.5 equiv.) was added and stirred the reaction mixtures for 8 h. After complete consumption of the starting material (monitored by TLC analysis) the reaction mixture was diluted with EtOAc (5 mL). Then the organic layer was extracted with EtOAc (10 mL X 3). Next, the crude product was purified *via* column chromatography (with basic alumina using 40% EtOAC in hexane to 10% MeOH in CH₂Cl₂) to afford benzyl amine **12** in 80% yield (590 mg) as yellow gel.

(6-(1-Methyl-1*H*-indol-7-yl)benzo[*d*][1,3]dioxol-5-yl)methanamine [(±)-12]: Compound 12 was obtained as a yellow semi-solid (2.6 mmol scale of reaction, 590 mg of product, 80% yield); $R_f = 0.35$ (70% EtOAc in *n*-hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 7.64 (d, *J* = 8.1 Hz, 1H), 7.12 (t, *J* = 7.8 Hz, 1H), 7.01 (s, 1H), 6.98 – 6.95 (m, 2H), 6.84 (s, 1H), 6.55 (dd, *J* = 3.1, 1.3 Hz, 1H), 6.12 – 5.96 (m, 2H), 3.50 (s, 2H), 3.31 (s, 3H).

¹³C {¹H} NMR (126 MHz, CDCl₃): δ 147.6, 145.8, 136.1, 134.3, 132.1, 130.9, 129.8, 124.4, 124.1, 120.5, 119.3, 111.2, 107.9, 101.3, 44.4, 35.8.

IR (film)v_{max}: 3512, 3380, 1150, 1091, 812 cm⁻¹.

Synthesis of benzylic amine [(±)-12]:

An oven dried round bottom flask was charged with aldehyde compound **17** (200 mg, 0.716 mmol, 1.0 equiv.), and ammonium formate (451 mg, 7.16 mmol, 10 equiv.), 4 Å MS in anhydrous MeOH under inert atmosphere along with 1 mL NH₃ in MeOH. Then NaBH₃CN (136 mg, 2.15 mmol, 3.0 equiv.) was added to the reaction mixture at 0 °C, followed by addition of catalytic amount of TFA (20 μ L). Then the reaction mixture stirred at 22 °C for 12 h. After complete consumption of starting material (monitored by TLC analysis) the crude reaction mixture was filtered and evaporated to dryness. Then, it was diluted with EtOAc (20 mL), and quenched with saturated NaHCO₃ solution. The organic layer was extracted with EtOAc (20 mL X 2) and concentrated in rotary evaporator. The crude product was purified by flash

chromatography using 70% (EtOAc/hexaneas) - 5% (MeOH/CH₂Cl₂) eluent to afford of the pure desired product **12** (108 mg, 54%).

Preparation of α-Substituted enone (SI-3) via a One-Pot Protocol:

In a 100 mL oven dried round bottom flask, 2-cyclohexenone (1 gm, 10.4 mmol, 1.0 equiv.) was dissolved in 1:1 mixture of CH₃CN: 'BuOH 20 mL. Then, PhSCH₂CH₂OH (320 mg, 2.08 mmol, 0.2 equiv.) was added to the reaction mixture followed by addition of BrCH₂COOEt (1.3 mL, 15.6 mmol, 1.5 equiv.) and Cs₂CO₃ (6.8 gm, 20.8 mmol, 2.0 equiv.). Then the reaction mixture placed in a pre-heated oil bath at 80 °C, and stirring was continued at that temperature for 12 h. After complete consumption of starting material, the reaction mixture cooled down to room temperature and removed the solvent under reduced pressure. the reaction mixture was quenched with saturated NH₄Cl and was extracted with EtOAc (30 mL X 2) and washed with brine (5 mL X 1). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (100–200 silica, 4-8% EtOAc/*n*-hexane) to furnish pure **SI-3** (10.4 mmol scale of reaction, 1.04 g of product, 55% yield).

Ethyl 2-(6-oxocyclohex-1-en-1-yl)acetate (SI-3): Compound SI-3 was obtained as a colorless oil (101 mmol scale of reaction, 10 gm of product, 70% yield); $R_f = 0.5$ (20% EtOAc in *n*-hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 6.88 (t, *J* = 4.3 Hz, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.20 (s, 2H), 2.52 – 2.45 (m, 2H), 2.43 (h, *J* = 4.5 Hz, 2H), 2.05 (p, *J* = 6.3 Hz, 2H), 1.26 (t, *J* = 7.1 Hz, 3H).

¹³C {¹H} NMR (100 MHz, CDCl₃): δ 198.4, 171.5, 148.3, 133.7, 60.8, 38.1, 35.5, 26.2, 23.1, 14.3.

Luche Reduction of α-substituted cyclohexanone (SI-3):

In an oven-dried round-bottom flask, enone **SI-3** (100 mg, 0.55 mmol, 1.0 equiv) was taken in MeOH (3 mL) and cooled to 0 °C. After 10 min of stirring, CeCl₃.7H₂O (246 mg, 0.66 mmol, 1.2 equiv) was added portion-wise to the reaction mixture followed by slow addition of NaBH₄ (25 mg, 0.66 mmol, 1.2 equiv.). After complete consumption of starting materials (confirmed by TLC analysis), the reaction mixture was quenched with saturated NH₄Cl and was extracted with EtOAc (5 mL X 2) and washed with brine (5 mL X 1). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (100–200 silica, 8% EtOAc/*n*-hexane) to furnish pure **16** (0.55 mmol scale of reaction, 99 mg of product, 98% yield).

Catalytic Enatioselective Reduction of Enone (SI-3) using CBS Catalyst:

To a stirred solution of (*S*)-CBS [1.1 mL (1M in toluene), 1.092 mmol, 0.2 equiv.] in dry CH_2Cl_2 (15 mL) was added BH₃.Me₂S [1.93 mL (1M in THF), 6.576 mmol, 1.2 equiv] dropwise at 25 °C. After 10 min of stirring at this temperature, the reaction mixture transferred to 0 °C chiller, then a solution of enone **SI-3** (1 gm, 5.48 mmol, 1.0 equiv.) in CH_2Cl_2 (5 mL) was added slowly by a syringe pump over 3 h. Following completion of the reaction, the reaction mixture was quenched with 2(*M*) HCl (10 mL) and extracted with CH_2Cl_2 (15 mL X 2). The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo under

reduced pressure. The crude mixture was purified by chromatography (100–200 mesh silica, 8% EtOAc/n-hexane) to give enantiopure compound (+)-**16** as a colourless gel (969 mg, 96% yield, 96% *ee*). [The catalytic enantioselective reduction of 11b with (*S*)-CBS in 2.5 gm scale afforded product in 91% yield and 94% ee]. As this is compound is not UV active HPLC done after making benzoate derivative.

(S)-CBS	Solvent	Temp	Time	Yield ^b	ee ^c
50 mol%	THF	22 °C	4 h	92%	84%
20 mol%	THF	22 °C	6 h	90%	86%
20 mol%	THF	0 °C	9 h	85%	88%
20 mol%	CH ₂ Cl ₂	22 °C	3 h	96%	93%
20 mol%	CH ₂ Cl ₂	0 °C	3 h	95%	96%
20 mol%	CH ₂ Cl ₂	−10 °C	12 h	90%	94%
10 mol%	CH ₂ Cl ₂	0 °C	5 h	93%	94%

Detail Optimization Table for enantioselective CBS Reduction of Enone:^a

^aAll reactions were carried out using 0.25 mmol of SI-3 with 1.2 eqiv. Of BH₃.Me₂S.

^bYields are reported after column chromatography. ^cHPLC analysis were done using ChiralPak IC-3 column, after making 4-Nitrobenzoate derivative.

Ethyl (*R*)-2-(6-hydroxycyclohex-1-en-1-yl)acetate [(+)-16]: Compound (+)-16 was obtained as a colorless oil (5.48 mmol scale of reaction, 969 mg of product, 96% yield); $R_f = 0.47$ (20% EtOAc in *n*-hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 5.70 (d, *J* = 4.1 Hz, 1H), 4.15 (p, *J* = 7.7 Hz, 3H), 3.25 (d, *J* = 15.9 Hz, 1H), 3.04 (d, *J* = 15.9 Hz, 1H), 2.29 – 1.98 (m, 1H), 1.98 (s, 1H), 1.82 – 1.71 (m, 3H), 1.60 (dd, *J* = 9.8, 4.6 Hz, 1H), 1.28 (t, *J* = 7.2 Hz, 3H).

¹³C {¹H} NMR (100 MHz, CDCl₃): δ 173.6, 132.9, 130.3, 67.5, 61.1, 40.9, 32.0, 25.7, 18.1, 14.3.

$$[\alpha]_D^{25.0} = +94.60 \ (c = 0.05 \text{ g/mL, CHCl}_3)$$

Preaparation of 4-nitro benzoate Derivative (SI-4):

In an oven-dried round-bottom flask, enol (+)-**16** (50 mg, 0.274 mmol, 1.0 equiv.) was taken in CH₂Cl₂ (3 mL) and cooled to 0 °C. Triethylamine (76 μ L, 0.548 mmol, 2.0 equiv.) was added to the reaction mixture. After 5 min of stirring, 4-nitro benzoyl chloride (76 mg, 0.411 mmol, 1.5 equiv.) was added to the reaction mixture and stirred the reaction mixture further 2 h at 22 °C. After complete consumption of starting materials (confirmed by TLC), the reaction mixture was quenched with saturated NH₄Cl and was extracted with CH₂Cl₂ (5 mL X 2) and washed with brine (5 mL X 1). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (100–200 silica, 5% EtOAc/n-hexane) to furnish pure (+)-**SI-4** (0.274 mmol scale of reaction, 86 mg of product, 95% yield).

(*R*)-2-(2-Ethoxy-2-oxoethyl)cyclohex-2-en-1-yl 4-nitrobenzoate [(+)-SI-4]: Compound (+)-SI-4 was obtained as a yellowish semi solid (0.274 mmol scale of reaction, 86 mg of product, 95% yield); $R_f = 0.55$ (20% EtOAc in *n*-hexane).

¹**H NMR** (500 MHz, CDCl₃) δ 8.30 (d, *J* = 8.8 Hz, 2H), 8.23 (d, *J* = 8.9 Hz, 2H), 6.00 (t, *J* = 3.9 Hz, 1H), 5.67 (d, t = 4.8 Hz, 2H), 4.15 – 3.94 (m, 2H), 3.14 (dd, *J* = 15.8, 1.9 Hz, 1H), 3.02 (d, *J* = 15.6 Hz, 1H), 2.34 – 2.21 (m, 1H), 2.14 (d, *J* = 17.4 Hz, 1H), 2.02 – 1.97 (m, 2H), 1.80 – 1.70 (m, 2H), 1.18 (t, *J* = 7.1 Hz, 3H).

¹³C {¹H} NMR (126 MHz, CDCl₃) δ 171.4, 164.3, 150.6, 136.0, 133.1, 130.7, 128.9, 123.5, 71.3, 60.7, 40.0, 28.8, 25.29, 18.1, 14.1.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for [C₁₇H₁₉NO₆ + Na]⁺ 356.1105; Found 356.1088.

 $[\alpha]_D^{25.0} = +114.00 \ (c = 0.05 \text{ g/mL, CHCl}_3)$

Enantiomeric excess of pure compound was determined via HPLC analysis using a Chiralpak IC-3 column; solvent: hexane/2-propanol = 85/15; flow rate: 1.0 mL/min; detection: at 254 nm): $t_{\rm R}$ minor = 15.760 min, $t_{\rm R}$ major = 18.118 min. [α]_D^{25.0} = +114.00 (c = 0.05 g/ml, CHCl₃) for 96% ee).

Mitsunobu Reaction of enantioenriched enol (+)-16 with iodo compound (15):

An oven-dried round bottom flask was charged with compound **15** (1.54 gm, 6.34 mmol, 1.3 equiv.) and tributyl phosphine (2.45 ml, 9.76 mmol, 2.0 equiv.) in 20 mL of dry THF under nitrogen atmosphere. To this, a solution of compound (+)-**16** (900 mg, 4.88 mmol, 1.0 equiv.) in dry THF (10 mL), was added dropwise at 0 °C. After 10 min of stirring, DEAD (1.53 mL, 9.76 mmol, 2.0 equiv.) was added to the reaction mixture dropwise at 0 °C. Then the resulting yellow solution was allowed to warm to room temperature and stirred in the same temperature for 26 h. After completion of the starting material, the reaction mixture concentrated under reduced pressure. The resulting mixture was extracted with EtOAc (2 X 50 mL) and the combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated in a rotary evaporator under reduced pressure. The resulting the resulting thus obtained was subjected to flash chromatography (silica; 4% EtOAc/hexane to 12% EtOAc/hexane) and (-)-**14** (1.69 g, 78 %) was obtained as colour less oil after concentration of the appropriate fraction.

Compound (-)-14 was crystalized via slow evaporation for 7 days in CDCl₃ and *i*-PrOH solvent.

Entry	15	Azo	Phosphine	Solvent	Temp.	Time	Yield ^b	ee ^c
	(equiv.)	dicarboxylate						
1.	1.0	DIAD	PPh ₃	THF	22 °C	48 h	20%	
2.	2.0	DIAD	PPh ₃	THF	65 °C	36 h	52%	82%
3.	2.0	DIAD	PCy ₃	THF	22 °C	30 h	55%	90%
4.	1.2	DEAD	PPh ₃	THF	22 °C	48 h	65%	84%
5.	1.2	DEAD	$P(^{n}Bu)_{3}$	THF	22 °C	24 h	78%	93%
6.	1.2	DEAD	$P(^{n}Bu)_{3}$	THF	0 °C	40 h	58%	93%
7.	1.2	DEAD	$P(^{n}Bu)_{3}$	PhMe	22 °C	30 h	70%	91%
8.	1.2	DEAD	$P(^{n}Bu)_{3}$	PhMe:	22 °C	30 h	70%	92%
				THF(1:1)				
9.	1.2	DBAD	$P(^{n}Bu)_{3}$	THF	22 °C	36 h	62%	88%
10.	1.2	D'BAD	PPh ₃	THF	22 °C	48 h	47%	

Optimization Table for Mitsunobu reaction:^{*a*}

^{*a*}Reactions were carried out with 0.3 mmol (1.0 eqiv.) of **16**. ^{*b*}Yields are reported after purification. ^{*c*}Enantiomeric excess was determined using chiralpak OD-H column of pure (–)-**16**.

Ethyl (*S*)-2-(6-(3-formyl-2-iodo-6-methoxyphenoxy)cyclohex-1-en-1-yl)acetate [(–)-14]: Compound (–)-14 [CCDC: 2384521] was obtained as colourless liquid [4.88 mmol scale of reaction, 1.69 g of product, 78% yield; $R_f = 0.5$ (20% EtOAc in hexane].

¹**H NMR** (500 MHz, CDCl₃): δ 10.08 (s, 1H), 7.70 (d, *J* = 8.4 Hz, 1H), 6.98 (d, *J* = 8.6 Hz, 1H), 5.92 (t, *J* = 3.7 Hz, 1H), 5.04 (d, *J* = 4.4 Hz, 1H), 4.36 – 4.08 (m, 2H), 3.92 (s, 3H), 3.58 (d, *J* = 16.4 Hz, 1H), 3.14 (d, *J* = 16.4 Hz, 1H), 2.30 – 2.07 (m, 3H), 1.98 (m, 1H), 1.62 (m, 1H), 1.60 – 1.55 (m, 1H), 1.29 (t, *J* = 7.1 Hz, 3H).

¹³C {¹H} NMR (126 MHz, CDCl₃): δ 191.1, 170.8, 149.8, 148.6, 132.9, 130.2, 128.5, 128.3, 126.9, 110.2, 86.0, 60.2, 56.0, 48.6, 41.1, 23.7, 18.9, 14.0.

IR (film)v_{max}: 2940, 2902, 1742, 1683, 1580, 1321, 1026, 928 cm⁻¹.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for [C₁₈H₂₁IO₅ + H]⁺ 467.0331; Found 467.0330.

 $[\alpha]_D^{25.0} = -77.00 \ (c = 0.02 \text{ g/ml, CHCl}_3)$

Enantiomeric excess of was determined via HPLC analysis using a Chiralpak OD-H column; [solvent: hexane/2-propanol = 90/10; flow rate: 1.0 mL/min; detection: at 254 nm): $t_{\rm R}$ minor = 11.843 min, $t_{\rm R}$ major = 12.995 min. [α]_D^{25.0} = -77.00 (c = 0.02 g/ml, CHCl₃) for 93% ee].

Intramolecular Heck Coupling of Compound [(-)-14]:

Compound (–)-**14** (1.3 g, 2.93 mmol, 1.0 equiv.) and K_2CO_3 (1.21 g, 8.79 mmol, 3.0 equiv.) was taken in a sealed tube and 10 mL of anhydrous DMF was added to it under nitrogen atmosphere. Then the reaction mixture was degassed with N₂-balloon for 10 min. Next, $Pd(OAc)_2$ (98 mg, 0.439 mmol, 0.15 equiv.) and PPh₃ (346 mg, 1.319 mmol, 0.45 equiv.) were added to the reaction mixture under nitrogen atmosphere. Next, the sealed tube was capped and heated the reaction mixture at 80 °C for 12 h. Upon completion of the reaction (judged by TLC analysis), it was diluted with 40% EtOAc in *n*-hexane (10 mL) and 25 mL H₂O. The resulting mixture was extracted with 40% EtOAc in hexane (2 X 30 mL) and the combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated in a rotary evaporator under reduced pressure. The crude product was purified by flash chromatography using EtOAc/*n*-hexane as eluents to afford (–)-**13** as a yellowish liquid (787 mg, 85% yield).

Ethyl 2-((5aS,9aS)-1-formyl-4-methoxy-6,7-dihydrodibenzo[*b*,*d*]furan-9a(5aH)-yl)acetate [(-)-13]: Compound (-)-13 was obtained as yellowish liquid (2.39 mmol scale of reaction, 787 mg of product, 85% yield); $R_f = 0.48$ (20% EtOAc in hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 9.84 (s, 1H), 7.33 (d, *J* = 8.4 Hz, 1H), 6.88 (d, *J* = 8.3 Hz, 1H), 6.08 (ddt, *J* = 10.2, 2.5, 1.2 Hz, 1H), 5.89 – 5.83 (m, 1H), 5.17 (t, *J* = 3.6 Hz, 1H), 3.98 (q, *J* = 7.1 Hz, 2H), 3.95 (s, 3H), 3.40 (d, *J* = 15.1 Hz, 1H), 2.85 (d, *J* = 15.2 Hz, 1H), 2.31 – 2.24 (m, 1H), 2.20 (m, 1H), 2.02 – 1.95 (m, 1H), 1.88 (m, 1H), 1.09 (t, *J* = 7.1 Hz, 3H).

¹³C {¹H} NMR (126 MHz, CDCl₃): δ 191.1, 171.0, 149.9, 148.7, 133.1, 130.3, 128.6, 128.45, 127.0, 110.4, 86.1, 60.3, 56.2, 48.7, 41.3, 23.9, 19.1, 14.2.

IR (film)v_{max}: 2942, 1740, 1682, 1576, 1286, 1205, 928, 732 cm⁻¹.

HRMS (ESI-TOF) m/z: $[M+Na]^+$ Calcd for $[C_{18}H_{20}O_5 + Na]^+$ 339.1208; Found 339.1224.

 $[\alpha]_D^{25.0} = -72.50 \ (c = 0.025 \ \text{g/ml}, \text{CHCl}_3)$

Preparation of bis-aldehyde compound [(-)-10]:

In an oven dried round bottom flask, compound (–)-13 (300 mg, 0.948 mmol, 1.0 equiv.) was dissolved in dry THF (10 mL) under nitrogen atmosphere. To this solution, LiAlH₄ (72 mg, 1.9 mmol, 2.0 equiv.) was added slowly at 0 °C. After stirring 30 minutes at 0 °C, the reaction

mixture was diluted with EtOAc (10 mL), and quenched with 10% aq. NaOH solution. The organic layer was extracted with EtOAc (2 X 20 mL) and the combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated in a rotary evaporator under reduced pressure. The crude product was directly charged for next steps.

The crude product was dissolved in CH₂Cl₂ (10 mL) in a round bottom flask and DMP (Dess-Martin Periodinane reagent) (456 mg, 0.948 mmol, 1.0 equiv.) and NaHCO₃ (90 mg, 0.948 mmol, 1.0 equiv.) was added to the reaction mixture and stirring continued for 2.5 h at room temperature. After complete consumption of starting material (TLC analysis), the reaction mixture diluted with CH₂Cl₂ (10 mL) and quenched with saturated Na₂S₂O₃ solution. The organic layer was extracted with CH₂Cl₂ (2 X 10 mL) and concentrated in a rotary evaporator under reduced pressure. The crude product was purified by flash chromatography using 12% EtOAc/hexane as eluent to afford desired product (–)-**10** (219 mg, 85%).

(5aS,9aS)-4-Methoxy-9a-(2-oxoethyl)-5a,6,7,9a-tetrahydrodibenzo[b,d]furan-1-

carbaldehyde [(–)-10]: Compound (–)-10 was obtained as yellowish liquid (0.948 mmol scale of reaction, 219 mg of product, 85% yield); $R_f = 0.5$ (30% EtOAc in hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 9.82 (s, 1H), 9.67 (t, *J* = 2.4 Hz, 1H), 7.37 (d, *J* = 8.4 Hz, 1H), 6.93 (d, *J* = 8.3 Hz, 1H), 6.11 (ddt, *J* = 10.0, 2.5, 1.1 Hz, 1H), 5.89 (ddd, *J* = 9.8, 5.4, 2.3 Hz, 1H), 4.92 (t, *J* = 3.6 Hz, 1H), 3.98 (s, 3H), 3.48 (dd, *J* = 16.3, 2.4 Hz, 1H), 3.05 (dd, *J* = 16.3, 2.4 Hz, 1H), 2.39 – 2.19 (m, 2H), 2.08 – 1.98 (m, 1H), 1.93 – 1.80 (m, 1H).

¹³C {¹H} NMR (126 MHz, CDCl₃): δ 201.4, 191.5, 150.3, 148.9, 132.3, 131.5, 128.6, 127.93, 126.8, 110.6, 86.6, 56.2, 50.1, 48.0, 23.4, 19.0.

IR (film)v_{max}: 2904, 1682, 1670, 1452, 1321 cm⁻¹.

$$[\alpha]_D^{25.0} = -62.50 \ (c = 0.025 \text{ g/ml, CHCl}_3)$$

DIBAL-H Reduction (–)-13:

In an oven dried round bottom flask compound (–)-**13** (100 mg, 0.316 mmol, 1.0 equiv.) was dissolved in dry CH_2Cl_2 (3 mL) under nitrogen atmosphere. To that solution 1(*M*) DIBAL-H in PhMe (316 µL mg, 0.316 mmol, 1.0 equiv.) was added slowly at –78 °C. After stirring 2 h at –78 °C the reaction mixture was diluted with CH_2Cl_2 (3 mL), and quenched with aq. Rochelle's salt solution. The organic layer was extracted with CH_2Cl_2 (2 X 10 mL) and the combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated in a rotary evaporator under reduced pressure. The crude product was purified by flash chromatography to afford 40% yield of (–)-**10** and 35% yield of (–)-**10a** (30 mg).

2-((5aS,9aS)-1-(Hydroxymethyl)-4-methoxy-6,7-dihydrodibenzo[b,d]furan-9a(5aH)yl)ethan-1-ol [(-)-10a]: Compound (-)-10a was obtained as colourless gel (0.316 mmol scale of reaction, 30 mg of product, 35% yield); $R_f = 0.1$ (30% EtOAc in *n*-hexane).

¹**H** NMR (400 MHz, CDCl₃): δ 6.78 (d, J = 8.3 Hz, 1H), 6.69 (d, J = 8.3 Hz, 1H), 5.79 (d, J = 1.4 Hz, 2H), 4.78 – 4.75 (m, 1H), 4.66 (d, J = 12.1 Hz, 1H), 4.52 (dd, J = 12.1, 0.5 Hz, 1H), 3.83 (s, 3H), 3.64 (td, J = 6.6, 2.7 Hz, 2H), 2.23 – 2.14 (m, 3H), 2.05 – 1.99 (m, 1H), 1.98 – 1.91 (m, 1H), 1.83 – 1.74 (m, 1H).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 147.4, 144.8, 131.8, 130.1, 129.3, 127.8, 122.7, 111.1, 85.1, 61.9, 59.4, 55.9, 49.1, 40.5, 24.1, 19.6.

IR (film)v_{max}: 3560, 2982, 1470, 1281, 1084, 760 cm⁻¹.

HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for [C₁₆H₂₀O₄ + Na]⁺ 299.1259; Found 299.1263.

Sequential double reductive amination of bis-aldehyde [(-)-10] with galanthindolyl benzylic amine $(\pm)-12$:

An oven dried round bottom flask was charged with bis-aldehyde compound (–)-10 (200 mg, 0.734 mmol, 1.0 equiv.), and benzylic amine (\pm)-12 (206 mg, 0.734 mmol, 1.0 equiv.), 4 Å MS in anhydrous MeOH under inert atmosphere. Then, NaBH₃CN (139 mg, 2.2 mmol, 3.0 equiv.) was added to the reaction mixture at 0 °C, followed by addition of catalytic amount of TFA (20 µL). Then the reaction mixture stirred at 22 °C for 12 h. After complete consumption of starting material (monitored by TLC analysis), the crude reaction mixture was filtered and evaporated to dryness. Then it was diluted with EtOAc (20 mL), and quenched with saturated NaHCO₃ solution. The organic layer was extracted with EtOAc (20 mL X 2) and concentrated in rotary evaporator. The crude product was purified by flash chromatography using 12% (EtOAc/hexaneas) eluent to afford of the pure desired product (–)-8 (321 mg, 84%) as a 1:1 diastereomeric mixtures (**8a** and **8b**). The diastereomeric mixture is inseparable in column chromatography (TLC showed single spot).

(4a*S*,8a*S*)-**3-Methoxy-11-((6-(1-methyl-1***H***-indol-7-yl)benzo[***d***][1,3]dioxol-5-yl)methyl)-4a,5,9,10,11,12-hexahydro-6***H***-benzo[2,3]benzofuro[4,3-***cd***]azepine [(–)-8]: Compound (–)-8 was obtained as 1:1 diastereomeric ratio, yellowish liquid (0.734 mmol scale of reaction, 321 mg of product, 84% yield); R_f = 0.48 (20% EtOAc in hexane). NMR is reported as 1:1 diastreomeric mixtures.**

¹**H NMR** (500 MHz, CDCl₃) [1:1 dr of **8a** and **8b**]: δ 7.59 (t, *J* = 7.6 Hz, 2H), 7.09 (d, *J* = 7.5 Hz, 1H), 7.07 – 7.03 (m, 2H), 7.01 (d, *J* = 7.5 Hz, 1H), 6.95 (d, *J* = 3.1 Hz, 1H), 6.92 (d, *J* = 7.0 Hz, 1H), 6.90 (d, *J* = 3.1 Hz, 1H), 6.83 (s, 2H), 6.79 (d, *J* = 7.3 Hz, 1H), 6.63 (d, *J* = 8.1 Hz, 1H), 6.55 (d, *J* = 8.1 Hz, 1H), 6.51 (dd, *J* = 7.8, 3.1 Hz, 2H), 6.43 (d, *J* = 8.1 Hz, 1H), 6.34 (d, *J* = 8.1 Hz, 1H), 6.09 – 6.01 (m, 4H), 5.91 (t, *J* = 8.2 Hz, 2H), 5.74 (dt, *J* = 10.8, 5.6 Hz, 2H), 4.43 (d, *J* = 14.4 Hz, 2H), 3.87 (s, 3H), 3.84 (s, 3H), 3.53 (d, *J* = 14.7 Hz, 1H), 3.46 (d, *J* = 16.4 Hz, 1H), 3.31 (s, 3H), 3.29 – 3.23 (m, 2H), 3.21 (s, 3H), 3.09 – 2.93 (m, 2H), 2.70 (d, *J* = 14.1 Hz, 1H), 2.55 (d, *J* = 14.8 Hz, 1H), 2.35 (tq, *J* = 13.8, 8.1, 6.2 Hz, 5H), 2.02 – 1.90 (m, 3H), 1.82 – 1.65 (m, 4H), 1.47 – 1.36 (m, 2H).

¹³C {¹H} NMR (126 MHz, CDCl₃) [1:1 dr of **8a** and **8b**]: δ 147.2, 147.0, 145.7, 141.6, 140.7, 134.7, 134.6,134.0, 133.5, 130.53, 130.49, 129.6, 126.9, 126.3, 124.8, 124.1, 123.9, 121.2, 121.0, 120.2, 120.1, 119.0, 111.1, 110.8, 110.7, 109.2, 109.1, 101.2, 101.0, 100.95, 88.86, 88.84, 58.3, 57.5, 56.00, 55.96, 54.4, 52.1, 48.1, 48.0, 35.77, 35.75, 22.51, 22.45, 19.81.

IR (film)v_{max}: 2942, 1740, 1682, 1576, 1286, 1205, 928, 732 cm⁻¹.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for [C₃₃H₃₂N₂O₄ + H]⁺ 521.2440; Found 537.2448.

Riley oxidation of indole ring of compound [(–)-8]:

In an oven-dried round bottom flask was charged with compound (–)-8 (1:1 diastereomeric mixtures), (250 mg, 0.48 mmol, 1.0 equiv.) and SeO₂ (54 mg, 0.48 mmol, 1.0 equiv.) and TBHP in water (2 mL, 1.44 mmol, 3.0 equiv.) in 10 mL of CH₂Cl₂ under nitrogen atmosphere. Then the reaction mixture was allowed to stir in room temperature for 3 h. After completion the reaction, it was quenched with saturated NH₄Cl solution and diluted with CH₂Cl₂ (10 mL). The organic layer was extracted with CH₂Cl₂ (10 mL X 2), and the combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated in a rotary evaporator under reduced pressure. The crude product was purified by flash chromatography using EtOAc/*n*-hexane as eluent to afford (–)-18 as the desired product as a reddish liquid (210 mg, 82%) as 1:1 diastereomeric mixtures of 18a and 18b.

7-(6-(((4a*S*,8a*R*)-**3-Methoxy-4a,5,9,10-tetrahydro-6***H***-benzo[2,3]benzofuro[4,3-***cd***]azepin-11(12***H***)-yl)methyl)benzo[***d***][1,3]dioxol-5-yl)-1-methylindolin-2-one [(-)-18]: Compound** (-)-18 was obtained as 1:1 diastereomeric ratio, yellowish liquid (0.48 mmol scale of reaction, 210 mg of product, 82% yield); $R_f = 0.35$ (30% EtOAc in hexane).

¹**H NMR** (500 MHz, CDCl₃) [1:1 dr of **18a** and **18b**]: δ 7.59 (td, J = 7.5, 1.4 Hz, 2H), 7.37 – 7.33 (m, 1H), 7.19 (d, J = 7.0 Hz, 1H), 7.10 (t, J = 7.5 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 6.93 (q, J = 4.7, 3.9 Hz, 1H), 6.87 (s, 1H), 6.77 (d, J = 3.2 Hz, 2H), 6.64 (d, J = 8.1 Hz, 1H), 6.58 (d, J = 8.2 Hz, 1H), 6.41 (d, J = 8.1 Hz, 1H), 6.37 (d, J = 8.1 Hz, 1H), 6.09 – 6.05 (m, 4H), 5.94 (t, J = 9.7 Hz, 2H), 5.78 (dd, J = 10.6, 5.4 Hz, 2H), 4.51 (d, J = 11.9 Hz, 2H), 4.07 – 3.93 (m, 2H), 3.88 (s, 3H), 3.86 (s, 3H), 3.43 (d, J = 15.5 Hz, 2H), 3.35 – 3.16 (m, 6H), 2.80 (s, 3H), 2.74 (s, 3H), 2.65 (s, 2H), 2.37 (q, J = 7.9, 5.3 Hz, 5H), 2.11 – 1.96 (m, 3H), 1.89 (td, J = 13.1, 3.0 Hz, 2H), 1.73 (dddd, J = 16.2, 10.8, 5.7, 3.1 Hz, 4H), 1.50 – 1.42 (m, 2H).

Total number of hydrogens counts for 1:1 dr of 18a and 18b:

[$\{\delta$ 7.59 (td, J = 7.5, 1.4 Hz, 2H), 7.37 – 7.33 (m, 1H), 7.19 (d, J = 7.0 Hz, 1H), 7.10 (t, J = 7.5 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 6.93 (q, J = 4.7, 3.9 Hz, 1H), 6.87 (s, 1H), 6.77 (d, J = 3.2 Hz, 2H), 6.64 (d, J = 8.1 Hz, 1H), 6.58 (d, J = 8.2 Hz, 1H), 6.41 (d, J = 8.1 Hz, 1H), 6.37 (d, J = 8.1 Hz, 1H)}-14 aromatic proton,

 $\{6.09 - 6.05 \text{ (m, 4H)}\}$ -methylene dioxy CH₂-proton,

 $\{4.51 (d, J = 11.9 Hz, 2H)\}$ -hydrodibenzofuran core, *cis*-junction proton,

{3.88 (s, 3H), 3.86 (s, 3H)}-OMe-protons,

{2.80 (s, 3H), 2.74 (s, 3H)}-*N*-Me protons, which shows the environment of aromatic indole ring has been changed,

{4.07 – 3.93 (m, 2H), 3.46 (dd, *J* = 30.1, 14.8 Hz, 2H), 3.35 – 3.16 (m, 6H), 2.65 (s, 2H), 2.37 (q, *J* = 7.9, 5.3 Hz, 5H), 2.11 – 1.96 (m, 3H), 1.89 (td, *J* = 13.1, 3.0 Hz, 2H), 1.73 (dddd, *J* = 16.2, 10.8, 5.7, 3.1 Hz, 4H), 1.50 – 1.42 (m, 2H)}-28 aliphatic protons]

¹³C {¹H} NMR (126 MHz, CDCl₃) [1:1 dr of **18a** and **18b**]: δ 162.6, 159.2, 159.1, 148.9, 146.9, 141.0, 139.3, 137.9, 133.9, 129.0, 128.2, 125.3, 124.7, 123.1, 118.5, 114.1, 110.6, 109.9, 101.7, 88.8, 88.5, 56.0, 55.9, 52.4, 46.1, 40.9, 39.3, 36.6, 36.5, 33.8, 31.9, 29.4, 29.0, 27.4, 24.7, 23.3, 22.7, 22.3, 21.5, 19.6, 19.4.

DEPT-135 spectra shows 8 methylene (-CH₂) carbon peaks.

IR (film)v_{max}: 2942, 1740, 1682, 1576, 1286, 1205, 928, 732 cm⁻¹.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $[C_{33}H_{32}N_2O_5 + H]^+$ 537.2390; Found 537.2380.

 $[\alpha]_D^{25.0} = -22.50 \ (c = 0.025 \ \text{g/mL}, \text{CHCl}_3)$

Allylic Oxidation of Compound (-)-13:

An oven dried sealed tube was charged with alkene (-)-13 (400 mg, 1.26 mmol, 1.0 equiv.), anhydrous monobasic potassium hydrogen phosphate (171 mg, 1.26 mmol, 1.0 equiv.), oven dried quartz sand (700 mg) and anhydrous dioxane (4 mL) under N₂ atmosphere. Degassed the solution for 10 min using N₂-balloon. Then finely grounded selenium dioxide (140 mg, 1.26 mmol, 1.0 equiv.), was added to the solution and it was immersed in a 150 °C oil bath. After stirring for 1 h, more selenium dioxide (140 mg, 1.26 mmol, 1.0 equiv.) and quartz sand (700 mg) was added under N₂ atmosphere. The solution was stirred for an additional 1 h. Then again to the solution was added more selenium dioxide (140 mg, 1.26 mmol, 1.0 equiv.) and quartz sand (700 mg). The solution was stirred for an additional 1 h and was filtered through a short silica gel path and washed with ethyl acetate. The organic solvent was evacuated under vacuum and the resulting yellow oil was dissolved in ethyl acetate and washed with 1N aqueous NaOH. The aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate and concentrated in vacuo. The resulting slightly yellow oil was purified by flash chromatography (40% to 60% EtOAc in *n*-hexane) to give 130 mg (30% yield) of the starting material followed by 248 mg (60% yield, dr ~6:1) of the allylic alcohol. The SM further charge for recycle and BRSM yield up to 79% yield.

Reaction Condition	

SeO ₂ (1.2 equiv.), CH ₃ COOH, 100 °C, 8 h	SM decomposed
SeO ₂ (1.5 equiv.), 1,4-dioxane, 100 °C, 12 h	No reaction
SeO ₂ (1.0 equiv.), TBHP (2.5 eqiv.), CH ₂ Cl ₂ , 24 h	No reaction
SeO ₂ (1.5 equiv.), 150 °C, 1,4-dioxane	30% product + SM recovered

Ethyl 2-((5a*S*,7*R*,9a*S*)-1-formyl-7-hydroxy-4-methoxy-6,7-dihydrodibenzo[*b*,*d*]furan-9a(5a*H*)-yl)acetate [(–)-11]: Compound (–)-11 was obtained as colourless liquid [1.26 mmol scale of reaction, 330 mg of product, 79% yield (BRSM)], 6:1 inseparable diastereomeric mixture; $R_f = 0.35$ (40% EtOAc in *n*-hexane). NMR is reported for the major diastereomer.

¹**H NMR** (500 MHz, CDCl₃): δ 9.86 (s, 1H), 7.41 (d, *J* = 8.4 Hz, 1H), 6.93 (d, *J* = 8.3 Hz, 1H), 6.21 (dt, *J* = 10.2, 1.1 Hz, 1H), 6.01 (dd, *J* = 10.2, 4.6 Hz, 1H), 5.23 – 5.17 (m, 1H), 4.24 (q, *J* = 4.4 Hz, 1H), 4.00 (q, *J* = 7.1 Hz, 2H), 3.96 (s, 3H), 3.41 (d, *J* = 15.4 Hz, 1H), 2.80 (d, *J* = 15.5 Hz, 1H), 2.51 – 2.38 (m, 1H), 2.21 (m, 1H), 1.12 (t, *J* = 7.1 Hz, 3H).

¹³C {¹H} NMR (126 MHz, CDCl₃): δ 191.2, 170.5, 150.1, 147.6, 131.9, 131.2, 129.5, 128.54, 126.9, 110.5, 85.3, 62.2, 60.4, 56.1, 48.8, 39.6, 31.6, 14.0.

IR (film)v_{max}: 3423, 2902, 1738, 1684, 1600, 1508, 1432. 1285, 1110, 976, 762 cm⁻¹.

HRMS (ESI-TOF) m/z: $[M+Na]^+$ Calcd for $[C_{18}H_{20}O_6 + Na]^+$ 355.1152; Found 355.1136.

 $[\alpha]_D^{25.0} = -38.25 \ (c = 0.04 \text{ g/ml, CHCl}_3)$

Reductive amination and Lactamization cascade of ester-aldehyde (11) with MeNH2:

An oven dried round bottom flask was charged with ester-aldehyde compound (–)-**11** (200 mg, 0.601 mmol, 1.0 equiv.), and MeNH₂ in MeOH (25%) (3 mL, 6.01 mmol, 10.0 equiv.), 4 Å MS in anhydrous MeOH under inert atmosphere. Next, the reaction mixture allowed to stir at room temperature for 12 h, for complete formation of imine. Then, NaBH₄ (169 mg, 1.202 mmol, 2.0 equiv.) was added to the reaction mixture at 0 °C, followed by addition of catalytic amount of TFA (20 μ L). Then the reaction mixture stirred at 22 °C for 6 h, followed by heating at 60 °C, for 2 h in a pre-heated oil bath. After complete consumption of starting material (monitored by TLC analysis) the crude reaction mixture was filtered and evaporated to dryness. Then it was diluted with EtOAc (20 mL), and quenched with saturated NaHCO₃ solution (20 mL). The organic layer was extracted with EtOAc (20 mL X 2), dried over Na₂SO₄ and concentrated in rotary evaporator. The crude product was purified by flash chromatography using 12% EtOAc/hexane as eluent to afford desired product in 6:1 dr [(–)-**20** as major diastereomer and (–)-**20a** as minor diastereomer].

(4aS,6R,8aS)-6-Hydroxy-3-methoxy-11-methyl-4a,5,11,12-tetrahydro-6H-

benzo[2,3]benzofuro[4,3-*cd*]**azepin-10(9***H*)-**one** [(–)-**20**]: Compound (–)-**20** was obtained as white foam (0.601 mmol scale of reaction, 135 mg of product, 74% yield); $R_f = 0.0.4$ (70% EtOAc in *n*-hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 6.73 (s, 1H), 6.05 (dd, *J* = 10.2, 5.1 Hz, 1H), 5.52 (d, *J* = 10.1 Hz, 1H), 4.77 (s, 1H), 4.49 (d, *J* = 16.1 Hz, 1H), 4.36 (d, *J* = 16.1 Hz, 1H), 4.18 (s, 1H), 3.87 (s, 3H), 3.04 (s, 3H), 2.81 (q, *J* = 13.8 Hz, 2H), 2.77 – 2.65 (m, 1H), 2.19 – 2.01 (m, 1H).

¹³C {¹H} NMR (126 MHz, CDCl₃): δ 170.9, 146.6, 144.9, 132.1, 128.4, 125.2, 120.1, 112.0, 88.4, 61.6, 56.2, 52.0, 43.3, 41.6, 35.9, 29.3.

IR (film)v_{max}: 2927, 1476, 748, 583 cm⁻¹.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for [C₁₇H₁₉NO₄ + H]⁺ 302.1392; Found 302.1396.

 $[\alpha]_D^{25.0} = -78.25 \ (c = 0.04 \text{ g/ml, CHCl}_3).$

SCXRD data of **20** is given in the CCDC **2333542**. This X-ray structure was obtained from a racemic reaction that was carried out initially. This confirms the structure of major diastereomer [diastereoselectivity at the -OH group].

(4aS,6S,8aS)-6-Hydroxy-3-methoxy-11-methyl-4a,5,11,12-tetrahydro-6H-

benzo[2,3]benzofuro[4,3-*cd*]**azepin-10(9***H*)-**one** [(-)-**20a**]: Compound (-)-**20a** (minor diastereomer) was obtained as white foam (0.601 mmol scale of reaction, 22 mg of product, 12% yield); $R_f = 0.47$ (70% EtOAc in hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 6.69 (q, *J* = 8.2 Hz, 2H), 5.86 (d, *J* = 10.3 Hz, 1H), 5.48 (d, *J* = 10.0 Hz, 1H), 4.71 (dd, *J* = 17.3, 6.0 Hz, 2H), 4.52 (d, *J* = 15.9 Hz, 1H), 4.25 (d, *J* = 15.9 Hz, 1H), 3.88 (s, 3H), 3.01 (s, 3H), 2.87 (s, 3H), 1.96 – 1.73 (m, 1H).

Total Synthesis of galantamine [(–)-6a]:

In an oven dried round bottom flask, lactam (–)-**20** (180 mg, 0.597 mmol, 1.0 equiv.) was dissolved in dry THF (10 mL) under nitrogen atmosphere. To this solution, LiAlH₄ (114 mg, 2.98 mmol, 5.0 equiv.) was added slowly at 0 °C. Then, the reaction mixture was placed in a pre-heated oil bath at 65 °C and the stirring was continued for 6 h. After complete consumption of starting material, the reaction mixture was cooled in an ice bath and diluted with EtOAc (10 mL), and quenched with 10% aq. NaOH solution. The organic layer was extracted with EtOAc (2 X 20 mL) and the combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated in a rotary evaporator under reduced pressure. The crude product was purified via column chromatography (neutral alumina) with 3% MeOH in CH₂Cl₂, to afford (–)-galantamine (**6a**) in 85% yield (146 mg).

(4aS,6R,8aS)-3-Methoxy-11-methyl-4a,5,9,10,11,12-hexahydro-6H-

benzo[2,3]benzofuro[4,3-*cd*]**azepin-6-ol** [(–)-**6a**]: galantamine (–)-**6a** was obtained as yellow semi-solid (0.597 mmol scale of reaction, 146 mg of product, 85% yield); $R_f = 0.35$ (10% MeOH in CH₂Cl₂).

¹**H** NMR (500 MHz, CDCl₃): δ 6.68 (d, J = 8.2 Hz, 1H), 6.65 (d, J = 8.2 Hz, 1H), 6.08 (d, J = 10.3 Hz, 1H), 6.02 (dd, J = 10.2, 4.9 Hz, 1H), 4.63 (d, J = 3.5 Hz, 1H), 4.19 – 4.08 (m, 2H), 3.85 (s, 3H), 3.72 (d, J = 14.9 Hz, 1H), 3.31 (t, J = 13.7 Hz, 1H), 3.09 (d, J = 14.3 Hz, 1H), 2.77 – 2.67 (m, 1H), 2.43 (s, 3H), 2.20 – 2.08 (m, 1H), 2.03 (ddd, J = 15.6, 4.9, 2.3 Hz, 1H), 1.73 – 1.56 (m, 1H).

¹³C {¹H} NMR (126 MHz, CDCl₃): δ 145.9, 144.2, 133.1, 128.7, 127.7, 126.8, 122.2, 111.3, 88.7, 62.1, 60.6, 55.9, 53.8, 48.2, 42.0, 33.8, 30.0.

IR (film)v_{max}: 2942, 1740, 1682, 1576, 1286, 1205, 928, 732 cm⁻¹.

HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ Calcd for [C₁₇H₂₁NO₃ + H]⁺ 288.1600; Found 288.1588.

 $[\alpha]_D^{25.0} = -82.50 \ (c = 0.025 \text{ g/ml, CHCl}_3)$

Comparison of ¹H-NMR Data of Galantamine:

Zhou's Synthesis of (–)-Galantamine (6a) (¹ H-NMR, 400 MHz, CDCl ₃) ¹					
δ (ppm)	Int.	mult.	J (Hz)		
6.63	2H	dd	<i>J</i> = 16.0, 8.0 Hz		
6.06	1H	d	J = 10.4 Hz		
5.99	1H	dd	<i>J</i> = 10.2, 4.8 Hz		
4.60	1H	S	-		
4.13	1H	br	-		
4.07	1H	d	<i>J</i> = 15.2 Hz		
3.82	3Н	S	-		
3.67	1H	d	<i>J</i> = 15.2 Hz		
3.25	1H	t	<i>J</i> = 13.6 Hz		
3.04	1H	d	<i>J</i> = 14.4 Hz		
2.67	1H	dd	<i>J</i> = 15.6, 1.6 Hz		
2.39	3Н	S	-		
2.07	1H	td	<i>J</i> = 13.4, 2.8 Hz		
2.00	1H	ddd	<i>J</i> = 15.6, 4.8, 2.2 Hz		
1.56	1H	dd	<i>J</i> =13.6, 2.2 Hz		
Trost's Synthe	Trost's Synthesis of (–)-Galantamine (6a) (¹ H-NMR, 500 MHz, CDCl ₃) ²				
δ (ppm)	Int.	mult.	J (Hz)		

6.64	1H	d	<i>J</i> = 8.3 Hz
6.60	1H	d	<i>J</i> = 8.3 Hz
6.04	1H	d	<i>J</i> = 10.2 Hz
5.98	1H	ddd	<i>J</i> = 10.2, 5.1, 1.0 Hz
4.59	1H	S	-
4.12	1H	br s	-
4.07	1H	d	<i>J</i> = 15.1 Hz
3.81	3Н	S	-
3.66	1H	d	<i>J</i> = 15.1 Hz
3.25	1H	t	<i>J</i> = 13.0 Hz
3.03	1H	br d	<i>J</i> = 13.9 Hz
2.67	1H	ddt	<i>J</i> = 15.9, 3.7, 1.2 Hz
2.38	3Н	S	-
2.06	1H	td	<i>J</i> = 13.2, 2.0 Hz
1.98	1H	ddd	<i>J</i> = 15.9, 4.1, 2.4 Hz
1.67	1H	br s	-
1.55	1H	ddd	<i>J</i> = 13.6, 3.6, 1.1 Hz
This Synthe	sis of (–)-Ga	alantamine (6a) (¹ H-NMR, 500 MHz, CDCl ₃)
δ (ppm)	Int.	mult.	J (Hz)
6.68	1H	d	<i>J</i> = 8.2 Hz
6.65	1H	d	J = 8.2 Hz
6.08	1H	d	<i>J</i> = 10.3 Hz
6.02	1H	dd	<i>J</i> = 10.2, 4.9 Hz
4.63	1H	d	<i>J</i> = 3.5 Hz
4.19-4.08	2H	m	-
3.85	3Н	S	-
3.72	1H	d	<i>J</i> = 14.9 Hz
3.31	1H	t	<i>J</i> = 13.7 Hz
3.09	1H	d	<i>J</i> = 14.3 Hz
2.77 – 2.67	1H	m	-
2.43	3Н	S	-

2.20 - 2.08	1H	m	-
2.03	1H	ddd	<i>J</i> = 15.6, 4.9, 2.3 Hz
1.73 – 1.56	1H	m	-

Comparison of ¹³C-NMR Data of Galantamine:

Zhou's Synthesis of (-)-	Trost's Synthesis of (–)-	This Synthesis of (–)-
Galantamine (6a) (¹³ C-	Galantamine (6a) (¹³ C-NMR,	Galantamine (6a) (¹³ C-
NMR, 100 MHz, CDCl ₃) ¹	125 MHz, CDCl ₃) ²	NMR, 126 MHz, CDCl ₃)
145.8	145.7	145.9
144.1	144.1	144.2
133.0	133.0	133.1
129.4	129.3	128.7
127.6	127.6	127.7
126.9	126.8	126.8
122.1	122.0	122.2
111.1	111.1	111.3
88.7	88.7	88.7
62.1	62.1	62.1
60.7	60.6	60.6
55.9	55.9	55.9
53.9	53.8	53.8
48.2	48.2	48.2
42.2	42.1	42.0
33.8	33.8	33.8
30.0	29.9	30.0

Hydrogenation of galantamine [(–)-6a]:

An oven-dried round bottom flask was charged with galantamine (–)-**6a** (50 mg, 0.173 mmol, 1.0 equiv.) in 3 mL of MeOH under nitrogen atmosphere. Next, the reaction vessel was degassed with N₂-balloon for about 10 minutes. Then, Pd-C (5 mg, 10 vol% wt/wt) was added and H₂-balloon was purged into the solution and stirring was continued for 3 h at 22 °C. Upon complete consumption of the starting material (judged by TLC analysis), H₂-balloon was removed. Next, the reaction mixture was filtered and washed with MeOH, and evaporated the solvent under reduced pressure. The crude product was purified by flash chromatography (neutral alumina) with 3% MeOH in CH₂Cl₂, to afford (–)-lycoramine (**6b**) in 94% yield (47 mg).

(4aS,6S,8aR)-3-Methoxy-11-methyl-4a,5,7,8,9,10,11,12-octahydro-6H-

benzo[2,3]benzofuro[4,3-*cd***]azepin-6-ol** [(–)-**6b**]: Lycoramine (–)-**6b** was obtained as pale yellow semi-solid (0.173 mmol scale of reaction, 47 mg of product, 92% yield); $R_f = 0.33$ (10% MeOH in CH₂Cl₂).

¹**H NMR** (500 MHz, CDCl₃): δ 6.73 (d, J = 8.1 Hz, 1H), 6.69 (d, J = 8.2 Hz, 1H), 4.43 (d, J = 3.4 Hz, 1H), 4.29 (d, J = 14.8 Hz, 1H), 4.13 (s, 1H), 3.89 (s, 3H), 3.49 (t, J = 13.5 Hz, 1H), 3.26 (d, J = 14.3 Hz, 1H), 3.13 (q, J = 7.5 Hz, 1H), 2.57 (d, J = 13.5 Hz, 1H), 2.53 (s, 3H), 2.06 (t, J = 14.5 Hz, 1H), 1.94 (d, J = 16.7 Hz, 1H), 1.87 (d, J = 12.8 Hz, 1H), 1.75 (dd, J = 13.8, 8.5 Hz, 2H), 1.48 – 1.41 (m, 1H), 1.33 – 1.26 (m, 1H).

¹³C {¹H} NMR (126 MHz, CDCl₃): δ 146.4, 145.2, 135.7, 130.6, 123.0, 111.4, 89.7, 65.1, 58.6, 56.0, 55.4, 45.9, 40.0, 31.5, 29.9, 27.6, 23.9.

HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ Calcd for [C₁₇H₂₃NO₃ + H]⁺ 290.1751; Found 290.1750.

IR (film)v_{max}: 2942, 1740, 1682, 1576, 1286, 1205, 928, 732 cm⁻¹.

 $[\alpha]_D^{25.0} = -91.76 \ (c = 0.025 \text{ g/ml, CHCl}_3)$

Zhou's report (–)-lycoramine (6b) (¹ H-NMR, 400 MHz, CDCl ₃) ¹						
δ (ppm)	Int.	mult.	J (Hz)			
6.59	2H	dd	<i>J</i> = 21.6, 8.0 Hz			
4.34	1H	br	-			
4.08 - 4.02	1H	m	-			
3.98	1H	d	<i>J</i> = 15.2 Hz			
3.82	3Н	S	-			
3.65 - 3.59	2Н	m	-			
3.18	1H	t	<i>J</i> = 12.8 Hz			
3.03 - 3.00	1H	m	-			
2.48 - 2.43	1H	m	-			
2.33	3Н	S	-			
2.01 - 1.58	8H	m	-			
1.58 – 1.48	1H	m	-			
Xu's report (\pm)-lycoramine (6b) (¹ H-NMR, 400 MHz, CDCl ₃) ³						
δ (ppm)	Int.	mult.	J (Hz)			
6.65	1H	d	J = 8.2 Hz			
6.60	1H	d	J = 8.2 Hz			
4.37	1H	t	J = 3.2 Hz			

Comparison of ¹H-NMR Data of Lycoramine:

4.08	1H	dd	<i>J</i> = 4.8, 2.4 Hz	
4.03	1H	d	J = 15.0 Hz	
3.85	3Н	S	-	
3.64	1H	dd	<i>J</i> = 14.8, 1.2 Hz	
3.23	1H	ddd	<i>J</i> = 14.5, 12.6, 1.9 Hz	
3.13 - 3.01	1H	m	-	
2.50	1H	dd	J = 16.0, 2.2 Hz	
2.38	3Н	S	-	
2.02 - 1.94	1H	m	-	
1.94 – 1.84	2H	m	-	
1.83 – 1.75	2H	m	-	
1.75 – 1.62	2H	m	-	
1.62 - 1.52	1H	m	-	
This Synthesis of (–)-Lycoramine (6b) (¹ H-NMR, 400 MHz, CDCl ₃)				
δ (ppm)	Int.	mult.	J (Hz)	
6.73	1H	d	J = 8.1 Hz	
6.69	1H	d	J = 8.2 Hz	
4.43	1H	d	J = 3.4 Hz	
4.29	1H	d	<i>J</i> = 14.8 Hz	
4.13	1H	S	-	
3.89	3Н	S	-	
3.49	1H	t	<i>J</i> = 13.5 Hz	
3.26	1H	d	<i>J</i> = 14.3 Hz	
3.13	1H	q	<i>J</i> = 7.5 Hz	
2.57	1H	d	<i>J</i> = 13.5 Hz	
2.53	3Н	S	-	
2.06	1H	t	<i>J</i> = 14.5 Hz	
1.94	1H	d	<i>J</i> = 16.7 Hz	
1.87	1H	d	J = 12.8 Hz	
1.75	2H	dd	<i>J</i> = 13.8 Hz, 8.5 Hz	
1.48-1.41	1H	m	-	

Zhou's Synthesis of (-)-	Xu's Synthesis of (\pm) -	This Synthesis of (–)-
Lycoramine (6b) (¹³ C-	Lycoramine (6b) (¹³ C-	Lycoramine (6b) (¹³ C-
NMR, 100 MHz, CDCl ₃) ¹	NMR, 100 MHz,	NMR, 126 MHz, CDCl ₃)
	$CDCl_3)^3$	
146.0	146.0	146.4
144.1	144.3	145.2
136.3	136.4	135.7
128.6		130.6
121.9	122.1	123.0
110.7	110.7	111.4
89.9	90.1	89.7
65.4	65.5	65.1
60.4	60.4	58.6
55.9	56.0	56.0
54.0	54.1	53.4
46.7	46.8	45.9
41.8	41.7	40.0
31.6	31.6	31.5
31.2	31.1	29.9
27.6	27.7	27.6
23.7	23.7	23.7

Comparison of ¹³C-NMR Data Comparison of ¹H-NMR Data of Lycoramine:

Reductive amination and lactamization of ester aldehyde (11) with benzylic amine (12):

An oven dried round bottom flask was charged with ester-aldehyde compound (–)-**11** (200 mg, 0.601 mmol, 1.0 equiv.), and benzyl amine (**12**) (168 mg, 0.601 mmol, 1.0 equiv.), 4 Å MS in anhydrous MeOH under inert atmosphere. Then the reaction mixture was allowed to stir at room temperature for 12 h. Next, NaBH₄ (46 mg, 1.2 mmol, 2.0 equiv.) was added to the reaction mixture at 0 °C, followed by addition of catalytic amount of TFA (20 μ L). Then the reaction mixture stirred at 22 °C for 6 h, followed by heating at 60 °C, for 2 h in a pre-heated oil bath. After complete consumption of starting material (monitored by TLC) the crude reaction mixture was filtered and evaporated to dryness. Then it was diluted with EtOAc (20 mL), and quenched with saturated NaHCO₃ solution. The organic layer was extracted with EtOAc (20 mL X 2) dried with Na₂SO₄ and concentrated in rotary evaporator. The crude product was purified by flash chromatography using 12% EtOAc/hexane as eluent to afford 26% yield of (–)-**21** along with 42% yield of (–)-**22**.

(4a*S*,8a*S*)-**3,6-dimethoxy-4a,5-dihydro-6***H***,12***H***-benzo[***b***]oxepino[5,4,3**-*cd*]benzofuran-**10(9***H***)-one** [(–)-**22**]: Compound (–)-**22** was obtained as colorless gel (0.601 mmol scale of reaction, 76 mg of product, 42% yield); $R_f = 0.55$ (40% EtOAc in hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 6.88 (d, *J* = 8.3 Hz, 1H), 6.78 (d, *J* = 8.3 Hz, 1H), 5.99 (s, 2H), 5.11 (dd, *J* = 6.1, 3.4 Hz, 1H), 4.76 (d, *J* = 12.1 Hz, 1H), 4.67 (d, *J* = 12.1 Hz, 1H), 4.24 (q, *J*

= 4.3 Hz, 1H), 3.87 (s, 3H), 3.63 (s, 3H), 3.05 (d, *J* = 14.8 Hz, 1H), 2.80 (d, *J* = 14.8 Hz, 1H), 2.39 (ddd, *J* = 14.6, 6.2, 4.5 Hz, 1H), 2.20 (ddd, *J* = 14.6, 5.0, 3.5 Hz, 1H).

¹³C {¹H} NMR (126 MHz, CDCl₃): δ 171.0, 146.6, 145.2, 130.2, 129.9, 129.2, 128.9, 123.5, 111.7, 84.2, 62.7, 62.6, 55.9, 51.8, 49.0, 40.8, 31.8.

IR (film)v_{max}: 2927, 1476, 748, 583cm⁻¹.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for [C₁₇H₁₈O₅ + H]⁺ 303.1232; Found 303.1227.

TBS-protection of compound [(–)-11]:

In an oven-dried round bottom flask, allylic alcohol (–)-**11** (500 mg, dr ~6:1, 1.5 mmol, 1.0 equiv.), was taken in CH₂Cl₂ (10 mL). The reaction mixture placed in an ice bath at 0 °C. To this solution was added imidazole (306 mg, 4.5 mmol, 3.0 equiv.), DMAP (37 mg, 0.3 mmol, 0.2 equiv.) and TBSCl (340 mg, 2.25 mmol, 1.5 equiv.) successively and the reaction mixtures allowed to stir at room temperature for 2 h. After complete consumption of starting material (monitored by TLC analysis) the reaction mixture was diluted with CH₂Cl₂ (10 mL) and quenched with H₂O (15 mL). The resulting mixture was extracted with CH₂Cl₂ (2 X 20 mL) and the combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated in a rotary evaporator under reduced pressure. The crude product was purified by flash chromatography using 8% EtOAc in *n*-hexane to afford desired product (–)-**23** (major diastereomer) in 77% yield (502 mg), and the minor diastereomer **23a** in 13% yield.

Ethyl 2-((5aS,7R,9aS)-7-((tert-butyldimethylsilyl)oxy)-1-formyl-4-methoxy-6,7dihydrodibenzo[*b,d*]furan-9a(5aH)-yl)acetate [(-)-23]: Compound (-)-23 was obtained as colourless liquid (1.5 mmol scale of reaction, 502 mg of product, 77% yield of major diastereomer); $R_f = 0.45$ (20% EtOAc in hexane).

¹**H** NMR (500 MHz, CDCl₃): δ 9.87 (s, 1H), 7.38 (d, *J* = 8.4 Hz, 1H), 6.91 (d, *J* = 8.4 Hz, 1H), 6.53 (dd, *J* = 10.3, 1.9 Hz, 1H), 5.84 (ddd, *J* = 10.3, 2.3, 1.2 Hz, 1H), 5.37 (dd, *J* = 10.5, 5.3 Hz, 1H), 4.37 (ddt, *J* = 9.1, 4.6, 2.1 Hz, 1H), 4.07 (q, *J* = 7.1 Hz, 2H), 3.97 (s, 3H), 3.00 (d, *J* = 14.8 Hz, 1H), 2.80 (d, *J* = 14.8 Hz, 1H), 2.34 (m, 1H), 1.91 – 1.74 (m, 1H), 1.19 (t, *J* = 7.1 Hz, 3H), 0.86 (s, 9H), 0.06 (d, *J* = 9.1 Hz, 6H).

¹³C {¹H} NMR (126 MHz, CDCl₃): δ 191.0, 170.6, 150.4, 147.9, 134.2, 131.7, 130.6, 127.1, 126.8, 110.5, 84.7, 64.7, 60.4, 56.1, 49.9, 42.0, 36.8, 29.7, 25.7, 18.0, 14.1, -4.7, -4.8.

IR (film)v_{max}: 2902, 1738, 1680. 1589, 1452, 1321 cm⁻¹.

HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for [C₂₄H₃₄O₆Si + Na]⁺ 469.2022; Found 469.2025.

 $[\alpha]_D^{24.0} = -65.11 \ (c = 0.025 \ \text{g/mL, EtOH})$

Synthesis of di-aldehyde compound [(-)-24]:

In an oven dried round bottom flask, compound (–)-23 (480 mg, 1.074 mmol, 1.0 equiv.) was dissolved in dry THF (10 mL) under nitrogen atmosphere. To this solution was added LiAlH₄

(82 mg, 2.14 mmol, 2.0 equiv.) slowly at 0 °C for 3 minutes. After stirring 30 minutes at 0 °C the reaction mixture was diluted with EtOAc (10 mL), and quenched with 10% aq. NaOH solution. The organic layer was extracted with EtOAc (2 X 20 mL), dried over Na₂SO₄ and the combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated in a rotary evaporator under reduced pressure. The crude product was directly charged for next steps.

The crude product was dissolved in CH_2Cl_2 10 mL in a round bottom flask and DMP [Dess-Martin Periodinane] (456 mg, 1.074 mmol, 1.0 equiv.) and NaHCO₃ (90 mg, 1.074 mmol, 1.0 equiv.) was added to the reaction mixture and stirring continued for 2.5 h at room temperature. After complete consumption of starting material, the reaction mixture diluted with CH_2Cl_2 (10 mL) and quenched with saturated $Na_2S_2O_3$ solution. The organic layer was extracted with CH_2Cl_2 (2 X 10 mL) and concentrated in a rotary evaporator under reduced pressure. The crude product was purified by flash chromatography using 12% EtOAc/hexane as eluent to afford of the pure desired product (–)-**24** (367 mg, 90% yield).

(5aS,7R,9aS)-7-((*tert*-butyldimethylsilyl)oxy)-4-Methoxy-9a-(2-oxoethyl)-5a,6,7,9atetrahydrodibenzo[*b,d*]furan-1-carbaldehyde [(–)-24]: Compound (–)-32 was obtained as colourless liquid (1.074 mmol scale of reaction, 367 mg of product, 85% yield); R_f = 0.50 (20% EtOAc in *n*-hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 9.84 (s, 1H), 9.62 (t, *J* = 2.3 Hz, 1H), 7.39 (d, *J* = 8.3 Hz, 1H), 6.93 (d, *J* = 8.4 Hz, 1H), 6.55 (dd, *J* = 10.3, 1.9 Hz, 1H), 5.85 (ddd, *J* = 10.4, 2.3, 1.2 Hz, 1H), 5.01 (dd, *J* = 10.3, 5.2 Hz, 1H), 4.37 (ddt, *J* = 9.0, 4.6, 2.1 Hz, 1H), 3.97 (s, 3H), 3.16 (dd, *J* = 16.0, 2.2 Hz, 1H), 2.91 (dd, *J* = 16.0, 2.4 Hz, 1H), 2.38 – 2.29 (m, 1H), 1.86 – 1.76 (m, 1H), 0.85 (s, 9H), 0.06 (d, *J* = 8.9 Hz, 6H).

¹³C {¹H} NMR (126 MHz, CDCl₃): δ 200.9, 191.3, 150.5, 147.9, 134.1, 131.4, 131.1, 126.8, 126.6, 110.7, 85.4, 64.6, 56.1, 50.8, 49.1, 36.4, 25.7, 18.0, -4.7, -4.7.

IR (film)v_{max}: 2904, 1682, 1670, 1452, 1321 cm⁻¹.

HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for [C₂₂H₃₀O₅Si + Na]⁺ 425.1760; Found 425.1781.

 $[\alpha]_D^{25.0} = -71.20 \ (c = 0.025 \text{ g/mL, CHCl}_3)$

Double reductive amination of dialdehyde (–)-24 with benzylic amine (±)-12 formation of 7-member azepine core:

An oven dried round bottom flask was charged with di-aldehyde compound (–)-**24** (359 mg, 0.891 mmol, 1.0 equiv.), and benzyl amine (\pm)-**12** (250 mg, 0.891 mmol, 1.0 equiv.), 4 Å MS in anhydrous MeOH under inert atmosphere. Then NaBH₃CN (169 mg, 2.673 mmol, 3.0 equiv.) was added to the reaction mixture at 0 °C, followed by addition of catalytic amount of TFA (20 µL). Then the reaction mixture stirred at 22 °C for 12 h. After complete consumption of starting material (monitored by TLC analysis) the crude reaction mixture was filtered and evaporated to dryness. Then it was diluted with EtOAc (20 mL), and quenched with saturated NaHCO₃ solution (15 mL). The organic layer was extracted with EtOAc (20 mL X 2), dried over Na₂SO₄ and concentrated in rotary evaporator. The crude product was purified by flash chromatography using 12% EtOAc/hexane as eluent to afford of the pure desired product (–)-**25** in 82% yield (475 mg) as a 1:1 diastereomeric mixtures.

(4a*S*,6*R*,8a*S*)-6-((*tert*-butyldimethylsilyl)oxy)-3-methoxy-11-((6-(1-methyl-1*H*-indol-7yl)benzo[*d*][1,3]dioxol-5-yl)methyl)-4a,5,9,10,11,12-hexahydro-6*H* benzo[2,3]benzofuro[4,3-*cd*]azepine [(-)-25]: Compound (-)-25 was obtained as white foam

as 1:1 dr (0.891 mmol scale of reaction, 475 mg of product, 82% yield); $R_f = 0.55$ (30% EtOAc in *n*-hexane).

¹**H NMR** [1:1 dr of **25a** and **25b**] (500 MHz, CDCl₃): δ 7.59 (t, *J* = 8.4 Hz, 2H), 7.05 (td, *J* = 17.4, 16.7, 7.5 Hz, 4H), 6.97 – 6.87 (m, 3H), 6.83 (s, 2H), 6.79 (d, *J* = 7.4 Hz, 1H), 6.63 (d, *J* = 8.1 Hz, 1H), 6.55 (d, *J* = 8.1 Hz, 1H), 6.52 – 6.47 (m, 2H), 6.42 (d, *J* = 8.1 Hz, 1H), 6.33 (d, *J* = 8.3 Hz, 1H), 6.04 (d, *J* = 8.1 Hz, 4H), 5.97 (dd, *J* = 10.4, 5.8 Hz, 2H), 5.77 (dt, *J* = 10.3, 5.0 Hz, 2H), 4.40 (d, *J* = 14.5 Hz, 2H), 4.22 (s, 2H), 3.96 – 3.87 (m, 2H), 3.85 (s, 3H), 3.82 (s, 3H), 3.50 (dd, *J* = 33.3, 14.7 Hz, 2H), 3.33 (m, 2H), 3.31 (s, 3H), 3.28 – 3.22 (m, 2H), 3.20 (s, 3H), 2.96 (dd, *J* = 36.1, 13.7 Hz, 2H), 2.65 (d, *J* = 14.2 Hz, 1H), 2.51 (d, *J* = 14.0 Hz, 1H), 2.37 (d, *J* = 15.1 Hz, 2H), 2.00 (t, *J* = 15.6 Hz, 2H), 1.71-1.62 (m, 4H), 1.33-1.25 (m, 2H), 0.88 (s, 18H), 0.08 (s, 6H), 0.03 (s, 6H).

¹³C {¹H} NMR [1:1 dr of **25a** and **25b**] (126 MHz, CDCl₃): δ 147.2, 147.1, 147.0, 145.6, 143.9, 134.6, 134.5, 133.4, 133.3, 132.8, 130.4, 130.4, 129.4, 128.9, 127.6, 124.7, 123.9, 123.7, 120.9, 120.6, 120.1, 120.0, 118.8, 118.8, 111.9, 111.7, 110.9, 109.1, 109.0, 101.1, 101.1, 100.9, 100.8, 88.7, 86.9, 86.9, 63.7, 62.1, 62.0, 58.2, 57.3, 56.4, 56.3, 54.3, 52.2, 48.2, 48.1, 35.9, 35.6, 32.8, 32.7, 25.8, 18.1, -4.5, -4.6.

IR (film)v_{max}: 2927, 1476, 748, 583cm⁻¹.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $[C_{39}H_{46}N_2O_5Si + H]^+$ 651.3254; Found 651.3267.

$$[\alpha]_D^{25.0} = -38.25 \ (c = 0.04 \text{ g/ml, CHCl}_3)$$

Synthesis of dehydro narcipavline [(–)-26]:

In a round bottom flask compound, (–)-25 (dr ~ 1:1) (400 mg, 0.614 mmol, 1.0 equiv.) was dissolved in 4 mL of dry THF under nitrogen atmosphere. The reaction mixture placed in an ice bath. Then, 1(*M*) solution TBAF in THF (920 μ L, 0.921 mmol, 1.5 equiv.) was added dropwise at 0 °C. Further the reaction mixture allowed to stir at 22 °C for 4 h. After complete conversion of the starting material (monitored by TLC analysis), reaction mixture diluted with 10 mL EtOAc and quenched with H₂O 15 mL. The organic layer extracted with EtOAc (20 mL X 2) and washed with brine solution and concentrated in rotary evaporator. The crude product was purified by flash chromatography using 30% EtOAc/hexane as eluent to afford desired product (–)-26 (306 mg, 83%) as a 1:1 diastereomeric mixtures which shows single spot in TLC and inseparable *via* column chromatography. [N. B.: Racemic (±)-26 was crystalized in *i*-PrOH by keeping it in room temperature for 21 days.]

(4aS,6R,8aS)-3-methoxy-11-((6-(1-methyl-1H-indol-7-yl)benzo[d][1,3]dioxol-5-

yl)methyl)-4a,5,9,10,11,12-hexahydro-6*H*-benzo[2,3]benzofuro[4,3-*cd*]azepin-6-ol [(–)-26]: Compound (–)-26 [dr ~ 1:1] was obtained as yellow semi-solid. (0.6 mmol scale of reaction, 300 mg of product, 90% yield); $R_f = 0.35$ (60% EtOAc in *n*-hexane).

¹**H** NMR [1:1 dr of **26a** and **26b**] (500 MHz, CDCl₃): δ 7.59 (td, *J* = 8.2, 1.2 Hz, 2H), 7.08 (d, *J* = 7.3 Hz, 1H), 7.05 (t, *J* = 4.5 Hz, 2H), 7.00 (t, *J* = 7.5 Hz, 1H), 6.95 (d, *J* = 3.1 Hz, 1H), 6.92 (dd, *J* = 7.2, 1.2 Hz, 1H), 6.89 (d, *J* = 3.1 Hz, 1H), 6.83 (d, *J* = 1.7 Hz, 2H), 6.78 (d, *J* = 6.0 Hz, 1H), 6.66 (d, *J* = 8.1 Hz, 1H), 6.58 (d, *J* = 8.1 Hz, 1H), 6.50 (dd, *J* = 8.8, 3.2 Hz, 3H), 6.42 (d, *J* = 8.1 Hz, 1H), 6.04 (dd, *J* = 3.0, 1.4 Hz, 2H), 6.03 (d, *J* = 1.5 Hz, 2H), 6.00 – 5.91 (m, 4H), 4.42 (d, *J* = 15.4 Hz, 2H), 4.10 (q, *J* = 5.1 Hz, 2H), 3.89 (d, *J* = 5.6 Hz, 1H), 3.86 (s, 3H), 3.83 (d, *J* = 15.7 Hz, 1H), 3.83 (s, 3H), 3.59 (d, *J* = 15.3 Hz, 1H), 3.53 (d, *J* = 15.4 Hz, 1H), 3.06 – 2.91 (m, 2H), 2.74 – 2.56 (m, 2H), 1.96–1.88 (m, 2H), 1.73–1.64 (m, 2H), 1.62–1.55 (m, 2H), 1.38 – 1.31 (m, 2H).

¹³C {¹H} NMR [1:1 dr of **26a** and **26b**] (126 MHz, CDCl₃): δ 147.2, 145.9, 145.8, 145.7, 144.0, 134.6, 134.5, 133.3, 133.3, 130.5, 130.4, 129.4, 127.4, 127.1, 124.6, 123.9, 123.7, 122.0, 121.7, 120.1, 120.1, 118.8, 111.2, 111.1, 111.0, 111.0, 109.0, 109.0, 101.1, 101.1, 100.9, 100.9, 88.6, 88.6, 62.1, 61.5, 58.4, 57.5, 56.0, 55.9, 54.3, 51.9, 48.2, 48.1, 35.7, 35.6, 31.9, 29.9, 29.9, 29.7, 22.7.

IR (film)v_{max}: 3423, 2902, 1589, 1452, 1321 cm⁻¹.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $[C_{33}H_{32}N_2O_5 + H]^+$ 537.2390; Found 537.2391.

 $[\alpha]_D^{25.0} = -36.2$ (*c* = 0.04 g/ml, CHCl₃)

Enantiomeric excess of pure compound was determined via HPLC analysis using a Chiralpak OD-H column [solvent: hexane/2-propanol = 70/30; flow rate: 1.0 mL/min; detection: at 254 nm, 93% ee]: t_R major = 14.370 min, t_R minor = 18.857 min, for one of the diastereomer, and t_R major = 23.586 min, t_R minor = 29.402 min, for the other diastereomer.

Compound (\pm)-**26** (8-10 mg) was dissolved in 1 mL of *i*-PrOH and allowed for slow evaporation at 22 °C for 21 days. This resulted yellow crystal grow for one of the diastereomers. Crystal data (CCDC: **2363948**) given later part of the supporting information.

The ¹H NMR analysis of yellow solid crystals of **26b** in CDCl₃ showed the data for single atropodiastereomer. However, when ¹³C NMR of **26b** was recorded after 24 h, we observed the generation of double peaks for each carbon, clearly indicting single diastereomer converting to a mixture of atropodiastereomers at room temperature within a day. To confirm this, we immediately recorded ¹H NMR spectra of the same sample of **26b** and confirmed this fact.

The 1H-NMR characterization data of **26b** given below and all the NMR spectra of diastereomeric mixtures have been given in spectral traces.

(4a*S*,6*R*,8a*S*)-**3-methoxy-11-((6-(1-methyl-1***H***-indol-7-yl)benzo[***d***][1,3]dioxol-5yl)methyl)-4a,5,9,10,11,12-hexahydro-6***H***-benzo[2,3]benzofuro[4,3-***cd***]azepin-6-ol [(±)-26]: Yellow crystalline solid.**

¹**H NMR** (400 MHz, CDCl₃) (mixed with ^{*i*}PrOH): δ 7.56 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.04 (dd, *J* = 7.9, 7.1 Hz, 1H), 6.99 (s, 1H), 6.89 (d, *J* = 1.2 Hz, 1H), 6.85 (d, *J* = 3.1 Hz, 1H), 6.79 (s, 1H), 6.55 (d, *J* = 8.2 Hz, 1H), 6.46 (d, *J* = 3.1 Hz, 1H), 6.39 (d, *J* = 8.2 Hz, 1H), 6.04 – 5.96 (m, 2H), 5.95 – 5.86 (m, 2H), 4.40 (s, 1H), 4.04 (br s, 1H), [4.06 – 3.93 (m, 1H), ^{*i*}PrOH, C-H proton], 3.79 (s, 3H), 3.49 (d, *J* = 15.3 Hz, 1H), 3.29 (q, 3H), 3.16 (s, 3H), 2.96 (t, *J* = 13.3 Hz, 1H), 2.70 – 2.56 (m, 2H), 2.36 (d, *J* = 11.3 Hz, 1H), 1.90 (ddd, *J* = 15.7, 4.9, 2.3 Hz, 1H), 1.53 (dd, *J* = 13.1, 3.2 Hz, 1H), 1.33 – 1.28 (m, 1H), [1.20 (s, 3H), 1.19 (s, 3H) for ^{*i*}PrOH].

Hydrogenation of dehydro narcipavline synthesis of narcipavline [(-)-1]:

An oven-dried round bottom flask was charged with compound (–)-**26** (1:1 dr of **26a** and **26b**) (250 mg, 0.465 mmol, 1.0 equiv.) in 4 mL of MeOH under nitrogen atmosphere. Next, the reaction mixture was degassed for 10 min using N₂-balloon. Then, Pd-C (150 mg, 60 vol% wt/wt) was added and H₂-balloon was purged into the solution and stirring was continued for 6 h at 22 °C. Upon complete consumption of the starting materials (monitored by TLC analysis), H₂-balloon was removed. The reaction mixture was filtered and washed with MeOH, and evaporated the solvent under reduced pressure. The crude product was purified by flash chromatography using 50% EtOAc/hexane as eluent to afford (–)-narcipavline (1) (215 mg, 86%) as a 1:1 diastereomeric mixtures [single spot on the TLC and are inseparable by column chromatography].

(4a*S*,6*S*,8a*R*)-**3-Methoxy-11-**((**6**-(**1-methyl-1***H*-indol-**7-yl**)**benzo**[*d*][**1,3**]**dioxol-5yl**)**methyl**)-**4a**,**5**,**7**,**8**,**9**,**10**,**11**,**12-octahydro-6***H*-**benzo**[**2**,**3**]**benzofuro**[**4**,**3**-*cd*]**azepin-6-o**l [(-)-**1**]: Compound (-)-**1** was obtained as yellow gummy mass as 1:1 diastreomeric ratio of **1a**

and **1b**. (0.465 mmol scale of reaction, 215 mg of product, 86% yield); $R_f = 0.35$ (70% EtOAc in *n*-hexane). This showed single spot on TLC and are inseparable by column chromatography.

¹**H NMR** [1:1 dr of **1a** and **1b**] (400 MHz, CDCl₃): δ 7.46 (td, J = 7.7, 1.2 Hz, 2H), 7.03 (s, 1H), 7.01 (s, 1H), 7.03 – 6.96 (m, 1H), 6.97 (d, J = 7.9 Hz, 1H), 6.92 (d, J = 3.2 Hz, 1H), 6.88 (dd, J = 7.9, 7.1 Hz, 1H), 6.83 (dd, J = 7.2, 1.2 Hz, 1H), 6.75 (s, 1H), 6.74 (s, 1H), 6.64 (d, J = 1.6 Hz, 1H), 6.62 (d, J = 2.7 Hz, 1H), 6.55 (d, J = 8.2 Hz, 1H), 6.42 (d, J = 3.1 Hz, 1H), 6.38 (d, J = 3.2 Hz, 1H), 6.33 (d, J = 8.1 Hz, 1H), 6.29 (d, J = 8.2 Hz, 1H), 6.02 – 5.95 (m, 4H), 4.59 (br s, 1H), 3.98-3.93 (m, 4H), 3.84 (d, J = 6.3 Hz, 2H), 3.78 (s, 3H), 3.75 (s, 3H), 3.53 (d, J = 8.0 Hz, 1H), 3.49 (d, J = 7.9 Hz, 1H), 3.34 (t, J = 14.7 Hz, 2H), 3.25 (s, 3H), 3.26 – 3.14 (m, 2H), 3.14 (s, 3H), 2.92 (dd, J = 14.9, 10.8 Hz, 2H), 2.69 (dd, J = 14.5, 4.4 Hz, 2H), 2.25 – 2.12 (m, 2H), 1.88–1.76 (m, 2H), 1.72 – 1.49 (m, 8H), 1.36 – 1.27 (m, 4H).

¹³C {¹H} NMR [1:1 dr of 1a and 1b] (126 MHz, CDCl₃): δ 148.9, 148.8, 147.84, 147.77, 147.7, 147.4, 145.4, 145.3, 137.3, 137.2, 135.9, 135.8, 135.2, 134.8, 132.5, 131.84, 131.79, 131.2, 131.1, 129.7, 125.9, 125.7, 124.9, 122.7, 122.5, 121.1, 121.0, 119.7, 119.6, 112.8, 112.6, 111.9, 111.8, 110.1, 109.9, 102.63, 102.59, 101.87, 101.85, 90.4, 90.3, 65.88, 65.86, 59.2, 58.8, 56.71, 56.67, 55.5, 54.3, 52.6, 52.5, 47.9, 47.8, 36.1, 35.8, 33.1, 32.9, 32.74, 32.68, 27.9, 27.8, 25.3, 25.2.

IR (film)v_{max}: 3406, 2927, 1684, 1446, 1222, 1039, 933 cm⁻¹.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $[C_{33}H_{34}N_2O_5 + H]^+$ 539.2546; Found 539.2560.

 $[\alpha]_D^{25.0} = -34.00$ (c = 0.0025 g/ml, CHCl₃) for 1:1 atrophiastereometric mixture.

Enantiomeric excess of pure compound was determined via HPLC analysis using a Chiralpak OD-H column [solvent: hexane/2-propanol = 60/40; flow rate: 1.0 mL/min; detection at 254 nm; 94% ee,]: $t_{\rm R}$ major = 11.579 min, $t_{\rm R}$ minor = 12.634 min for one of the diastereomers and $t_{\rm R}$ major = 14.898 min, $t_{\rm R}$ minor = 20.023 min for the other diastereomer [dr was found to be ~ 1:1].

Synthesis of Narcikachnine (2) from Narcipavline (1):

In a 25 ml round bottom flask, narcipavlines (–)-1 (dr ~ 1:1) (150 mg, 0.278 mmol, 1.0 equiv.) was dissolved in 2 mL of AcOH and the reaction mixture placed in an ice bath. Then, NaBH₃CN (175 mg, 2.78 mmol, 10.0 equiv.) was added to the residue at 0 °C portion wise and the stirring was continued at room temperature for 4 h. After complete consumption of starting material (monitored by TLC in 5% MeOH in CH₂Cl₂), the reaction was quenched by adding water (2 mL). Next, most of the AcOH was removed under vacuum and the residue was treated with NaOH aqueous solution. Next, the reaction was extracted with CH₂Cl₂ (10 mL X 2) by maintaining the pH 8-10. The organic layers were combined and dried over Na₂SO₄ and the solvent was removed under the reduced pressure. Finally, the residual raw product was purified by chromatography (neutral alumina, 60% EtOAc/*n*-hexane to 5% MeOH/CH₂Cl₂) obtain (–)-narcikachnine (**2**) (108 mg, 72%) as dr ~ 1:1 for **2a** and **2b**. These diastereomers showed single spot-on TLC and were found to be inseparable in column chromatography.

(4a*S*,6*S*,8a*R*)-**3-Methoxy-11-((6-(1-methylindolin-7-yl)benzo[***d***][1**,**3**]dioxol-5-yl)methyl)-4a,5,7,8,9,10,11,12-octahydro-6*H*-benzo[**2**,**3**]benzofuro[**4**,3-*cd*]azepin-6-ol [(-)-2]:

Compound (–)-2 was obtained as white solid. (0.278 mmol scale of reaction, 107 mg of product, 90% yield) as 1: 1 (2a: 2b) atrophiastreomeric mixture; $R_f = 0.3$ (5% MeOH in CH₂Cl₂). For comparison of ¹H-NMR and ¹³C-{¹H} NMR with the isolation paper, the NMRs of 2 were recorded in CD₃OD and CDCl₃.

¹**H NMR** (400 MHz, CD₃OD) [~1:1 dr of **2a**: **2b**]: δ 7.04 (dd, *J* = 9.1, 2.7 Hz, 4H), 6.83 (d, *J* = 7.5 Hz, 1H), 6.78 – 6.67 (m, 7H), 6.55 (d, *J* = 8.6 Hz, 1H), 6.41 (s, 1H), 6.00 (dd, *J* = 10.1, 3.3 Hz, 4H), 4.59 (s, 2H), 4.24 (s, 1H), 4.13 – 3.96 (m, 5H), 3.84 (s, 3H), 3.84 (s, 3H), 3.79 (d, *J* = 15.4 Hz, 2H), 3.61 (d, *J* = 35.8 Hz, 2H), 3.53 – 3.41 (m, 2H), 3.29 – 3.18 (m, 2H), 3.08 (d, *J* = 14.1 Hz, 2H), 2.98 – 2.89 (m, 4H), 2.87 – 2.76 (m, 2H), 2.70 (m, 2H), 2.31 (d, *J* = 16.3 Hz, 1H), 2.24 (d, *J* = 10.5 Hz, 1H), 2.24 (s, 3H), 2.14 (s, 3H), 1.98 (dt, *J* = 15.8, 4.5 Hz, 1H), 1.89 (dd, *J* = 16.0, 4.4 Hz, 1H), 1.85 – 1.60 (m, 8H), 1.50 – 1.40 (m, 2H), 1.37 – 1.32 (m, 2H).

¹**H NMR** (400 MHz, CDCl₃) [~1:1 dr of **2a**: **2b**]: δ 7.06 (d, *J* = 2.0 Hz, 1H), 7.01 (s, 1H), 6.99 (s, 1H), 6.84 – 6.76 (m, 1H), 6.74 (s, 1H), 6.71 (s, 1H), 6.70 – 6.60 (m, 3H), 6.64 – 6.54 (m, 3H), 6.52 (d, *J* = 8.2 Hz, 1H), 6.39 (d, *J* = 8.3 Hz, 1H), 5.97 – 5.96 (m, 4H), 4.26 – 4.25 (m, 1H), 4.12 – 3.99 (m, 5H), 3.85 (s, 3H), 3.84 (s, 3H), 3.80 – 3.61 (m, 2H), 3.55 – 3.36 (m, 4H), 3.26 – 3.21 (m, 2H), 3.04 – 3.02 (m, 2H), 2.95 – 2.86 (m, 4H), 2.83 – 2.74 (m, 2H), 2.44 (t, *J* = 15.3 Hz, 2H), 2.22 (s, 3H), 2.15 (s, 3H), 1.87 – 1.58 (m, 14H), 1.36 – 1.28 (m, 3H).

¹³C {¹H} NMR (126 MHz, CD₃OD) [~1:1 dr of **2a**: **2b**]: δ 150.5, 149.8, 147.3, 146.8, 146.6, 146.41, 144.1, 135.9, 135.7, 134.20, 131.2, 130.2, 129.9, 123.3, 123.1, 121.4, 118.4, 111.5, 111.3, 110.1, 109.7, 108.5, 101.24, 101.19, 89.1, 88.9, 64.5, 58.3, 56.7, 56.4, 55.3, 51.7, 49.8, 46.6, 46.5, 31.38, 31.35, 30.82, 30.75, 28.2, 28.0, 26.5, 24.0, 23.9.

¹³C {¹H} NMR (126 MHz, CDCl₃) [~1:1 dr of **2a**: **2b**]: δ 150.6, 150.4, 146.9, 145.9, 144.0, 136.6, 133.5, 131.1, 130.5, 130.2, 124.1, 123.5, 123.3, 123.0, 121.8, 118.0, 115.9, 110.6, 110.4, 110.3, 108.9, 108.5, 101.1, 101.0, 90.0, 89.8, 65.5, 65.4, 58.5, 57.1, 56.9, 56.0, 55.9, 52.3, 46.7, 46.6, 38.8, 38.7, 31.9, 31.6, 31.5, 31.4, 28.7, 28.5, 27.68, 27.65, 23.8.

IR (film)v_{max}: 3385, 2925, 1462, 1264, 1040 cm⁻¹.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $[C_{33}H_{36}N_2O_5 + H]^+$ 541.2703; Found 541.2691.

 $[\alpha]_D^{25.0} = -31.40$ (*c* = 0.0025 g/ml, CHCl₃) for atrophiastereomeric mixtures.

VT experiment shows remarkable change in different temperature. At the higher experimental temperature, the proton resonances towards coalesced for both diastereomers. Although we can achieve only up to 65 °C, still the changes are clear, which proves that **2a** and **2b** are the atropodiastereomers. The peak near 4.15 coalesced, and the *N*-methyl peak 2.0, and 2.1 changes happened. After cooling back to RT (298 K), we observed 1:1 ratio of atropodiastereomeric mixtures along with decomposition.

Comparison of ¹H-NMR Data of (–)-narcipavline [(–)-1] of this report with natural (1) by Cahlíková:⁴

	Cahlíková's isolation report	This report
	(¹ H-NMR, 500 MHz, CD ₃ OD) ⁴	(¹ H-NMR, 500 MHz, CD ₃ OD)
1	1.72-1.53 m	1.72–1.49 (m, 4H)
2	1.72-1.53 and 1.42-1.23 m	1.72–1.49 (m, 2H) 1.36 –1.27 (m,
		2H)
3	4.02-3.93 m	3.98-3.93 (m, 2H)
4	2.25-2.15 and 1.91-1.77 m	2.25 – 2.12 (m, 2H) and 1.82
		(dddd, <i>J</i> = 24.8, 16.0, 5.3, 4.1 Hz,
		2H)
4a	4.02-3.93 and 3.87-3.80 m	3.98-3.93 (m, 2H)
5a		
6		

7	6.66-6.63 m and 6.56 d (<i>J</i> = 8.2 Hz)	6.62 (d, <i>J</i> = 2.7 Hz, 1H) and 6.55
		(d, J = 8.2 Hz, 1H)
8	6.34 d ($J = 8.2$ Hz) and 6.29 ($J = 8.2$	6.33 (d, <i>J</i> = 8.1 Hz, 1H) and 6.29
	Hz)	(d, J = 8.2 Hz, 1H)
8a		
8b		
9	3.87-3.80, 3.78-3.72 and 3,54-3.45 m	3.84 (d, <i>J</i> = 6.3 Hz, 2H) and 3.53
		(d, J = 8.0 Hz, 1H), 3.49 (d, J = 7.9
		Hz, 1H)
11	2.96-2.87 and 2.71-2.64 m	2.92 (dd, <i>J</i> = 14.9, 10.8 Hz, 2H),
		and 2.69 (dd, <i>J</i> = 14.5, 4.4 Hz, 2H)
12	1.42-1.23 m	1.72–1.49 (m, 2H), 1.36 – 1.27 (m,
		2H)
13	3.36-3.24 m and 3.24	
1'	3.11 m	3.34 (t, $J = 14.7$ Hz, 2H) and $3.26- 3.14 (m, 2H)$
2'		
3'	7.03 and 7.01 s	7.03 (s, 1H) and 7.01 (s, 1H)
3'a		
5'	6.01- 5.99 m	6.02 – 5.95 (m, 4H)
6'a		
7'	6.76 and 6.74 s	6.75 (s, 1H) and 6.74 (s, 1H)
8'		
9'		
10'	6.83 dd (<i>J</i> =7.4 Hz, <i>J</i> =1.0 Hz) and	6.83 (dd, <i>J</i> = 7.2, 1.2 Hz, 1H) and
	6.66-6.63 m	6.64 (d, <i>J</i> = 1.6 Hz, 1H)
11'	7.03-6.96 and 6.89 t (<i>J</i> =7.4 Hz)	6.92 (d, <i>J</i> = 3.2 Hz, 1H), 6.88 (dd,
		<i>J</i> = 7.9, 7.1 Hz, 1H)
12'	7.48 dd (<i>J</i> =7.7 Hz, <i>J</i> =1.0 Hz) and	7.46 (td, <i>J</i> = 7.7, 1.2 Hz, 2H)
	7.46 dd (<i>J</i> =7.7 Hz, <i>J</i> =1.0 Hz)	
12'a		

13'	6.43 d (<i>J</i> =2.9 Hz) and 6.39 d (<i>J</i> =2.9	6.42 (d, <i>J</i> = 3.1 Hz, 1H) and 6.38
	Hz)	(d, J = 3.2 Hz, 1H)
14'	7.03-6.96 and 6.94-6.92 m	7.03–6.96 (m, 1H) and 6.97 (d, <i>J</i> =
		7.9 Hz, 1H)
15'a		
6-OCH ₃	3.80 and 3.77 s	3.78 (s, 3H) and 3.75 (s, 3H)
15'-N CH ₃	3.27 and 3.16 s	3.25 (s, 3H) and 3.14 (s, 3H)
O-H		4.59 (bs, 2 H)

Comparison of ¹³C-NMR Data of (–)-narcipavline [(–)-**1**] of this report with isolation of (**1**) by Cahlíková:⁴

	Cahlíková's isolation report	This report
	(¹³ C-NMR, 500 MHz, CD ₃ OD) ⁴	(¹³ C-NMR, 500 MHz, CD ₃ OD)
1	25.3 and 25.2	25.3 and 25.2
2	27.9 and 27.8	27.9 and 27.8
3	65.9 and 65.9	65.88 and 65.86
4	32.8 and 32.7	32.74 and 32.68
4a	90.4 and 90.4	90.4 and 90.3
5a	147.8 and 147.8	147.84 and 147.77
6	145.3 and 145.1	145.4 and 145.3
7	112.7 and 112.6	112.8 and 112.6
8	122.6 and 122.3	122.7 and 122.5
8a	130.3	129.7
8b	137.4 and 137.2	137.3 and 137.2
9	59.3 and 58.7	59.2 and 58.8
11	52.6 and 52.5	52.6 and 52.5
12	33.1 and 32.3	33.1 and 32.9
13	48.0 and 47.9	47.9 and 47.8
1'	55.4 and 54.2	55.5 and 54.3
2'	133.1 and 132.9	132.5
3'	110.1 and 109.9	110.1 and 109.9

3'a	148.8 and 148.8	148.9 and 148.8
5'	102.6 and 102.5	102.63 and 102.59
6'a	147.5 and 147.3	147.7 and 147.4
7'	111.9 and 111.8	111.9 and 111.8
8'	135.0 and 134.7	135.2 and 134.8
9'	126.0 and 125.8	125.9 and 125.7
10'	124.9	124.9
11'	119.7 and 119.6	119.7 and 119.6
12'	121.0 and 120.9	121.1 and 121.0
12'a	131.2 and 131.1	131.2 and 131.1
13'	101.8 and 101.8	101.87 and 101.85
14'	131.8 and 131.7	131.84, 131.79
15'a	135.9 and 135.8	135.9 and 135.8
6-OCH ₃	56.7 and 56.7	56.71 and 56.67
15'-N CH ₃	36.0 and 35.8	36.1 and 35.8

Comparison of ¹H-NMR data of (-)-narcikachnine [(-)-2] with isolation of (2) by Cahlíková:⁴

	Cahlíková's isolation	This report in	This report in
	report	(¹ H-NMR, 500 MHz,	$(^{1}$ H-NMR, 400 MHz,
	$(^{1}\text{H-NMR}, 500 \text{ MHz}, \text{CDCl}_{3})^{4}$	CD ₃ OD)	CDCl ₃)
1	1.88–1.47 m	1.85–1.60 (m, 2H), 1.50 – 1.40 (m, 2H)	1.87–1.58 m
2	1.88–1.47 m	1.85 –1.60 (m, 4H)	1.87–1.58 m
3	4.04 bs	4.24 (bs, 1H), 4.13–3.96 (m, 1H)	4.12–3.99
4	2.46 t ($J = 8.2$ Hz) and	2.70 (m, 2H), 2.24 (d, <i>J</i> =	2.44 (t, $J = 15.3$ Hz) and
	1.88–1.47 m	10.5 Hz, 1H), and 1.98	1.87–1.58 m
		(dt, <i>J</i> = 15.8, 4.5 Hz, 1H),	
4a	4.28–4.25 and 4.14–4.11 m	4.13–3.96 (m, 2H)	4.26–4.25 m and 4.12–3.99
5.0			111
5a			
6			

7	6.62–6.57 m	6.78–6.67 (m, 2H)	6.64 – 6.54 m
8	6.51 d ($J = 8.3$ Hz) and 6.40 ($J = 8.3$ Hz)	6.55 (d, <i>J</i> = 8.6 Hz, 1H) and 6.41 (s, 1 H)	6.52 (d, J = 8.2 Hz) and 6.39 (d, J = 8.3 Hz)
8a			
8b			
9	3.89 (J = 15.0 Hz) d, 3.88 (J = 15.0 Hz) and 3.65 d (J = 15.0 Hz) and 3.52–3.43 m	4.13–3.96 (m, 2H), 3.79 (d, <i>J</i> = 15.4 Hz, 2H)	4.12–3.99 m, 3.80–3.61 m, 3.55–3.36 m
11	3.05–2.85 and 2.83–2.72 m	2.98–2.89 (m, 4H)	2.95–2.86 m
12	1.88–1.47 and 1.44–1.37 m	1.85–1.60 (m, 2H), 1.37– 1.32 (m, 2H)	1.87–1.58 m, 1.36–1.28 m
13			
1'	3.52–3.42 m and 3.39–3.32 m	3.61 (d, <i>J</i> = 35.8 Hz, 2H), and 3.53-3.41 (m, 2H)	3.55 – 3.36 m
2'			
3'	7.06 and 7.04–6.99 m	7.11–7.02 (m, 2H)	7.06 d ($J = 2.0$ Hz) and 7.01 s
3'a			
5'	5.98–5.96 m	6.00, (dd, <i>J</i> =10.1, 3.3 Hz, 4H)	5.97 – 5.96 m
6'a			
7'	6.75 and 6.72 s	6.78–6.67 (m, 2 H)	6.74 s and 6.71 s
8'			
9'			
10'	6.82 d (<i>J</i> =7.1 Hz) and 6.68-6.62 m	6.82 d (<i>J</i> =7.5 Hz, 1H) and 6.78–6.67 m (1 H)	6.84–6.76 m and 6.70–6.60 m
11'	6.66 t (<i>J</i> =7.1 Hz) and 6.62–6.57 m	6.78–6.67 (m, 2 H)	6.70–6.60 m
12'	7.04–6.99 m	7.11–7.02 (m, 2H)	6.99 s
12'a			
13'	3.03–2.85 and 2.83–2.72 m	2.98–2.89 (m, 2H), and 2.87–2.76 (m, 2H)	2.95–2.86 m, 2.83–2.74 m

14'	3.31–3.21 m and 3.17 dd (J	3.29–3.18 (m, 2H), 3.08	3.26–3.21 m and 3.04–3.02
	=9.1 Hz, <i>J</i> =9.1 Hz) and	(d, J = 14.1 Hz, 2H)	m
	3.08 dd (<i>J</i> =9.1 Hz, <i>J</i> =9.1		
	Hz)		
15'a			
6-	3.85 s	3.84 (s, 3H) and 3.84 (s,	3.85 s, and 3.84 s
OCH ₃		3H)	
15'-N	2.23 and 2.18 s	2.24 (s, 3H) and 2.14 (s,	2.22 s and 2.15 s
CH ₃		3H)	
OH		4.59 (bs, 2H)	

Comparison of ¹³C-NMR data of (-)-narcikachnine [(-)-2] with isolation of (2) by Cahlíková:⁴

	Cahlı'kova''s isolation report	This report	This report
	(¹³ C-NMR, 125 MHz, CDCl ₃) ⁴	(¹³ C-NMR, 126 MHz, CD ₃ OD)	(¹³ C-NMR, 126 MHz, CDCl ₃)
1	23.8 and 23.7	24.0 and 23.9	23.8
2	27.7	26.5	27.68, 27.65
3	65.5 and 65.5	64.5	65.5 and 65.4
4	31.5 and 31.4	30.82 and 30.75	31.5 and 31.4
4a	90.0 and 89.9	89.1 and 88.9	90.0 and 89.8
5a	146.0	146.8	145.9
6	143.9	144.1	144.0
7	110.6 and 110.5	111.5 and 111.3	110.6
8	121.7 and 121.7	121.4	121.8
8a	130.1	129.9	130.2
8b	136.6	135.9 and 135.7	136.6
9	58.6 and 58.3	58.3	58.5
11	52.3 and 51.2	51.7 and 49.8	52.3
12	32.1 and 31.2	31.38 and 31.35	31.9 and 31.6
13	46.7 and 46.7	46.6 and 46.5	46.7 and 46.6
1'	54.9 and 53.7	56.4	52.4

2'	131.9	131.2	
3'	108.7 and 108.5	108.5	108.9 and 108.5
3'a	146.9 and 146.9	147.3	146.9
5'	100.9 and 100.9	101.24 and 101.19	101.1 and 101.0
6'a	145.9 and 145.7	146.4 and 146.6	145.9
7'	110.4 and 110.3	110.1 and 109.7	110.4 and 110.3
8'	133.6 and 133.4	134.2	133.6 and 133.5
9'	122.8 and 122.8	123.3 and 123.1	123.0
10'	130.4 and 130.2	130.2	130.5
11'	118.0 and 117.9	118.4	118.0
12'	123.2	123.3	123.5 and 123.3
12'a	131.0	131.2	131.1
13'	28.6 and 28.6	28.2 and 28.0	28.7 and 28.5
14'	57.1 and 56.9	56.6	57.1 and 56.9
15'a	150.5 and 150.4	150.5 and 149.9	150.6 and 150.4
6- OCH ₃	55.9 and 55.9	55.3	56.0 and 55.9
15'-N CH ₃	38.7 and 38.7	37.9	38.8 and 38.7

Theoretical Calculations: Methods

Geometry optimization

The geometry optimizations for molecules narcipavline **1**, narcikachnine **2**, and galanthindole **7** were performed using Density Functional Theory (DFT) as implemented in Gaussian 16. The B3LYP functional was employed in combination with the 6-31G(d) basis set. All molecules were treated with a neutral charge (0) and a singlet spin state. The optimizations were carried out in the gas phase to ensure accurate energy minimization.

Energy minimized structure of 1a

Energy minimized structure of 2a

Computational assessment of rotational energy barriers

To computationally assess the rotational barriers of atropisomers, we conducted relaxed torsion scans employing the B3LYP/6-31G(d) method with the opt=modredundant keyword. This approach effectively samples the potential energy surface (PES) for torsional motion. The rotation around the C-C bond of interest was simulated in 36 discrete steps, each involving a 10-degree rotation. At each step, the geometry was fully optimized with tight convergence criteria to ensure the accuracy of the results.

A torsion profile was generated by plotting the energy values obtained from the 36 geometry optimizations against the corresponding dihedral angles. This profile allowed us to identify and

characterize the transition states (TS) that emerged during the rotation around the bonds of interest. Each identified TS structure from the relaxed torsion scan was subsequently followed by transition state optimization using the same B3LYP/6-31G(d) method, confirming that these structures were first-order saddle points on the potential energy surface through vibrational frequency calculations.

rotational energy barrier plot for narcipavline 1

rotational energy barrier plot for narcikachnine 2

rotational energy barrier plot for galanthindole 7

Results and Discussion

The rotational energy barriers for the three molecules, narcipavline **1**, narcikachnine **2**, and galanthindole **7**, were computed to gain insights into their conformational dynamics, particularly concerning the potential for separating individual isomers. The rotational pathway was modeled as a 360-degree rotation around the C-C bond, divided into 36 discrete steps, with energy profiles indicating distinct transition states (TS₁ and TS₂) along the pathway. The calculated rotational barriers are as follows: **1**: TS₁ = 35.35 kcal/mol, TS₂ = 28.09 kcal/mol; **2**: TS₁ = 25.08 kcal/mol, TS₂ = 18.90 kcal/mol; **7**: TS₁ = 25.09 kcal/mol, TS₂ = 30.78 kcal/mol.

Molecules	ΔE (kcal/mol)	
	TS ₁	TS ₂
1 a	35.35	28.09
2a	25.08	18.90
7	25.09	30.78

For narcipavline 1, the energy profile reveals that conformations 1a and 1b are different, indicating that these conformations are atropisomers of each other. After a full 360-degree rotation, conformations are the same, meaning 1 does not form distinct isomers at this point. The high energy barriers of 35.35 kcal/mol at TS₁ and 28.09 kcal/mol at TS₂ indicate significant intramolecular forces and steric hindrance during rotation. This substantial energy requirement

suggests that **1** is structurally rigid, making it less likely to undergo spontaneous conformational changes. This rigidity could facilitate the distinct separation of conformations **1a** and **1b**.

In contrast, narcikachnine 2 exhibits the lower energy barrier at TS_1 (25.08 kcal/mol) and TS_2 (18.90 kcal/mol), indicating greater rotational flexibility. The energy profile shows that conformations 2a, 2b, and 2a' are all different. This suggests that the molecule undergoes significant structural changes throughout the rotation. The presence of distinct conformations implies that 2 can readily form different isomers, complicating the separation of 2a, 2b, and 2a' due to the potential for multiple states in a mixture. The moderate energy peaks at TS_1 and TS_2 suggest weaker intramolecular interactions, allowing 2 to transition between conformations with less resistance, which could lead to challenges in effectively isolating the individual conformers.

Galanthindole 7 presents an intermediate energy barrier, with TS_1 at 25.09 kcal/mol and TS_2 at 30.78 kcal/mol, reflecting a balance between flexibility and rigidity. The energy profile indicates that conformations (*S*)-7, (*R*)-7, and (*S*)-7' are all different, suggesting that 7 also forms distinct conformers. The energy peaks at TS_1 and TS_2 indicate that 7 experiences moderate steric hindrance during rotation. This intermediate behaviour may allow for the possibility of selectively separating the distinct conformers (*S*)-7, (*R*)-7, and (*S*)-7'.

The optimized coordinates of narcipavline **1** are given below:

Symbol	Χ	Y	Z
С	-2.89781	0.796643	3.056475
С	-1.66045	0.373727	2.567071
С	-1.55429	-0.37199	1.381697
С	-2.74091	-0.66236	0.706381
С	-3.97679	-0.32541	1.255258
С	-4.09163	0.445091	2.416405
С	-2.98611	-1.44975	-0.57387
С	-4.48668	-1.84004	-0.35798
0	-5.03437	-0.86401	0.573622
С	-2.85504	-0.58763	-1.86537
С	-4.05943	0.331565	-2.0975
С	-5.34764	-0.46497	-2.35409

С	-5.33458	-1.8298	-1.62079
С	-2.05777	-2.67809	-0.62029
0	-6.43183	0.37051	-1.94644
Н	-6.36272	-2.12508	-1.37602
С	-0.20414	-0.91725	0.951997
С	-0.59442	-2.37299	-1.00183
Ν	-0.04846	-1.1052	-0.4959
С	1.35158	-0.97234	-0.91654
С	1.902445	0.445947	-0.8318
С	1.012857	1.538786	-0.92762
С	1.543967	2.809872	-0.90048
С	2.912596	3.032169	-0.78812
С	3.805744	1.986406	-0.69817
С	3.289906	0.668091	-0.71439
С	4.270628	-0.46602	-0.68135
С	4.923231	-0.92174	0.485991
С	5.888996	-1.97481	0.441713
С	6.203161	-2.58306	-0.78438
С	5.562587	-2.14498	-1.93307
С	4.616314	-1.10509	-1.87536
Ν	4.80674	-0.52924	1.814195
С	5.670884	-1.29936	2.572936
С	6.346385	-2.18698	1.782327
0	0.882734	4.015996	-0.94846
С	1.907786	5.009122	-1.05457
0	3.163921	4.384954	-0.7621
Н	-5.43496	-0.67048	-3.43396
0	-5.29022	0.795008	2.981653
С	-6.21471	1.465007	2.116703
С	3.942129	0.494613	2.376415
Н	-7.25818	-0.08598	-2.16918
Н	-4.9408	-2.60544	-2.29184
Н	-4.5488	-2.82098	0.136493
Н	-5.81214	2.43748	1.802558
Н	-7.11786	1.623516	2.71056
Н	-6.45161	0.869457	1.230085
Н	-2.96504	1.38623	3.965976
Н	0.564562	-0.21079	1.279905
Н	0.003217	-1.86214	1.494408
Н	-0.51238	-2.32844	-2.09418
Н	0.024323	-3.23357	-0.67778
Н	-2.43363	-3.41151	-1.3484
Н	-2.09541	-3.17242	0.358185
Н	-0.05443	1.369276	-1.0037
Н	4.87409	2.160616	-0.62683
Н	1.927392	5.40875	-2.07877

Η	1.720094	5.805032	-0.32843
Н	4.141198	-0.76714	-2.79272
Η	5.793837	-2.59944	-2.89269
Η	6.937495	-3.38353	-0.82553
Н	5.725149	-1.14009	3.641703
Н	7.079045	-2.9102	2.11299
Η	4.032575	0.457018	3.464624
Н	2.897252	0.31873	2.106247
Н	4.22141	1.495148	2.032622
Н	-0.75853	0.63082	3.117999
Н	2.011204	-1.65768	-0.35606
Н	1.404238	-1.30678	-1.96127
Н	-1.93054	-0.0099	-1.81099
Н	-4.22526	0.963044	-1.21821
Η	-3.86891	1.008316	-2.93778
Η	-2.74865	-1.26468	-2.72728

The optimized coordinates of narcikachnine **2** are given below:

Symbol	Χ	Y	Ζ
С	-3.13232	0.496227	3.077696
С	-1.84839	0.150986	2.651179
С	-1.62889	-0.47921	1.415298
С	-2.75093	-0.73412	0.624631
С	-4.035	-0.48015	1.102828
С	-4.26213	0.175941	2.316493
С	-2.87294	-1.40514	-0.73729
С	-4.37209	-1.85132	-0.67533
0	-5.02012	-0.97915	0.293994
С	-2.67258	-0.42436	-1.93179
С	-3.88538	0.481212	-2.17427
С	-5.12392	-0.3212	-2.60115
С	-5.12182	-1.74687	-1.99455
С	-1.90454	-2.60022	-0.8226
0	-6.26276	0.445064	-2.20645
Н	-6.1554	-2.0897	-1.85868
С	-0.23457	-0.95122	1.044204
С	-0.42749	-2.22297	-1.06016
Ν	0.033455	-0.99397	-0.3994
С	1.454363	-0.77481	-0.69415
С	1.922553	0.666448	-0.52256
С	0.974388	1.708546	-0.45093
С	1.440613	3.004239	-0.37251
С	2.798808	3.297326	-0.37205
С	3.748954	2.300818	-0.44508

С	3.304012	0.959758	-0.51258
С	4.339713	-0.11174	-0.67773
С	4.698581	-1.06052	0.30154
С	5.640364	-2.06813	0.003388
С	6.270994	-2.12849	-1.22802
С	5.966335	-1.16308	-2.19521
С	5.013182	-0.18782	-1.91378
Ν	4.202656	-1.23021	1.611062
С	5.107452	-2.16636	2.306145
С	5.742241	-3.00593	1.184862
0	0.715658	4.169584	-0.26217
С	1.673531	5.226222	-0.38129
0	2.982472	4.657225	-0.25865
Н	-5.12267	-0.42874	-3.69865
0	-5.51108	0.441869	2.815126
С	-6.38711	1.16743	1.9448
С	3.798338	-0.09917	2.433399
Н	-7.05448	-0.01148	-2.53144
Н	-4.65323	-2.44706	-2.69961
Н	-4.43969	-2.87482	-0.27702
Н	-5.99181	2.174053	1.752647
Н	-7.33724	1.248991	2.47788
Н	-6.53776	0.651417	0.991909
Н	-3.28733	0.997403	4.028557
Н	0.488642	-0.26823	1.499394
Н	-0.04314	-1.9405	1.50707
Н	-0.266	-2.07426	-2.13416
Н	0.193266	-3.09392	-0.76879
Н	-2.20094	-3.27221	-1.64115
Н	-1.99947	-3.184	0.101247
Н	-0.08568	1.486178	-0.45967
Н	4.808998	2.530289	-0.44111
Н	1.57257	5.703658	-1.36688
Н	1.516429	5.952202	0.421511
Н	4.758942	0.547717	-2.67277
Н	6.457944	-1.17991	-3.16362
Н	6.998116	-2.91039	-1.43515
Н	5.88668	-1.60086	2.847957
Н	6.76559	-3.31443	1.42131
Н	3.381928	-0.48408	3.370387
Н	4.646138	0.563713	2.681441
Н	3.031652	0.4932	1.936239
Н	-0.99948	0.377898	3.29209
Н	2.091643	-1.44583	-0.09404
Н	1.619958	-1.06385	-1.74045
Н	-1.77376	0.168989	-1.75451

Н	-4.13782	1.025187	-1.25785
Η	-3.65383	1.236679	-2.93323
Η	-2.48014	-1.01663	-2.84003
Η	5.157697	-3.91881	1.002384
Η	4.551545	-2.75933	3.039837

The optimized coordinates of galanthindole **7** are given below:

Symbol	Χ	Y	Ζ
С	-0.40543	2.387644	1.409649
С	-1.06685	1.221206	0.706561
С	-2.46299	1.066357	0.873802
С	-3.09609	0.054387	0.185476
С	-2.38973	-0.80329	-0.65186
С	-1.02764	-0.68604	-0.82804
С	-0.34764	0.34406	-0.13317
С	1.124355	0.481779	-0.36184
С	2.072009	-0.50178	0.00792
С	3.448955	-0.38524	-0.35545
С	3.889563	0.737597	-1.07379
С	2.97287	1.724168	-1.40247
С	1.616908	1.593545	-1.05296
Ν	1.942732	-1.67332	0.74703
С	3.187581	-2.27527	0.830024
С	4.126286	-1.53302	0.170563
0	-4.42369	-0.30503	0.205806
С	-4.56112	-1.3085	-0.80738
0	-3.24802	-1.73098	-1.19413
С	0.770259	-2.17565	1.443477
Н	-0.48802	-1.35242	-1.49235
Н	-5.11248	-2.16124	-0.40182
Н	-5.07993	-0.88227	-1.67771
Н	0.917849	2.37758	-1.32327
Н	3.294935	2.607389	-1.9472
Н	4.935704	0.831107	-1.35426
Н	3.292952	-3.20343	1.375903
Н	5.178658	-1.76465	0.080455
Н	1.094913	-2.94496	2.148454
Н	0.037604	-2.61263	0.757249
Н	0.280436	-1.37472	2.003326
Н	0.642372	2.173065	1.626828
Н	-0.92016	2.577914	2.36455
0	-0.38638	3.577879	0.612583
Н	-1.29687	3.734866	0.315488
Н	-3.02027	1.720946	1.538067

Vibrational frequencies of narcipavline 1-TS1:

1	-19.26	37	383.53	73	795.19	109	1122.08	145	1381.98	181	1669.53
2	18.83	38	391.50	74	811.82	110	1133.55	146	1386.72	182	1684.23
3	21.97	39	397.14	75	816.10	111	1140.10	147	1394.45	183	2911.44
4	36.92	40	409.69	76	822.00	112	1152.41	148	1397.17	184	2917.23
5	53.05	41	421.77	77	824.81	113	1155.78	149	1403.13	185	2972.23
6	54.62	42	434.22	78	858.29	114	1160.26	150	1405.75	186	3009.35
7	58.24	43	445.46	79	862.02	115	1160.62	151	1412.67	187	3011.46
8	64.36	44	455.96	80	877.29	116	1173.39	152	1419.68	188	3022.13
9	81.57	45	480.87	81	880.50	117	1176.82	153	1425.05	189	3027.41
10	91.21	46	502.22	82	886.75	118	1182.35	154	1436.64	190	3032.14
11	106.71	47	511.21	83	889.50	119	1185.56	155	1450.54	191	3034.23
12	112.23	48	517.38	84	910.40	120	1188.08	156	1451.64	192	3038.30
13	118.42	49	533.07	85	912.43	121	1200.83	157	1453.92	193	3043.78
14	128.74	50	537.87	86	926.86	122	1203.68	158	1473.22	194	3052.46
15	140.85	51	558.89	87	932.05	123	1214.33	159	1479.19	195	3068.60
16	159.18	52	571.72	88	937.79	124	1228.52	160	1497.45	196	3076.24
17	165.03	53	580.58	89	956.71	125	1238.62	161	1498.28	197	3079.66
18	167.83	54	591.41	90	962.78	126	1242.13	162	1511.21	198	3094.44
19	185.37	55	597.05	91	968.46	127	1247.22	163	1516.40	199	3110.85
20	194.28	56	605.23	92	979.26	128	1251.84	164	1518.20	200	3113.79
21	211.90	57	615.17	93	980.74	129	1260.84	165	1520.37	201	3115.62
22	215.00	58	624.58	94	987.25	130	1266.05	166	1521.86	202	3116.76
23	224.79	59	640.40	95	1003.12	131	1268.42	167	1526.76	203	3138.28
24	248.58	60	647.96	96	1005.95	132	1282.78	168	1529.70	204	3155.64
25	252.97	61	662.76	97	1008.40	133	1287.36	169	1533.46	205	3177.90
26	261.41	62	677.91	98	1023.94	134	1291.48	170	1542.35	206	3187.64
27	270.31	63	688.05	99	1044.92	135	1294.82	171	1542.65	207	3201.78
28	276.50	64	721.01	100	1050.95	136	1305.96	172	1545.65	208	3204.66
29	296.78	65	730.72	101	1061.24	137	1315.42	173	1552.27	209	3209.27
30	300.96	66	736.07	102	1069.23	138	1316.95	174	1574.40	210	3214.96
31	307.62	67	739.04	103	1076.78	139	1343.21	175	1576.24	211	3225.45
32	321.65	68	753.38	104	1091.36	140	1346.75	176	1586.61	212	3235.78
33	333.24	69	765.98	105	1096.04	141	1354.21	177	1630.19	213	3242.82

34	341.69	70	772.58	106	1101.58	142	1354.75	178	1637.67	214	3264.14
35	357.00	71	775.59	107	1109.18	143	1362.47	179	1638.86	215	3270.96
36	359.98	72	778.45	108	1113.98	144	1381.12	180	1667.79	216	3735.97

Vibrational frequencies of 1-TS2:

1	-	37	366.59	73	785.46	109	1128.25	145	1387.52	181	1667.82
	332.27										
2	10.23	38	389.92	74	813.71	110	1137.16	146	1393.74	182	1669.81
3	17.06	39	392.95	75	816.74	111	1152.82	147	1397.07	183	2915.22
4	23.03	40	403.99	76	822.36	112	1155.68	148	1399.89	184	2926.96
5	24.45	41	429.03	77	826.14	113	1156.19	149	1408.69	185	2974.28
6	39.98	42	435.96	78	845.13	114	1157.70	150	1416.63	186	2993.45
7	54.88	43	456.46	79	856.17	115	1165.88	151	1418.95	187	3012.03
8	56.91	44	460.08	80	868.51	116	1180.59	152	1422.13	188	3016.47
9	62.66	45	474.48	81	880.77	117	1184.22	153	1436.68	189	3024.82
10	70.94	46	509.53	82	882.12	118	1187.85	154	1442.92	190	3029.65
11	85.13	47	511.78	83	897.78	119	1192.12	155	1453.78	191	3034.51
12	89.96	48	518.42	84	903.16	120	1206.67	156	1459.91	192	3041.79
13	95.93	49	538.53	85	912.73	121	1207.29	157	1468.51	193	3046.04
14	112.36	50	541.91	86	926.30	122	1215.04	158	1473.31	194	3060.79
15	118.73	51	560.33	87	930.84	123	1232.97	159	1497.77	195	3066.93
16	128.21	52	570.18	88	936.86	124	1235.69	160	1497.90	196	3067.55
17	151.03	53	575.21	89	950.53	125	1241.28	161	1508.55	197	3074.30
18	157.42	54	582.17	90	954.78	126	1242.67	162	1509.24	198	3080.75
19	167.19	55	588.25	91	963.78	127	1248.62	163	1510.50	199	3092.79
20	179.04	56	595.30	92	973.81	128	1256.78	164	1514.64	200	3111.22
21	194.31	57	608.40	93	976.91	129	1263.26	165	1520.97	201	3112.31
22	213.66	58	625.10	94	990.26	130	1273.70	166	1521.48	202	3116.83
23	221.39	59	640.84	95	1007.12	131	1283.59	167	1528.04	203	3131.67
24	223.80	60	650.23	96	1011.95	132	1289.83	168	1529.49	204	3136.69
25	227.78	61	674.94	97	1032.78	133	1293.30	169	1532.21	205	3151.30
26	234.88	62	676.89	98	1033.24	134	1306.06	170	1538.67	206	3153.57
27	255.25	63	700.10	99	1049.44	135	1315.39	171	1539.56	207	3177.43
28	262.65	64	723.44	100	1059.16	136	1325.19	172	1541.40	208	3178.95
29	272.12	65	727.37	101	1061.66	137	1343.82	173	1543.38	209	3189.11
30	281.59	66	728.15	102	1072.39	138	1343.97	174	1552.28	210	3203.85

31	290.52	67	730.22	103	1073.25	139	1348.85	175	1574.82	211	3209.92
32	315.35	68	737.71	104	1087.92	140	1356.81	176	1577.56	212	3221.12
33	316.19	69	740.91	105	1089.27	141	1358.66	177	1632.08	213	3241.64
34	321.28	70	764.19	106	1100.38	142	1367.90	178	1637.06	214	3252.88
35	344.76	71	775.10	107	1109.62	143	1379.58	179	1649.99	215	3272.26
36	348.16	72	777.93	108	1118.19	144	1382.72	180	1662.50	216	3776.47

Vibrational frequencies of 2-TS1:

1	-	38	365.30	75	816.24	112	1152.10	149	1394.00	186	1670.15
	329.47										
2	9.26	39	386.83	76	823.63	113	1153.59	150	1397.16	187	2914.29
3	16.95	40	393.17	77	836.86	114	1156.61	151	1400.08	188	2922.59
4	21.13	41	403.26	78	860.29	115	1166.43	152	1411.83	189	2956.02
5	25.43	42	428.57	79	869.95	116	1181.60	153	1417.40	190	2965.15
6	43.60	43	435.02	80	877.30	117	1184.35	154	1419.16	191	2992.08
7	52.85	44	452.38	81	881.97	118	1187.35	155	1422.14	192	2995.67
8	57.85	45	459.36	82	888.25	119	1192.08	156	1437.72	193	3011.98
9	62.75	46	469.46	83	908.77	120	1195.60	157	1443.08	194	3015.50
10	69.43	47	488.23	84	912.29	121	1205.20	158	1453.91	195	3028.17
11	77.23	48	511.89	85	916.12	122	1206.58	159	1461.23	196	3029.01
12	89.92	49	521.44	86	929.07	123	1212.58	160	1466.48	197	3030.76
13	102.39	50	538.00	87	934.69	124	1228.15	161	1474.06	198	3032.58
14	107.81	51	540.65	88	947.72	125	1231.79	162	1495.14	199	3033.87
15	117.48	52	561.76	89	950.67	126	1235.11	163	1497.80	200	3041.15
16	139.91	53	566.40	90	963.66	127	1236.64	164	1508.56	201	3056.84
17	146.76	54	569.95	91	974.34	128	1241.42	165	1511.15	202	3067.06
18	158.28	55	579.98	92	977.27	129	1243.69	166	1513.44	203	3073.81
19	167.11	56	580.35	93	978.76	130	1257.03	167	1516.97	204	3079.06
20	181.06	57	591.07	94	990.52	131	1263.06	168	1519.10	205	3089.30
21	187.28	58	608.58	95	1007.54	132	1268.19	169	1520.97	206	3093.59
22	204.51	59	626.50	96	1012.42	133	1278.64	170	1523.21	207	3097.31
23	207.42	60	639.88	97	1019.29	134	1287.12	171	1525.71	208	3101.39
24	221.71	61	649.08	98	1029.69	135	1289.74	172	1527.41	209	3110.62
25	230.25	62	665.16	99	1044.63	136	1290.72	173	1531.65	210	3111.37
26	239.83	63	683.14	100	1052.58	137	1305.55	174	1532.71	211	3111.96

27	246.77	64	692.86	101	1061.65	138	1307.88	175	1535.12	212	3136.87
28	264.42	65	727.23	102	1071.28	139	1315.18	176	1539.66	213	3152.84
29	265.01	66	731.52	103	1073.62	140	1324.72	177	1543.17	214	3177.74
30	278.82	67	735.15	104	1085.02	141	1330.28	178	1552.35	215	3178.83
31	289.46	68	740.77	105	1088.85	142	1343.56	179	1552.40	216	3179.91
32	295.09	69	755.22	106	1089.62	143	1348.28	180	1575.75	217	3184.42
33	317.15	70	773.95	107	1100.65	144	1356.66	181	1635.55	218	3206.32
34	323.18	71	775.25	108	1109.53	145	1365.12	182	1637.50	219	3209.58
35	341.39	72	777.51	109	1122.78	146	1368.29	183	1659.92	220	3225.82
36	343.90	73	792.49	110	1134.92	147	1382.98	184	1663.92	221	3238.33
37	352.02	74	795.24	111	1141.32	148	1391.53	185	1668.95	222	3776.13

Vibrational frequencies of 2-TS2:

1	-23.71	38	387.65	75	816.91	112	1152.81	149	1382.86	186	1679.21
2	17.73	39	397.52	76	822.80	113	1156.28	150	1394.25	187	2916.11
3	21.67	40	398.44	77	834.78	114	1159.11	151	1396.99	188	2919.58
4	33.82	41	404.71	78	857.99	115	1162.70	152	1399.89	189	2972.10
5	52.41	42	415.46	79	865.71	116	1167.79	153	1404.07	190	2972.40
6	53.96	43	436.18	80	880.08	117	1175.50	154	1419.25	191	2994.28
7	63.29	44	450.10	81	890.59	118	1182.76	155	1420.96	192	3009.50
8	76.42	45	455.93	82	904.96	119	1185.52	156	1430.72	193	3010.27
9	78.66	46	467.37	83	911.90	120	1187.76	157	1448.93	194	3026.17
10	93.02	47	500.91	84	914.62	121	1202.83	158	1451.00	195	3029.09
11	108.57	48	515.84	85	928.39	122	1209.56	159	1453.27	196	3034.64
12	114.14	49	530.87	86	935.85	123	1212.50	160	1468.11	197	3034.99
13	117.89	50	537.39	87	951.26	124	1217.24	161	1474.26	198	3044.14
14	129.39	51	545.85	88	955.35	125	1231.66	162	1482.46	199	3047.26
15	139.09	52	549.63	89	957.21	126	1234.81	163	1497.71	200	3057.12
16	146.47	53	566.20	90	968.53	127	1239.05	164	1498.58	201	3060.89
17	163.28	54	573.64	91	971.78	128	1246.00	165	1512.50	202	3069.21
18	168.13	55	575.61	92	980.64	129	1250.32	166	1512.92	203	3079.30
19	182.92	56	584.62	93	982.32	130	1253.03	167	1516.62	204	3081.30

20	193.89	57	606.17	94	989.54	131	1263.03	168	1520.36	205	3094.04
21	207.91	58	612.22	95	992.06	132	1266.47	169	1520.71	206	3098.20
22	215.40	59	627.85	96	1005.04	133	1281.92	170	1524.17	207	3102.65
23	224.21	60	649.88	97	1015.75	134	1284.00	171	1527.44	208	3106.86
24	227.86	61	660.65	98	1024.94	135	1287.43	172	1530.87	209	3110.78
25	228.81	62	676.32	99	1042.21	136	1293.14	173	1532.17	210	3117.21
26	258.39	63	686.69	100	1048.19	137	1306.88	174	1534.00	211	3125.69
27	267.30	64	696.36	101	1056.22	138	1312.30	175	1536.67	212	3140.29
28	274.98	65	709.69	102	1062.01	139	1316.67	176	1542.68	213	3146.50
29	292.94	66	730.17	103	1072.44	140	1327.49	177	1544.41	214	3155.99
30	299.38	67	738.53	104	1076.73	141	1330.32	178	1550.48	215	3179.55
31	307.30	68	739.89	105	1096.68	142	1338.08	179	1552.87	216	3181.69
32	310.25	69	761.03	106	1099.72	143	1346.97	180	1577.17	217	3199.20
33	321.04	70	773.30	107	1101.29	144	1354.40	181	1624.03	218	3210.10
34	347.53	71	779.00	108	1113.05	145	1357.80	182	1637.32	219	3246.21
35	356.51	72	780.23	109	1114.37	146	1362.64	183	1646.89	220	3254.32
36	357.70	73	787.04	110	1123.15	147	1364.52	184	1664.64	221	3353.48
37	379.14	74	798.20	111	1135.37	148	1379.10	185	1669.68	222	3735.93

Vibrational frequencies of 7-TS1:

1	-68.30	18	377.60	35	763.60	52	1098.67	69	1363.83	86	1665.62
2	49.01	19	382.88	36	770.63	53	1116.23	70	1391.67	87	1678.73
3	66.41	20	432.71	37	805.72	54	1122.31	71	1400.34	88	3009.31
4	73.24	21	469.77	38	818.17	55	1145.26	72	1422.49	89	3030.15
5	98.21	22	494.43	39	825.46	56	1152.19	73	1443.75	90	3053.03
6	104.55	23	539.07	40	860.06	57	1157.39	74	1449.74	91	3080.35
7	136.43	24	551.15	41	869.40	58	1182.91	75	1467.20	92	3110.23
8	181.88	25	586.15	42	877.00	59	1203.99	76	1487.80	93	3114.87
9	195.02	26	597.75	43	909.98	60	1213.32	77	1525.58	94	3172.82
10	220.68	27	621.74	44	919.34	61	1218.16	78	1535.21	95	3187.68
11	244.23	28	630.82	45	962.37	62	1227.76	79	1544.71	96	3205.53
12	254.15	29	676.47	46	968.16	63	1249.37	80	1552.40	97	3211.99
13	266.56	30	691.24	47	998.93	64	1279.79	81	1564.35	98	3246.38
14	277.73	31	724.62	48	1017.49	65	1285.56	82	1577.27	99	3267.98

15	285.80	32	735.63	49	1041.71	66	1302.81	83	1580.96	100	3289.31
16	336.28	33	738.48	50	1071.56	67	1312.87	84	1631.29	101	3400.51
17	361.41	34	742.68	51	1091.54	68	1353.63	85	1646.52	102	3742.94

Vibrational frequencies of 7-TS2:

1	-38.07	18	387.56	35	773.64	55	1142.06	69	1365.37	86	1666.83
2	57.49	19	407.09	36	789.77	56	1151.32	70	1384.36	87	1682.30
3	72.09	20	452.01	37	812.09	57	1171.81	71	1397.98	88	3015.63
4	100.58	21	485.27	38	824.10	58	1176.75	72	1426.03	89	3034.69
5	122.49	22	505.61	39	862.16	59	1188.60	73	1437.33	90	3041.31
6	143.37	23	516.17	40	871.93	60	1199.03	74	1446.58	91	3116.18
7	156.75	24	569.66	41	882.67	61	1209.77	75	1452.95	92	3121.39
8	172.63	25	586.47	42	888.91	62	1218.50	76	1487.59	93	3187.18
9	184.79	26	600.69	43	908.01	63	1253.55	77	1519.05	94	3198.86
10	209.41	27	617.61	44	936.97	64	1265.06	78	1526.87	95	3204.48
11	241.51	28	644.97	45	964.76	65	1289.61	79	1549.91	96	3220.30
12	268.87	29	667.44	46	973.34	66	1298.54	80	1555.03	97	3224.84
13	283.48	30	687.45	47	997.38	67	1311.18	81	1576.78	98	3231.91
14	290.11	31	730.19	48	1010.14	68	1359.80	82	1582.92	99	3244.84
15	329.67	32	735.38	49	1025.55	55	1142.06	83	1583.27	100	3265.88
16	350.33	33	749.30	50	1050.52	56	1151.32	84	1630.59	101	3281.55
17	356.82	34	760.04	51	1077.25	57	1171.81	85	1639.53	102	3728.77

HRMS data of 17

 ^{13}C { 1H } NMR (126 MHz, CDCl₃) of 7

HRMS data of 7

HPLC data of (\pm) -7

HPLC data of (\pm) -7 for (S)-CBS at room temperature

HPLC data of (±)-7 for (*S*)-CBS at 0 °C

HRMS data of SI-5

 ^{13}C { $^{1}H} NMR$ (100 MHz, CDCl₃) of compound (±)-12

 ^{13}C { $^{1}H} NMR$ (126 MHz, CDCl₃) of compound SI-3

HRMS data of (+)-SI-4

Peak Summary with Statistics Name:

	invite.									
	Sample Name	Vial	Inj	Retention Time (min)	Area	% Area	Height			
1	AB_AYA_02110_RAC_IC3_15_1	1	1	20.116	21083777	50.00	862683			
2	AB_AYA_02110_RAC_IC3_15_1	1	1	16.789	21087326	50.00	1032817			
Mean				18.452						
Std. Dev.				2.353						

HPLC data of (\pm) -SI-4

Name.								
	Sample Name	Vial	Inj	Retention Time (min)	Area	% Area	Height	
1	AB-SP-02CBSN-IC-3-15-01-CHI	1:A,1	1	18.118	7813233	97.87	342538	
2	AB-SP-02CBSN-IC-3-15-01-CHI	1:A,1	1	15.760	170364	2.13	10787	
Mean				16.939				
Std. Dev.				1.667				

Reported by User: System Report Method: Peak Summary Report Report Method ID: 2585 Page: 1 of 2

Project Name: AB Research Group Date Printed: 16-09-2024 21:38:10 Asia/Kolkata

HPLC data of (+)-SI-4

Sample Name: AB-SP_02227R_OD-H_10_01_RAC; Date Acquired: 26-12-2023 14:14:44 IST; Vial: 1 Injection: 1

Peak	Summar	y with	Statistics		
Namo					

inalle.								
	Sample Name	Vial	Inj	Retention Time (min)	Area	% Area	Height	
1	AB-SP_02227R_OD-H_10_01_RAC	1	1	8.241	17523849	50.11	1311456	
2	AB-SP_02227R_OD-H_10_01_RAC	1	1	9.085	17446580	49.89	917490	
Mean				8.663				
Std. Dev.				0.597				

Reported by User: System Report Method: Peak Summary Report Report Method ID7327 Page: 1 of 2 Project Name: AB Research Group Date Printed: 26-12-2023 14:47:02 Asia/Calcutta

HPLC data of (\pm) -14

Name:								
	Sample Name	Vial	Inj	Retention Time (min)	Area	% Area	Height	
1	AB-SP-02382-OD-H-10-01-CHI	1:A,1	1	12.995	27622810	96.57	1147588	
2	AB-SP-02382-OD-H-10-01-CHI	1:A,1	1	11.843	981782	3.43	76780	
Mean				12.419				
Std. Dev.				0.815				

Reported by User: System Report Method: Peak Summary Report Report Method ID: 2585 Page: 1 of 2 Project Name: AB Research Group Date Printed: 06-10-2024 11:07:22 Asia/Kolkata

HPLC data of (-)-14 of optimized condition (entry 5).

HPLC data of (-)-14 of reaction condition of entry 8

Sample Name: AB-SP-02MITDEPBU-OD-H-30-01; Date Acquired: 23-09-2024 22:46:12 IST; Vial: 1:A,1; Injection: 1

iname.								
	Sample Name	Vial	Inj	Retention Time (min)	Area	% Area	Height	
1	AB-SP-02MITDEPBU-OD-H-30-01	1:A,1	1	11.631	32979747	95.41	1535098	
2	AB-SP-02MITDEPBU-OD-H-30-01	1:A,1	1	10.641	1587898	4.59	122178	
Mean				11.136				
Std. Dev.				0.700				

Peak Summary with Statistics

>			

Peak	Summary with	Statistics				
Nome						

	iname:								
	Sample Name	Vial	Inj	Retention Time (min)	Area	% Area	Height		
1	AB_SP_02382_OD-H_10_01_CHI	1	2	9.010	32723637	94.38	1678628		
2	AB_SP_02382_OD-H_10_01_CHI	1	2	8.311	1949747	5.62	195672		
Mean				8.660					
Std. Dev.				0.494					

HPLC data of	(-)-14 of reaction	on condition	of entry 9
--------------	--------------------	--------------	------------

HRMS data of (-)-13

HRMS data of 10a

HRMS data of 10b

MeO

HO

Н

HRMS data of (-)-8

HRMS data of (-)-18

¹³C {¹H} NMR (126 MHz, CDCl₃) of (-)-**11**

HRMS data of (-)-11

HRMS data of (-)-20

HRMS data of (-)-6a

S114

HRMS data of (-)-23

HRMS data of (-)-24

S117

HRMS data of (-)-25

HRMS data of dehydro-Narcipavline (-)-26

VT experiment spectrum of dehydronarcipavline [**26**] at 298k, 308k, 318k, 328k, 338k, 348k, 358k, 368k, 378k, 388k, 398k in DMSO-d₆ solvent (500 MHz)

¹³C {¹H} NMR (126 MHz, CDCl₃) of (-)-dehydro narcipavline (26b) after 24 h of recording the ¹H NMR (500 MHz, CDCl₃) [Racemic crystal]

¹H NMR spectra of (±)-dehydro narcipavline (**26b**) after 24 h in CDCl₃ showed ~1:1 diastereomeric mixtures

Name:									
	Sample Name	Vial	Inj	Retention Time (min)	Area	% Area	Height		
1	AB-SP-02DEHNPV-OD-H-30-01-RAC1	1:A,1	1	15.154	38594942	26.31	656546		
2	AB-SP-02DEHNPV-OD-H-30-01-RAC1	1:A,1	1	29.206	32092897	21.88	242586		
3	AB-SP-02DEHNPV-OD-H-30-01-RAC1	1:A,1	1	25.038	37554722	25.60	379346		
4	AB-SP-02DEHNPV-OD-H-30-01-RAC1	1:A,1	1	19.715	38440678	26.21	515965		

Reported by User: System Report Method: Peak Summary Report Report Method ID: 2585 Page: 1 of 2 Project Name: AB Research Group Date Printed: 05-10-2024 16:10:28 Asia/Kolkata

Sample Name: AB-SP-02dhnpv_OD-H-30-01-CHI_RE; Date Acquired: 07-10-2024 18:31:31 IST; Vial: 1:A,1; Injection: 1

Name:										
	Sample Name	Vial	Inj	Retention Time (min)	Area	% Area	Height			
1	AB-SP-02dhnpv_OD-H-30-01-CHI_RE	1:A,1	1	14.370	75012959	49.46	1227625			
2	AB-SP-02dhnpv_OD-H-30-01-CHI_RE	1:A,1	1	29.402	982372	0.65	8619			
3	AB-SP-02dhnpv_OD-H-30-01-CHI_RE	1:A,1	1	23.586	72394760	47.73	642156			
4	AB-SP-02dhnpv_OD-H-30-01-CHI_RE	1:A,1	1	18.857	3283296	2.16	36603			

Peak Summary with Statistics

Reported by User: System Report Method: Peak Summary Report Report Method ID: 2585 Page: 1 of 2 Project Name: AB Research Group Date Printed: 07-10-2024 19:15:43 Asia/Kolkata

S126

Name:									
	Sample Name	Vial	Inj	Retention Time (min)	Area	% Area	Height		
1	AB-SP-02dhnpv_OD-H-30-01-CHI_RE	1:A,1	1	18.858	2896381	3.73	34807		
2	AB-SP-02dhnpv_OD-H-30-01-CHI_RE	1:A,1	1	14.370	74739034	96.27	1226782		
Mean				16.614					
Std. Dev.				3.173					

HPLC data of (-)-26 (diastereomeric mixtures) which shows the enantiopurity (93% ee) of the atropodiastreomer

HRMS data of (–)-Narcipavline (1)

Sample Name: AB_SP_NPV_OD-H_40_01_DR_CHI; Date Acquired: 18-05-2024 19:48:10 IST; Vial: 1 Injection: 2

Name:										
	Sample Name	Vial	Inj	Retention Time (min)	Area	% Area	Height			
1	AB_SP_NPV_OD-H_40_01_DR_CHI	1	2	11.579	122629	48.69	5686			
2	AB_SP_NPV_OD-H_40_01_DR_CHI	1	2	20.023	3205	1.27	155			
3	AB_SP_NPV_OD-H_40_01_DR_CHI	1	2	14.898	122419	48.60	4238			
4	AB_SP_NPV_OD-H_40_01_DR_CHI	1	2	12.634	3623	1.44	210			

Peak Summary with Statistics

Reported by User: System Report Method: Peak Summary Report Report Method ID7327 Page: 1 of 2 Project Name: AB Research Group Date Printed: 07-10-2024 23:29:54 Asia/Calcutta

HPLC data of (–)-narcipavline (1)

¹H NMR (500 MHz, CD₃OD) of (–)-narcikachnine (1:1 dr of 2a and 2b)

¹³C {¹H} NMR (126 MHz, CD₃OD) of (-)-narcikachnine (1:1 dr of **2a** and **2b**)

5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 f1 (ppm)

VT experiment spectrum of Narcikachnine [(-)-2] at 298k, 303k, 313k, 323k, 333k, in DMSO-d₆ solvent (500 MHz) [zoomed 1.5-5.0 ppm]

VT experiment spectrum of Narcikachnine [(-)-2] at 298k, 303k, 313k, 323k, 333k, in DMSO-d₆ solvent (500 MHz)

¹H NMR of (-)-narcikachnine at 298 k after VT experiment cooling back to RT

SCXRD Data of 20

Crystal Data and Structure Refinement of 20 (CCDC 2333542):

A colorless block $0.01 \times 0.02 \times 0.04$ mm in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100.15 K using omega scans. Crystal-to detector distance was 42 mm and exposure time was 0.50 seconds per frame at low angles and 2.00 seconds at high angles, using a scan width of 0.5° . The 2 Θ range for data collection /° 7.252 to 136.454. A total of 20564 reflections were collected covering the indices $-11 \le h \le 9$, $-18 \le k \le 18$, $-11 \le 1 \le 11$. 2597 reflections were founded to be symmetry independent, with an Rint of 0.0585. Indexing and unit cell refinement indicated a primitive, monoclinic lattice.

The space group was found to be P 1 21/n 1 CrysAlisPro 1.171.41.115a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. Solution by intrinsic phasing (SHELXT-2018/2) produced a heavy-atom phasing model consistent with the proposed structure. All nonhydrogen atoms were refined anisotropically by least-squares (SHELXL-2018/3). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2018/3.

ORTEP Diagram of 20

Table 1 Crystal data and structure	refinement for AB_AYA_SP02261BR_auto.
Identification code	AB_AYA_SP02261BR_auto
Empirical formula	C ₁₇ H ₁₉ NO ₄

Formula weight	301.33
Temperature/K	100.01(15)
Crystal system	monoclinic
Space group	P21/n
a/Å	9.7354(2)
b/Å	15.3138(2)
c/Å	9.9359(2)
α/°	90
β/°	105.393(2)
γ/°	90
Volume/Å ³	1428.17(5)
Z	4
$\rho_{calc}g/cm^3$	1.401
µ/mm ⁻¹	0.821
F(000)	640.0
Crystal size/mm ³	0.04 imes 0.02 imes 0.01
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	10.894 to 136.478
Index ranges	$-11 \le h \le 9, -18 \le k \le 18, -11 \le 1 \le 11$
Reflections collected	20564
Independent reflections	2597 [$R_{int} = 0.0585$, $R_{sigma} = 0.0270$]
Data/restraints/parameters	2597/0/202
Goodness-of-fit on F ²	1.057
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0376, wR_2 = 0.0999$
Final R indexes [all data]	$R_1 = 0.0408, wR_2 = 0.1028$
Largest diff. peak/hole / e Å ⁻³	0.24/-0.27

Table 2 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for AB_AYA_SP02261BR_auto. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z	U(eq)
03	5322.1(10)	8290.0(6)	3304.9(9)	18.5(2)
O4	5004.7(10)	8232.5(6)	6006.8(10)	22.0(2)
O2	3650.0(11)	5863.7(6)	-1258.9(10)	23.5(2)
01	4014.4(11)	9713.4(6)	1574.5(10)	25.3(3)
N1	3382.6(12)	5420.0(7)	841.6(12)	20.1(3)
C11	4443.7(14)	6892.8(9)	2890.5(13)	17.6(3)
C12	4764.8(14)	7576.1(9)	3824.2(14)	17.9(3)
C16	3908.1(14)	6005.2(9)	4636.1(14)	19.4(3)
C15	4183.8(14)	6705.7(9)	5571.9(14)	19.9(3)

of the	of the orthogonalised U _{IJ} tensor.								
Atom	x	у	Z	U(eq)					
C5	4701.7(14)	7202.6(9)	1529.9(13)	17.2(3)					
C10	4046.6(14)	6077.8(9)	3277.0(14)	18.1(3)					
C7	4055.9(14)	5871.1(8)	28.8(14)	19.0(3)					
C4	3304.8(14)	7577.0(9)	638.4(13)	17.8(3)					
C6	5278.5(14)	6465.3(9)	772.9(14)	19.3(3)					
C1	5743.7(14)	8684.5(9)	1085.4(14)	20.1(3)					
C3	3112.2(14)	8409.3(9)	258.6(14)	19.9(3)					
C14	4634.5(14)	7508.7(9)	5181.4(14)	18.6(3)					
C13	5764.1(14)	7946.9(9)	2093.9(13)	17.7(3)					
C9	3981.2(15)	5285.5(9)	2354.4(14)	20.6(3)					
C2	4265.1(15)	9089.7(9)	574.1(14)	20.8(3)					
C8	2067.4(15)	4950.3(10)	195.9(15)	24.6(3)					
C17	5211.1(18)	8115.3(10)	7470.6(15)	28.8(4)					

Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic DisplacementParameters (Ų×103) for AB_AYA_SP02261BR_auto. Ueq is defined as 1/3 of the traceof the orthogonalised UIJ tensor.

Table 3 Anisotropic Displacement Parameters (Å ² ×10 ³) for
AB_AYA_SP02261BR_auto. The Anisotropic displacement factor exponent takes the
form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+]$.

101 1110].			
Atom	U ₁₁	U_{22}	U33	U23	U 13	U12
O3	21.9(5)	20.2(5)	14.4(5)	0.0(4)	6.6(4)	-1.8(4)
O4	29.7(5)	22.1(5)	15.0(5)	-1.9(4)	7.1(4)	-1.5(4)
O2	27.4(5)	27.0(5)	16.2(5)	-1.6(4)	5.9(4)	2.6(4)
01	29.2(6)	21.6(5)	25.1(5)	-1.9(4)	7.2(4)	1.6(4)
N1	21.4(6)	21.6(6)	16.4(6)	-1.1(4)	3.5(5)	-0.4(5)
C11	14.4(6)	22.9(7)	15.2(6)	1.0(5)	3.6(5)	2.0(5)
C12	16.5(6)	19.7(6)	17.7(6)	2.5(5)	4.6(5)	0.8(5)
C16	18.5(7)	21.1(7)	19.1(7)	3.1(5)	5.8(5)	-0.2(5)
C15	20.2(7)	25.6(7)	15.0(6)	2.2(5)	6.5(5)	1.2(5)
C5	17.1(6)	20.0(6)	14.6(6)	0.9(5)	4.6(5)	0.0(5)
C10	15.3(6)	21.1(7)	17.5(7)	0.6(5)	3.7(5)	0.9(5)
C7	21.3(7)	19.0(7)	17.5(7)	-1.0(5)	6.4(5)	5.0(5)
C4	16.5(7)	23.5(7)	13.3(6)	-1.7(5)	3.7(5)	-0.7(5)
C6	19.9(7)	22.3(7)	16.7(6)	0.5(5)	6.7(5)	1.2(5)
C1	21.7(7)	23.1(7)	16.4(6)	0.7(5)	6.8(5)	-3.4(5)
C3	17.7(7)	24.0(7)	17.4(7)	0.3(5)	3.4(5)	1.1(5)
C14	18.3(7)	20.9(7)	16.6(6)	-2.1(5)	4.8(5)	1.4(5)
C13	17.3(6)	22.1(7)	14.6(6)	-1.2(5)	5.6(5)	-0.4(5)
C9	24.5(7)	20.3(7)	17.0(7)	2.1(5)	5.2(5)	0.2(5)
C2	24.0(7)	20.6(7)	18.0(7)	1.3(5)	5.7(5)	-0.8(5)

Table 3 Anisotropic Displacement Parameters $(Å^2 \times 10^3)$ for AB_AYA_SP02261BR_auto. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+]$.							
Atom	U 11	U22	U 33	U23	U 13	U12	
C8	22.9(7)	26.5(7)	23.3(7)	-2.6(6)	4.3(6)	-3.4(6)	
C17	42.7(9)	29.9(8)	15.6(7)	-3.1(6)	10.9(6)	-6.6(7)	

Table	Table 4 Bond Lengths for AB_AYA_SP02261BR_auto.							
Atom	Atom	Length/Å		Atom	Atom	Length/Å		
03	C12	1.3799(16)		C16	C15	1.3982(19)		
03	C13	1.4778(15)		C16	C10	1.3967(19)		
04	C14	1.3691(16)		C15	C14	1.3947(19)		
O4	C17	1.4257(16)		C5	C4	1.5242(17)		
O2	C7	1.2349(16)		C5	C6	1.5428(18)		
01	C2	1.4452(16)		C5	C13	1.5412(18)		
N1	C7	1.3565(18)		C10	C9	1.5118(18)		
N1	C9	1.4752(17)		C7	C6	1.5246(19)		
N1	C8	1.4603(18)		C4	C3	1.3283(19)		
C11	C12	1.3781(19)		C1	C13	1.5065(18)		
C11	C5	1.5152(18)		C1	C2	1.5255(19)		
C11	C10	1.3905(19)		C3	C2	1.5023(19)		
C12	C14	1.3915(19)						

Table 5 Bond Angles for AB_AYA_SP02261BR_auto.									
Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°	
C12	O3	C13	104.55(9)		C11	C10	C9	121.53(12)	
C14	O4	C17	116.91(11)		C16	C10	C9	121.54(12)	
C7	N1	C9	123.72(11)		O2	C7	N1	122.68(13)	
C7	N1	C8	119.68(11)		O2	C7	C6	120.13(12)	
C8	N1	C9	116.23(11)		N1	C7	C6	116.98(11)	
C12	C11	C5	107.53(11)		C3	C4	C5	124.25(12)	
C12	C11	C10	121.71(12)		C7	C6	C5	109.57(11)	
C10	C11	C5	130.66(12)		C13	C1	C2	111.79(11)	
O3	C12	C14	124.56(12)		C4	C3	C2	124.40(12)	
C11	C12	O3	113.03(11)		O4	C14	C12	116.31(12)	
C11	C12	C14	122.23(12)		O4	C14	C15	126.83(12)	
C10	C16	C15	122.08(13)		C12	C14	C15	116.83(12)	
C14	C15	C16	120.69(12)		O3	C13	C5	104.27(10)	
C11	C5	C4	107.62(10)		O3	C13	C1	108.65(10)	
C11	C5	C6	111.95(11)		C1	C13	C5	115.06(11)	

Table 5 Bond Angles for AB_AYA_SP02261BR_auto.									
Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°	
C11	C5	C13	99.29(10)		N1	C9	C10	116.58(11)	
C4	C5	C6	112.09(10)		01	C2	C1	110.89(11)	
C4	C5	C13	110.02(11)		01	C2	C3	110.41(11)	
C13	C5	C6	114.99(11)		C3	C2	C1	111.96(11)	
C11	C10	C16	116.34(12)						

Tab	le 6	Tors	sion	Angles for AB	AY	A_SI	P022	61B	R_auto.
Α	B	С	D	Angle/°	Α	В	С	D	Angle/°
03	C12	C14	O4	4.52(19)	C10	C11	C12	C14	-3.7(2)
03	C12	C14	C15	- 173.59(12)	C10	C11	C5	C4	92.41(16)
O2	C7	C6	C5	110.54(14)	C10	C11	C5	C6	-31.18(19)
N1	C7	C6	C5	-64.20(15)	C10	C11	C5	C13	- 153.02(14)
C11	C12	C14	O4	179.23(12)	C10	C16	C15	C14	-1.0(2)
C11	C12	C14	C15	1.1(2)	C7	N1	C9	C10	70.75(17)
C11	C5	C4	C3	115.50(14)	C4	C5	C6	C7	-42.42(14)
C11	C5	C6	C7	78.62(13)	C4	C5	C13	O3	80.35(12)
C11	C5	C13	03	-32.35(12)	C4	C5	C13	C1	-38.54(15)
C11	C5	C13	C1	- 151.24(11)	C4	C3	C2	01	- 111.12(15)
C11	C10	C9	N1	-40.79(18)	C4	C3	C2	C1	12.95(19)
C12	03	C13	C5	30.96(12)	C6	C5	C4	C3	- 120.99(14)
C12	O3	C13	C1	154.13(10)	C6	C5	C13	O3	- 151.96(10)
C12	C11	C5	C4	-91.42(12)	C6	C5	C13	C1	89.15(14)
C12	C11	C5	C6	144.99(11)	C13	O3	C12	C11	-16.69(14)
C12	C11	C5	C13	23.15(13)	C13	O 3	C12	C14	158.44(12)
C12	C11	C10	C16	3.73(19)	C13	C5	C4	C3	8.29(17)
C12	C11	C10	C9	- 167.59(12)	C13	C5	C6	C7	- 169.05(11)
C16	C15	C14	04	- 176.70(13)	C13	C1	C2	01	82.08(13)
C16	C15	C14	C12	1.19(19)	C13	C1	C2	C3	-41.72(15)
C16	C10	C9	N1	148.34(13)	C9	N1	C7	O2	168.44(12)
C15	C16	C10	C11	-1.4(2)	C9	N1	C7	C6	-16.97(18)
C15	C16	C10	C9	169.90(13)	C2	C1	C13	03	-59.60(14)
C5	C11	C12	03	-5.04(15)	C2	C1	C13	C5	56.82(15)
C5	C11	C12	C14	179.69(12)	C8	N1	C7	O2	-4.3(2)
C5	C11	C10	C16	179.44(13)	C8	N1	C7	C6	170.27(11)

Table 6 Torsion Angles for AB_AYA_SP02261BR_auto.									
Α	B	С	D	Angle/°	Α	B	С	D	Angle/°
C5	C11	C10	C9	8.1(2)	C8	N1	C9	C10	- 116.26(13)
C5	C4	C3	C2	4.1(2)	C17	04	C14	C12	- 165.24(12)
C10	C11	C12	03	171.55(11)	C17	04	C14	C15	12.7(2)

Table 7 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for AB_AYA_SP02261BR_auto.

< ·	<u> </u>			
Atom	x	у	Z.	U(eq)
H1	4181.26	9477.91	2365.04	38
H16	3617.34	5462.72	4934.12	23
H15	4062.82	6634.05	6483.26	24
H4	2520.99	7189.92	334.53	21
H6A	5738.36	6719.54	85.95	23
H6B	6002.04	6122.38	1457.35	23
H1A	6049.6	8462.43	274.93	24
H1B	6430.4	9139.05	1548.71	24
H3	2183.03	8586.15	-246.43	24
H13	6750.07	7703.11	2415.63	21
H9A	4959.33	5052.56	2508.5	25
H9B	3407.58	4831.81	2663.69	25
H2	4225.64	9411.15	-311.38	25
H8A	1814.58	5040.81	-816.6	37
H8B	1298.55	5169.31	571.48	37
H8C	2206.57	4325.39	399.47	37
H17A	4312.77	7931.95	7652.65	43
H17B	5524.57	8667.03	7954.68	43
H17C	5937.81	7666.39	7810.57	43

Experimental

Single crystals of $C_{17}H_{19}NO_4$ were block type. A suitable crystal was selected and mounted on a XtaLAB Synergy, Dualflex, HyPix3000 diffractometer. The crystal was kept at 100.01(15) K during data collection. Using Olex2 [1], the structure was solved with the SHELXT [2] structure solution program using SHELXT and refined with the SHELXL [2] refinement package using SHELXL minimisation.

- 1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341
- 2. George M. Sheldrick, ActaCryst. (2015). C71, 3-8.

Crystal structure determination of [AB_AYA_SP02261BR_auto]

Crystal Data for C₁₇H₁₉NO₄ (*M* =301.33 g/mol): monoclinic, space group P2₁/n (no. 14), *a* = 9.7354(2) Å, *b* = 15.3138(2) Å, *c* = 9.9359(2) Å, β = 105.393(2)°, *V* = 1428.17(5) Å³, *Z* = 4, *T* = 100.01(15) K, μ (Cu K α) = 0.821 mm⁻¹, *Dcalc* = 1.401 g/cm³, 20564 reflections measured (10.894° ≤ 2 Θ ≤ 136.478°), 2597 unique (R_{int} = 0.0585, R_{sigma} = 0.0270) which were used in all calculations. The final R_1 was 0.0376 (I > 2 σ (I)) and *wR*₂ was 0.1028 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown. Details: 1.a Ternary CH refined with riding coordinates: C13(H13), C2(H2) 1.b Secondary CH2 refined with riding coordinates: C6(H6A,H6B), C1(H1A,H1B), C9(H9A,H9B) 1.c Aromatic/amide H refined with riding coordinates: C16(H16), C15(H15), C4(H4), C3(H3) 1.d Idealised Me refined as rotating group: C8(H8A,H8B,H8C), C17(H17A,H17B,H17C) 1.e Idealised tetrahedral OH refined as rotating group: O1(H1)

This report has been created with Olex2, compiled on 2023.08.24 svn.re1ec1418 for OlexSys. Please let us know if there are any errors or if you would like to have additional features.
checkCIF/PLATON report

Structure factors have been supplied for datablock(s) ab_aya_sp02261br_auto

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: ab_aya_sp02261br_auto

Bond precision:	C-C = 0.0019 A	Wavelength	1.54184	
Cell:	a=9.7354(2) alpha=90	b=15.3138(2) beta=105.393(2)	c=9.9359(2) gamma=90	
Temperature:	100 K		J	
	Calculated	Reported		
Volume	1428.17(5)	1428.17 (5)	
Space group	P 21/n	P 1 21/n	1	
Hall group	-P 2yn	-P 2yn		
Moiety formula	C17 H19 N O4	C17 H19 N	04	
Sum formula	C17 H19 N O4	C17 H19 N	04	
Mr	301.33	301.33		
Dx,g cm-3	1.401	1.401		
Z	4	4		
Mu (mm-1)	0.821	0.821		
F000	640.0	640.0		
F000'	642.05			
h,k,lmax	11,18,11	11,18,11		
Nref	2620	2597		
Tmin, Tmax	0.980,0.992	0.249,1.0	00	
Tmin'	0.968			
Correction metho AbsCorr = MULTI-	od= # Reported T I -SCAN	Limits: Tmin=0.249 Tm	ax=1.000	
Data completene:	ss= 0.991	Theta(max)= 68.23	9	
R(reflections)=	0.0376(2347)		<pre>wR2(reflections)= 0 1028(2597)</pre>	
S = 1.057	Npar=	202	0.1020(2001)	

The following ALERTS were generated. Each ALERT has the format **test-name_ALERT_alert-type_alert-level**. Click on the hyperlinks for more details of the test.

Alert level C
 PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600 2 Report
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 13 4, -4 16 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,
 -8 14 5,

Alert level G

PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms 1 Report H1 PLAT103_ALERT_1_G The s.u.'s on the Cell Axes are Equal .. (Note) 0.0002 Ang. PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for 03 . 104.5 Degree PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 21 Note PLAT969_ALERT_5_G The 'Henn et al.' R-Factor-gap value 2.87 Note Predicted wR2: Based on SigI**2 3.59 or SHELX Weight 10.12 PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. 9 Info

1 ALERT level C = Check. Ensure it is not caused by an omission or oversight 6 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 06/01/2024; check.def file version of 05/01/2024

Datablock ab_aya_sp02261br_auto - ellipsoid plot

SCXRD Data of dehydro-narcipavline (26b)

Crystal Data and Structure Refinement of (±)-26b (CCDC 2363948):

AB_SP_DHNPV_auto

Table 8 Crystal data and structure refinement for AB_SP_DHNPV_auto.							
Identification code	2363948						
Empirical formula	$C_{36}H_{40}N_2O_6$						
Formula weight	596.70						
Temperature/K	100.15						
Crystal system	monoclinic						
Space group	P2 ₁ /c						
a/Å	11.5497(2)						
b/Å	13.3748(3)						
c/Å	19.9348(3)						
α/°	90						
β/°	101.134(2)						
γ/°	90						
Volume/Å ³	3021.47(10)						
Z	4						
$\rho_{calc}g/cm^3$	1.312						
μ/mm^{-1}	0.719						
F(000)	1272.0						
Crystal size/mm ³	0.4 imes 0.4 imes 0.4						
Radiation	$CuK\alpha \ (\lambda = 1.54184)$						
20 range for data collection/°	7.802 to 140.658						
Index ranges	$-13 \le h \le 13, -15 \le k \le 16, -20 \le l \le 24$						
Reflections collected	43284						
Independent reflections	5477 [$R_{int} = 0.0549$, $R_{sigma} = 0.0275$]						
Data/restraints/parameters	5477/0/405						
Goodness-of-fit on F ²	1.046						

Final R indexes [I>=2σ (I)]	$R_1 = 0.0535, wR_2 = 0.1481$
Final R indexes [all data]	$R_1 = 0.0662, wR_2 = 0.1595$
Largest diff. peak/hole / e Å ⁻³	0.55/-0.31

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) ab_sp_dhnpv_auto

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: ab_sp_dhnpv_auto

Bond precision:	C-C = 0.0031 A	ν	Navelength=2	1.54184
Cell:	a=11.5497(2) alpha=90	b=13.3748 beta=101.3	(3) 134(2)	c=19.9348(3) gamma=90
Temperature:	100 K			-
	Calculated		Reported	
Volume	3021.47(10)		3021.47(10))
Space group	P 21/c		P 1 21/c 1	
Hall group	-P 2ybc		-P 2ybc	
Moiety formula	C33 H32 N2 O5, C3	Н8 О	C33 H32 N2	05, C3 H8 O
Sum formula	C36 H40 N2 O6		C36 H40 N2	06
Mr	596.70		596.70	
Dx,g cm-3	1.312		1.312	
Z	4		4	
Mu (mm-1)	0.719		0.719	
F000	1272.0		1272.0	
F000′	1275.86			
h,k,lmax	14,16,24		13,16,24	
Nref	5770		5477	
Tmin,Tmax	0.788,0.750		0.528,1.00	C
Tmin'	0.714			
Correction method AbsCorr = ?	d= # Reported T L:	imits: Tmir	n=0.528 Tma:	x=1.000
Data completenes:	s= 0.949	Theta (ma	ax) = 70.329	
R(reflections)= (0.0535(4506)			wR2(reflections)=
S = 1.046	Npar= 4	05		0.1393(3477)

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Alert lev PLAT355_ALERT	7el A _3_A Lor	ng O-H	(X0.82,	N0.98A)	0008	- H008		1.17	Ang.
Alert lev PLAT052_ALERT PLAT906_ALERT PLAT911_ALERT	vel C _1_C Ini _3_C Lai _3_C Mis _12 8 _9 9 _8 8	Eo on Ab Ege K Va Ssing FC 5, -11 14, -8 16, 0	sorption lue in t F Refl B 9 8, 10 14, 11 17,	n Correct The Analy Between T -11 9 -7 10 1 -5 7 2	ion Meth sis of V hmin & S 9, -10 1 4, -2 1 1,	od Not ariance Th/L= 0 10, -13 3 14, -9	Given 0.600 3 3 11, 9 8 15,	Please 4.844 15 , -10 9 11 , -8 9 13	Do ! Check Report L,
Alert les	velG								
PLAT007_ALERT	_5_G Nur	mber of	Unrefine	d Donor-	H Atoms	•••••		1	Report
PLAT398 ALERT	2 G Det	viating	C-0-C	Angle F	rom 120	for 0001		104.4	Degree
PLAT398 ALERT	2 G Dev	viating	C-0-C	Angle F	rom 120	for 0003		105.8	Degree
PLAT398 ALERT	2 G Dev	viating	C-O-C	Angle F	rom 120	for 0005		106.2	Degree
PLAT432 ALERT	2 G Sho	ort Inte	r XY	Contact	0005	C011		2,95	Ang.
				1	$-x_{-1/2+}$	v.1/2-z	=	2 645 Cheo	ck
PLAT720 ALERT	4 G Nur	ber of	Unusual/	'Non-Stan	dard Lab	els		84	Note
	0001	0002	0003	0004	H004	0005	N006	N007	
	0008	H008	C009	COOA	HOOA	C00B	COOC	COOD	
	COOE	COOF	C00G	COOH	COOI	C00J	COOK	HOOK	
	COOL	COOM	HOOM	COON	HOON	C000	H000	COOP	
	HOOP	C000	HOOB	HOOC	COOR	HOOR	COOS	HOOS	
	COOT	HOOD	HOOE	C00U	HOOF	H00G	COOV	ноон	
	HOOI	COOW	HOOJ	HOOL	COOX	COOY	HOOY	COOZ	
	HOOZ	C010	H010	C011	H01A	H01B	H01C	C012	
	H01D	H01E	H01F	C013	H013	C014	H014	C015	
	H01G	HO1H	C016	H016	C017	HOlI	H01J	H01K	
	C018	H01L	H01M	HO1N					
PLAT793_ALERT	_4_G Mod	del has	Chiralit	y at COO	С	(Centro	SpGr)	R	Verify
PLAT793_ALERT	_4_G Mod	del has	Chiralit	y at C00	М	(Centro	SpGr)	R	Verify
PLAT793_ALERT	_4_G Mod	del has	Chiralit	y at COO	Y	(Centro	SpGr)	S	Verify
PLAT883_ALERT	_1_G No	Info/Va	lue for	_atom_si	tes_solu	tion_prim	nary .	Please	Do !
PLAT912_ALERT	_4_G Mis	sing #	of FCF R	Reflectio	ns Above	STh/L=	0.600	269	Note
PLAT969_ALERT	_5_G The	e 'Henn	et al.'	R-Factor	-gap val	ue		4.720	Note
	Predict	ed wR2:	Based o	n SigI**	2 3.38	or SHELX	Weight	15.24	
PLAT978_ALERT	_2_G Nur	nber C-C	Bonds w	ith Posi	tive Res	idual Der	nsity.	7	Info

1 **ALERT level A** = Most likely a serious problem - resolve or explain

0 ALERT level B = A potentially serious problem, consider carefully

3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 13 ALERT level G = General information/check it is not something unexpected

is ADA I Fever G - General Information/check it is not something unexpected

2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data

```
5 ALERT type 2 Indicator that the structure model may be wrong or deficient
3 ALERT type 3 Indicator that the structure quality may be low
5 ALERT type 4 Improvement, methodology, query or suggestion
2 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PLAT355_ab_sp_dhnpv_auto
;
PROBLEM: Long O-H (X0.82,N0.98A) 0008 - H008 . 1.17 Ang.
RESPONSE: ...
;
# end Validation Reply Form
```

PLATON version of 13/05/2024; check.def file version of 04/05/2024

SCXRD Data of (-)-14

Crystal Data and Structure Refinement of (-)-14 (CCDC 2384521):

Table 1 Crystal data and structure refinement for (-)-14							
CCDC	2384521						
Empirical formula	$C_{18}H_{21}IO_5$						
Formula weight	444.25						
Temperature/K	99.98(11)						
Crystal system	monoclinic						
Space group	P2 ₁						
a/Å	13.1948(3)						
b/Å	4.76050(10)						
c/Å	14.5444(4)						
α/°	90						
β/°	102.504(3)						
γ/°	90						
Volume/Å ³	891.92(4)						
Z	2						
$\rho_{calc}g/cm^3$	1.654						
μ/mm^{-1}	14.318						
F(000)	444.0						
Crystal size/mm ³	0.54 imes 0.08 imes 0.04						
Radiation	$Cu K\alpha (\lambda = 1.54184)$						
2Θ range for data collection/°	6.224 to 136.044						
Index ranges	$-15 \le h \le 15, -4 \le k \le 5, -17 \le l \le 17$						
Reflections collected	9822						
Independent reflections	2723 [$R_{int} = 0.0499, R_{sigma} = 0.0439$]						
Data/restraints/parameters	2723/1/219						
Goodness-of-fit on F ²	1.079						
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0309, wR_2 = 0.0764$						
Final R indexes [all data]	$R_1 = 0.0323, wR_2 = 0.0774$						
Largest diff. peak/hole / e Å ⁻³	0.94/-1.05						
Flack parameter	-0.028(6)						

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 2384521. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Aton	nx	y	Z.	U(eq)
I1	3839.1(2)	5176.0(13)	4943.9(2)	25.13(14)
03	3107(3)	4289(10)	6815(3)	22.9(11)
O2	1452(4)	-150(20)	2898(3)	47.8(19)
C11	5001(4)	5070(30)	8839(4)	27.3(14)
C4	973(4)	-342(16)	5653(4)	27(2)
C1	2590(5)	2757(16)	5213(5)	23.9(15)
C2	1927(5)	1252(15)	4498(4)	24.7(16)
C15	3132(5)	5943(14)	8747(4)	25(2)
C8	2021(5)	1169(17)	3510(5)	35(2)
C6	2467(5)	2751(15)	6141(5)	23.9(15)
C13	5598(5)	3130(18)	7453(5)	29.0(17)
C9	3734(5)	2603(15)	7598(4)	21.4(15)
C14	4650(5)	1202(15)	7298(5)	24.7(16)
C5	1618(5)	1248(15)	6347(5)	24.3(16)
C7	681(4)	-90(30)	7516(5)	36(2)
C10	4015(5)	4567(15)	8417(4)	24.3(19)
01	1494(3)	1493(11)	7249(3)	30.5(12)
C12	5914(5)	3929(19)	8490(5)	34.2(19)
C3	1143(5)	-297(17)	4751(5)	27(2)
C16	2575(5)	4080(16)	9312(4)	23.3(15)
O5	1658(3)	5246(18)	9385(3)	28.7(9)
C17	1100(5)	3700(19)	9988(5)	31.9(18)
C18	1454(5)	4620(20)	11003(5)	44(3)
O4	2894(3)	1911(11)	9678(3)	26.7(11)

Table 3 Anisotropic Displacement Parameters (Å²×10³) for 2384521. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Atom	U11	U22	U33	U23	U13	U12
I1	21.91(19)	27.6(3)	28.75(19)	3.5(3)	11.72(13)	1.3(3)
03	19(2)	27(3)	23(2)	0.4(19)	5.8(16)	-1.7(19)
O2	49(3)	60(6)	33(2)	-16(4)	5(2)	-12(4)
C11	26(3)	32(4)	27(3)	-5(5)	13(2)	-1(5)
C4	16(3)	27(7)	40(3)	4(3)	7(2)	-5(3)
C1	15(3)	24(4)	36(4)	4(3)	12(3)	3(3)
C2	17(3)	25(4)	31(3)	-3(3)	3(3)	3(3)
C15	22(3)	27(6)	27(3)	3(3)	8(2)	3(3)
C8	27(3)	43(6)	35(4)	-4(3)	8(3)	-4(3)
C6	17(3)	22(4)	34(4)	0(3)	7(3)	0(3)

Atom	u U11	U_{22}	U 33	U23	U 13	U 12
C13	20(3)	38(5)	31(3)	-2(3)	12(3)	0(3)
C9	21(3)	19(4)	25(3)	6(3)	5(3)	1(3)
C14	23(3)	22(4)	30(3)	0(3)	8(3)	5(3)
C5	19(3)	24(4)	34(3)	2(3)	13(3)	4(3)
C7	22(3)	50(7)	38(3)	10(5)	11(2)	-8(5)
C10	22(3)	28(6)	25(3)	4(3)	10(2)	3(3)
O1	23(2)	37(3)	34(2)	1(2)	12.8(19)	-5(2)
C12	19(3)	53(6)	33(3)	-6(4)	9(3)	-1(3)
C3	31(3)	14(7)	34(3)	-5(3)	2(2)	5(3)
C16	22(3)	26(4)	23(3)	-4(3)	6(2)	-1(3)
O5	19.9(18)	32(3)	39(2)	6(4)	16.1(15)	4(4)
C17	25(4)	27(5)	49(4)	5(3)	19(3)	5(3)
C18	31(3)	59(9)	48(4)	5(4)	23(3)	5(4)
04	29(3)	21(3)	34(2)	4(2)	14(2)	5(2)

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 2384521. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table 4 Bond Lengths for 2384521.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
I1	C1	2.116(7)	C15	C16	1.504(9)
O3	C6	1.361(8)	C6	C5	1.415(9)
O3	C9	1.490(7)	C13	C14	1.528(10)
O2	C8	1.209(9)	C13	C12	1.524(9)
C11	C10	1.334(8)	C9	C14	1.524(9)
C11	C12	1.507(9)	C9	C10	1.496(9)
C4	C5	1.395(9)	C5	01	1.362(8)
C4	C3	1.379(9)	C7	01	1.432(9)
C1	C2	1.402(9)	C16	05	1.356(8)
C1	C6	1.394(9)	C16	O4	1.195(8)
C2	C8	1.469(9)	05	C17	1.460(9)
C2	C3	1.384(10)	C17	C18	1.514(10)
C15	C10	1.504(9)			

Table 5 Bond Angles for 2384521.

Atom Atom Atom Angle/°					Atom Atom Atom Angle/°				
C6	O3	C9	114.6(5)	C10	C9	C14	115.2(5)		
C10	C11	C12	123.4(7)	C9	C14	C13	111.7(6)		
C3	C4	C5	118.7(6)	C4	C5	C6	120.6(6)		
C2	C1	I1	121.8(5)	01	C5	C4	124.2(6)		
C6	C1	I1	116.0(5)	01	C5	C6	115.2(6)		
C6	C1	C2	122.2(6)	C11	C10	C15	121.3(6)		
C1	C2	C8	124.7(6)	C11	C10	C9	121.8(7)		
C3	C2	C1	117.2(6)	C9	C10	C15	116.8(5)		

Table 5 Bond Angles for 2384521.

Table 5 Bond Angles for 2384521.								
Atom Atom Atom Angle/°				Atom Atom Atom Angle/°				
C3	C2	C8	118.2(6)	C5	01	C7	118.0(6)	
C10	C15	C16	114.9(6)	C11	C12	C13	110.9(5)	
O2	C8	C2	124.4(7)	C4	C3	C2	123.2(6)	
O3	C6	C1	120.8(6)	05	C16	C15	110.5(6)	
O3	C6	C5	121.1(6)	O4	C16	C15	125.9(6)	
C1	C6	C5	118.0(6)	O4	C16	05	123.5(7)	
C12	C13	C14	109.6(6)	C16	05	C17	114.5(7)	
O3	C9	C14	111.1(5)	O5	C17	C18	110.5(7)	
03	C9	C10	105.8(5)					

Table 6 Torsion Angles for 2384521.

Α	B	С	D	Angle/°	A	B	С	D	Angle/°
I1	C1	C2	C8	0.3(10)	C6	C5	01	C7	-176.9(7)
I1	C1	C2	C3	179.1(5)	C9	03	C6	C1	-118.0(6)
I1	C1	C6	03	1.7(8)	C9	03	C6	C5	66.2(8)
I1	C1	C6	C5	177.6(5)	C14	C13	C12	C11	-51.9(9)
03	C6	C5	C4	-179.4(6)	C14	C9	C10	C11	0.9(10)
03	C6	C5	01	0.6(10)	C14	C9	C10	C15	-178.7(6)
03	C9	C14	C13	87.2(6)	C5	C4	C3	C2	0.1(11)
03	C9	C10	C11	-122.3(8)	C10	C11	C12	C13	21.0(13)
03	C9	C10	C15	58.1(7)	C10	C15	C16	05	-165.4(5)
C4	C5	01	C7	3.1(10)	C10	C15	C16	04	16.8(9)
C1	C2	C8	02	179.4(8)	C10	C9	C14	C13	-33.2(8)
C1	C2	C3	C4	2.1(11)	C12	C11	C10	C15	-175.0(7)
C1	C6	C5	C4	4.7(10)	C12	C11	C10	C9	5.4(13)
C1	C6	C5	01	-175.3(6)	C12	C13	C14	C9	58.9(8)
C2	C1	C6	03	-178.3(6)	C3	C4	C5	C6	-3.6(10)
C2	C1	C6	C5	-2.4(10)	C3	C4	C5	01	176.4(6)
C15	C16	05	C17	-175.2(5)	C3	C2	C8	02	0.6(12)
C8	C2	C3	C4	-179.0(7)	C16	C15	C10	C11	-103.2(8)
C6	03	C9	C14	77.4(7)	C16	C15	C10	C9	76.4(7)
C6	03	C9	C10	-156.8(5)	C16	05	C17	C18	87.1(8)
C6	C1	C2	C8	-179.7(7)	O4	C16	05	C17	2.7(9)
C6	C1	C2	C3	-0.9(10)					

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 2384521.

Atom	x	у	z	U(eq)
H11	5133.5	6203.51	9389.71	33
H4	426.17	-1436.44	5799.17	33
H15A	2622.67	6632.06	8190.14	30
H15B	3404.25	7597.45	9135.29	30

Atom	x	у	Z	U(eq)
H8	2565.12	2221.16	3341.44	41
H13A	6180.39	2156.31	7257.21	35
H13B	5431.76	4845.36	7064.44	35
H9	3279.62	1094.48	7767.31	26
H14A	4447.14	691.3	6623.42	30
H14B	4832.69	-548.46	7663.96	30
H7A	6.65	690.59	7204.04	54
H7B	755.34	11.16	8200.52	54
H7C	723.71	-2054.02	7326.55	54
H12A	6192.84	2254.68	8864.17	41
H12B	6469.38	5364.44	8575.37	41
H3	700.53	-1380.58	4280.2	32
H17A	1227.28	1661.51	9937.83	38
H17B	345.65	4037.14	9775.42	38
H18A	1353.21	6651.32	11048.64	66
H18B	2191.1	4169.66	11226.35	66
H18C	1046.74	3636.71	11392.69	66

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 2384521.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) ab_aya_sp02336r_souvik

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: ab_aya_sp02336r_souvik

C-C = 0.0096 A	Wavelength=1.54184				
a=13.1948(3)	b=4.7605(1)	c=14.5444(4)			
alpha=90 100 K	beta=102.504(3)	gamma=90			
Calculated	Reported				
891.92(4)	891.92(4)				
P 21	P 1 21 1				
P 2yb	P 2yb				
C18 H21 I O5	C18 H21 I	05			
C18 H21 I O5	C18 H21 I O5				
444.25	444.25				
1.654	1.654				
2	2				
14.318	14.318				
444.0	444.0				
444.69					
15,5,17	15,5,17				
3255[1840]	2723				
0.291,0.564	0.189,1.0	00			
0.000					
od= # Reported T L SCAN	imits: Tmin=0.189 Tm	ax=1.000			
s= 1.48/0.84	Theta(max)= 68.022	2			
0.0309(2575)		wR2(reflections)=			
Npar= 2	219	0.0117(2120)			
	C-C = 0.0096 A a=13.1948(3) alpha=90 100 K Calculated 891.92(4) P 21 P 2yb C18 H21 I 05 C18 H21 I 05 444.25 1.654 2 14.318 444.0 444.69 15,5,17 3255[1840] 0.291,0.564 0.000 rd= # Reported T I SCAN s= 1.48/0.84 0.0309(2575) Npar= 3	C-C = 0.0096 A Wavelengths a=13.1948(3) b=4.7605(1) alpha=90 beta=102.504(3) 100 K Calculated Reported 891.92(4) P 1 21 1 P 2yb P 2yb C18 H21 I 05 C18 H21 I 444.25 444.25 1.654 2 2 14.318 14.318 444.0 444.0 444.69 15,5,17 15,5,17 3255[1840] 2723 0.291,0.564 0.189,1.0 0.000 rd= # Reported T Limits: Tmin=0.189 Tm SCAN s= 1.48/0.84 Theta(max)= 68.022 Npar= 219			

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600 6 Report 6 5 0, -11 4 5, 4 5 6, -8 2 10, -7 3 14, -6 3 14, PLAT915_ALERT_3_C No Flack x Check Done: Low Friedel Pair Coverage 63 %

Alert level G

PLAT791_ALERT_4_G Model has Chirality at C9	(Sohncke	SpGr)	S	Verify
PLAT909_ALERT_3_G Percentage of I>2sig(I) Dat	a at Theta(Max)	Still	88%	Note
PLAT912_ALERT_4_G Missing # of FCF Reflection	is Above STh/L=	0.600	3	Note
PLAT969_ALERT_5_G The 'Henn et al.' R-Factor-	gap value		1.839	Note
Predicted wR2: Based on SigI**2	4.21 or SHELX	Weight	7.17	
PLAT978_ALERT_2_G Number C-C Bonds with Posit	ive Residual De	nsity.	0	Info

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 5 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 22/08/2024; check.def file version of 21/08/2024

References:

- (a) T. T. F. Chiang, H. K. Wang and J. C. Hsieh, *Tetrahedron*, 2016, **72**, 5640–5645.
 (b) J. Q. Chen, J. H. Xie, D. H. Bao, S. Liu, Q. L. Zhou, *Org. Lett.* 2012, **14**, 2714–2717.
- 2. B. M. Trost, F. D. Toste, J. Am. Chem. Soc. 2000, 122, 11262–11263.
- 3. Y. Zhang, S. Shen, H. Fang, T. Xu, Org. Lett. 2020, 22, 1244–1248.
- M. Safratová, A. H. álková, D. Hulcová, K. Breiterová, V. Hrabcová, M. Machado, D. Fontnha, M. Pruděncio, J. Kuněs, J. Chlebek, D. Jan, M. Hrabinová, L. Nováková, R. Havelek, M. Seifrtová, L. Opletal, L. Cahlíková, *Arch. Pharm. Res.* 2018, 41, 208-218.
- Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., *Wallingford CT*, 2016.