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Materials and Methods 
Structure-informed language model description and scoring of sequences 

As input to the model, we provide a protein structure 𝐘 ∈ ℝ!×#×#, where 𝑁 is the 
number of amino acids, and each amino acid is featurized by the three-dimensional physical 
coordinates of all three atoms in the protein backbone: the α-carbon, β-carbon, and nitrogen 
atoms in the protein backbone (hence the dimensionality 𝑁 × 3 × 3). The structure-informed 
language model learns the probability distribution 𝑝 of a protein sequence 𝐱 = (𝑥$, … , 𝑥!) ∈ 𝒳! 
(where 𝒳 is the alphabet of amino acids) given a structure  𝐘 via the chain rule of probability 

𝑝(𝐱|𝐘) = 𝑝(𝑥$|𝐘)𝑝(𝑥%|𝑥$, 𝐘)…𝑝(𝑥!|𝑥$, … , 𝑥!&$, 𝐘). 
The probability distribution at each position is defined over 𝒳, such that it is a 20-

dimensional vector with all constituent entries summing to 1. 
Thus, for a given sequence 𝐱2 = (𝑥2$, … , 𝑥2!) and its corresponding given structure 𝐘3, we 

can score the probability of 𝐱2 folding into 𝐘 under the inverse folding model by computing the 
value of 𝑝(𝐱 = 𝐱2|𝐘), which we can do autoregressively as 

𝑝4𝐱 = 𝐱25𝐘36 = 𝑝4𝑥$ = 𝑥2$5𝐘36…𝑝4𝑥! = 𝑥2!5𝑥2$, … , 𝑥2!&$, 𝐘36. 
This is evaluated output is a likelihood between 0 and 1, inclusive. The computed score 

𝑝4𝐱 = 𝐱25𝐘36 is used as prediction for “fitness” (e.g., binding affinity or enzymatic activity). 
Importantly, the model does not have any explicit access to “fitness” during either training or 
evaluation, which we refer to as “zero shot” fitness prediction. 
 In this work, we also extend the structure-informed language model beyond single chain 
structures by considering the joint probability all sequences will fold into the backbone 
coordinates of their corresponding chains together, such that the computed likelihood is 
evaluated on the entire complex.  

We use the inverse folding model checkpoint of ESM-IF1 GVP-Transformer as of April 
10, 2022 (11). 

 
Diverse proteins benchmarking experiment with scanning mutagenesis data 

We analyzed the effectiveness of using the structure-informed language model, ESM-IF1 
model to identify high fitness variants from protein mutational scans as a proxy for the ability to 
guide evolution without explicitly modeling a protein’s function. We also compared its 
performance to ESM-1v, a sequence-only general protein language model. To do so, we used all 
deep mutational scanning (DMS) datasets from the benchmarking study by Livesey and Marsh 
(21) profiling over 100 variants and reported to have 90% or higher coverage of DMS results 
across the corresponding curated PDB structure (Supplementary Table 1). From this set of 12 
proteins, Cas9 was excluded because its sequence length was larger than the maximum allowable 
length of 1024 amino acids by ESM-1v and ccdB was excluded because the experimental values 
were discretized within a small range. For each of the 10 mutagenesis datasets, all the sequence 
likelihood of all variants with coverage in the structure were determined using the structure-
informed language model. For ESM-1v, the average masked marginals likelihood score across 
all five models in the ESM-1v group was used. The experimental data distribution was binarized 
for high-fitness classification using a percentile-based threshold. The enrichment of high fitness 
variants was then determined by using the metric of fraction high fitness as defined by the 
fraction of the top 10 model-predicted variants with experimental values above the high fitness 
threshold. The analysis was performed at three different percentile thresholds, top 5th percentile 
(95th percentile), top 10th percentile (90th percentile), and top 20th percentile (80th percentile), to 
determine sensitivity of the result based on the stringency of the selected cutoff parameter. 
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Benchmarking of antibody mutagenesis  

We use five antibody mutagenesis datasets (42, 43) to benchmark the performance of 
modeling variant effects on antibody binding using the structure-informed language model 
against three sequence-only methods, ESM-1v (41), AbLang (47), and abYsis (48). Variant 
sequences were scored using the model with three different forms of structure input: i) variable 
region of mutated antibody chain only ii) variable regions of both antibody chains iii) variable 
regions of both antibody chains in complex with antigen. The autoregressive scoring of 
sequences enables evaluation of sequences with multiple mutations. The Spearman correlation 
was determined between the log likelihood scores across all sequences and corresponding 
reported experimental binding measurements: -log(KD) for CR9114 and CR6261; log(binding 
enrichment) g6.31. The following structures were used for input backbone coordinates of the 
VH, VL, and antigen: PDB 4FQI (44), CR9114-H5; PDB 3GBN (45), CR6261-H1; PDB 2FJG 
(46), g6.31-VEGF. 

ESM-1v, AbLang, and abYsis were scored using the variant sequence of the antibody 
variable region. For variants with multiple mutations, the average effect of all mutant amino 
acids in the sequence was considered, namely 

𝑝(𝐱) =
1
|ℳ|	: [log		𝑝(𝐱' = 𝐱'()

'∈+
) 	− 	log	𝑝(𝐱' = 𝐱',))]	 

where ℳ is defined as the set of all mutations in the input sequence 𝐱. For abYsis, individual 
mutation likelihoods were determined using the frequency of amino acids at each position based 
on multiple sequence alignment provided by the webtool version 3.4.1 
(http://www.abysis.org/abysis/index.html). We aligned VH and VL protein sequences using the 
default settings provided in the ‘Annotate’ tool, with the database of ‘Homo sapiens’ sequences 
as of April 1, 2023. The contribution of additional sequence context of antigen information and 
paired antibody chain were also evaluated using ESM-1v to determine if sequence-only general 
protein language models can learn binding. 
 Computational benchmarking on the antibody binding datasets was also conducted with 
ProteinMPNN (49), an alternate model for scoring sequences against a target backbone structure. 
Spearman correlations were computed using the global score across all chains in the input 
protein complex, identical to the whole-complex scoring strategy used for ESM-IF1. 
 
Acquisition of antibody amino acid substitutions using structure-informed language model and 
sequence-only protein language models 

We select amino acid substitutions recommended by the structure-informed language 
model to test in our directed evolution campaigns for LY-CoV1404 and SA58. For a given wild-
type antibody variable region sequence, 𝐱 = (𝑥$, … , 𝑥!) ∈ 𝒳! , where 𝒳 is the set of amino 
acids and 𝑁 is the sequence length, we score all possible single amino acid substitutions against a 
corresponding structure of the variable regions of both antibody chains in complex with the RBD 
of SARS-CoV-2 Spike protein, 𝐘3 by computing 𝑝4𝐱 = 𝐱25𝐘36. Protein structures used are reported 
in Supplementary Table 1. We then select the set of top ten predicted single amino acid 
substitutions at unique residues in each antibody variable region prior to the final framework 
segment to test in the first round of evolution. 

After testing individual amino acid mutations in a pseudovirus neutralization screen, in 
Round 2, beneficial mutations (defined as IC50 fold-change > 1.1) were combined to assess the 
combinatorial effects and potential for further neutralization improvement. We tested up to four 

http://www.abysis.org/abysis/index.html


 
 

4 
 

combinations of single amino acid mutations on each chain (two total mutations to the antibody). 
We also used the model to score a library of all possible combinations of the beneficial mutations 
to an antibody chain (For example, VH LY-CoV1404 has 8 beneficial mutations resulting in 255 
total candidate sequences), and selected the top five scoring designs (or less if there were a fewer 
number of total possible combinations). Lastly, we tested a maximum of two variants consisting 
of the best single-chain designs together. In total, 31 variants were tested for LY-CoV1404 and 
25 variants were tested for SA58.  

Antibody variants tested in the first round of evolution in Supplementary Figure 8 were 
recommended by the ensemble of protein language models as described in Hie et al (58). The top 
ten predictions were selected, and, if needed, the prediction stringency was decreased to allow 
for ten predictions. To support a fair comparison to structure-guided evolution, we performed an 
identical directed evolution campaign using protein language models. We use the same 
experimental algorithm outlined above to advance mutations to the second round and select a 
maximum number of round 2 mutations to screen. Combining multiple mutations on a single 
chain was performed by ranking and acquiring the set of top additive single variants. 
 
Antibody cloning 

We cloned the antibody sequences into the CMV/R plasmid backbone for expression 
under a CMV promoter. The heavy chain or light chain sequence was cloned between the CMV 
promoter and the bGH poly(A) signal sequence of the CMV/R plasmid to facilitate improved 
protein expression. Variable regions were cloned into the human IgG1 backbone; LY-CoV1404 
variants were cloned with a lambda light chain, whereas variants of SA58 were cloned with a 
kappa light chain. The vector for both heavy and light chain sequences also contained the 
HVM06_Mouse (UniProt: P01750) Ig heavy chain V region 102 signal peptide 
(MGWSCIILFLVATATGVHS) to allow for protein secretion and purification from the 
supernatant. VH and VL segments were ordered as gene blocks from Integrated DNA 
Technologies and were cloned into linearized CMV/R backbones with 5× In-Fusion HD Enzyme 
Premix (Takara Bio).  
 
Antigen cloning 

RBD sequences were cloned into a pADD2 vector between the rBeta-globin intron and β-
globin poly(A). All RBD constructs contain an AviTag and 6×His tag. RBD sequences were 
based off wild-type Wuhan-Hu-1 (GenBank: BCN86353.1), Omicron BA.1 
(GenBank: UFO69279.1), BQ.1.1 (GenBank: OP412163.1 ), XBB.1.5 (GenBank: OP790748.1 ). 
 
DNA preparation 

Plasmids were transformed into Stellar competent cells (Takara Bio), and transformed 
cells were plated and grown at 37 °C overnight. Colonies were mini-prepped per the 
manufacturer’s recommendations (GeneJET, K0502, Thermo Fisher Scientific) and sequence 
confirmed (Sequetech) and then maxi-prepped per the manufacturer’s protocols (ZymoPure II 
Plasmid Maxiprep Kit, Zymo Research). Plasmids were sterile filtered using a 0.22-μm syringe 
filter and stored at 4 °C. 
 
Protein expression 

All proteins were expressed in Expi293F cells (Thermo Fisher Scientific, A14527). 
Proteins containing a biotinylation tag (AviTag) were also expressed in the presence of a BirA 

https://www.uniprot.org/uniprot/P01750
https://www.ncbi.nlm.nih.gov/protein/BCN86353.1
https://www.ncbi.nlm.nih.gov/protein/UFO69279.1
https://www.ncbi.nlm.nih.gov/nuccore/OP412163.1
https://www.ncbi.nlm.nih.gov/nuccore/OP790748.1
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enzyme, resulting in spontaneous biotinylation during protein expression. Expi293F cells were 
cultured in media containing 66% FreeStyle/33% Expi media (Thermo Fisher Scientific) and 
grown in TriForest polycarbonate shaking flasks at 37 °C in 8% carbon dioxide. The day before 
transfection, cells were pelleted by centrifugation and resuspended to a density of 3 × 106 cells 
per milliliter in fresh media. The next day, cells were diluted and transfected at a density of 
approximately 3–4 × 106 cells per milliliter. Transfection mixtures were made by adding the 
following components: maxi-prepped DNA, culture media and FectoPRO (Polyplus) would be 
added to cells to a ratio of 0.5 μg: 100 μl: 1.3 μl: 900 μl. For example, for a 100-ml transfection, 
50 μg of DNA would be added to 10 ml of culture media, followed by the addition of 130 μl of 
FectoPRO. For antibodies, we divided the transfection DNA equally among heavy and light 
chains; in the previous example, 25 μg of heavy chain DNA and 25 μg of light chain DNA would 
be added to 10 ml of culture media. After mixing and a 10-min incubation, the example 
transfection cocktail would be added to 90 ml of cells. The cells were harvested 3–5 days after 
transfection by spinning the cultures at 10,000g for 10 min. Supernatants were filtered using a 
0.45-μm filter. 
 
Antibody purification 

We purified antibodies using a 5-ml MabSelect Sure PRISM column on the ÄKTA pure 
fast protein liquid chromatography (FPLC) instrument (Cytiva). The ÄKTA system was 
equilibrated with line A1 in 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
(HEPES) pH 7.4, 150 mM sodium chloride (NaCl), line A2 in 100 mM glycine pH 2.8, line B1 
in 0.5 M sodium hydroxide, Buffer line in 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 
acid (HEPES) pH 7.4, 150 mM sodium chloride (NaCl) and Sample lines in water. The protocol 
washes the column with A1, followed by loading of the sample in the Sample line until air is 
detected in the air sensor of the sample pumps, followed by five column volume washes with A1, 
elution of the sample by flowing of 20 ml of A2 directly into a 50-ml conical containing 2 ml of 
1 M tris(hydroxymethyl)aminomethane (Tris) pH 8.0, followed by five column volumes of A1, 
B1 and A1 and then a wash step of the fraction collector with A1. We concentrated the eluted 
samples using 50-kDa cutoff centrifugal concentrators, followed by buffer exchange using a PD-
10 column (Sephadex) that had been pre-equilibrated into 20 mM 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES) pH 7.4, 150 mM sodium chloride (NaCl). Purified 
antibodies were used directly in experiments or flash-frozen and stored at −20 °C. 
 
Antigen purification 

All RBD antigens were His-tagged and purified using HisPur Ni-NTA resin (Thermo 
Fisher Scientific, 88222). Cell supernatants were diluted with 1/3 volume of wash buffer (20 mM 
imidazole, 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) pH 7.4, 
150 mM sodium chloride (NaCl), and the Ni-NTA resin was added to diluted cell supernatants. 
For all antigens, the samples were then incubated at 4 °C while stirring overnight. 
Resin/supernatant mixtures were added to chromatography columns for gravity flow purification. 
The resin in the column was washed with wash buffer (20 mM imidazole, 20 mM HEPES pH 
7.4, 150 mM NaCl), and the proteins were eluted with 250 mM imidazole, 20 mM HEPES pH 
7.4, 150 mM NaCl. Column elutions were concentrated using centrifugal concentrators at 10-
kDa cutoff, followed by size-exclusion chromatography on an ÄKTA pure system (Cytiva). 
ÄKTA pure FPLC with a Superdex 200 Increase (S200) gel filtration column was used for 
purification. Then, 1 ml of sample was injected using a 2-ml loop and run over the S200, which 
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had been pre-equilibrated in degassed 20 mM HEPES, 150 mM NaCl before use and flash-frozen 
before storage at −20 °C. 

 
BLI binding experiments 

All reactions were run on an Octet RED96 at 30 °C, and samples were run in 1× PBS 
with 0.1% BSA and 0.05% Tween 20 (Octet buffer). IgGs were assessed for binding to 
biotinylated antigens using streptavidin biosensors (Sartorius/ForteBio). Antigen was loaded at a 
concentration of 200nM. Tips were then washed and baselined in wells containing only Octet 
buffer. Samples were then associated in wells containing IgG at 100 nM concentration. A control 
well with loaded antigen but that was associated in a well containing only 200 μl of Octet buffer 
was used as a baseline subtraction for data analysis. Association and dissociation binding curves 
were fit in Octet System Data Analysis Software version 9.0.0.15 using a 1:2 bivalent model for 
IgGs to determine apparent Kd. Fold-change in apparent Kd were determined by computing the 
ratio of wildtype Kd to variant Kd. Averages of Kd fold-change values from at least two 
independent experiments are reported to two significant figures in Supplementary Data 2. To 
estimate measurement error, we computed the standard deviation for each 
antibody−antigen Kd pair. 
 
Polyspecificity Particle assay 

Polyspecificity reagent (PSR) was obtained as described by Xu et al(74). Soluble 
membrane proteins were isolated from homogenized and sonicated Expi 293F cells followed by 
biotinylation with Sulfo-NHC-SS-Biotin (Thermo Fisher Scientific, 21331) and stored in PBS at 
−80 °C. The PolySpecificity Particle (PSP) assay was performed as described in Makowski et 
al.(75). Protein A magnetic beads (Invitrogen, 10001D) were washed three times in PBSB (PBS 
with 1 mg ml−1 BSA) and diluted to 54 μg ml−1 in PBSB. Then, 30 μl of the solution containing 
the beads was incubated with 85 μl of antibodies at 15 µg ml−1 overnight at 4 °C with rocking. 
The coated beads were then washed twice with PBSB using a magnetic plate stand (Invitrogen, 
12027) and resuspended in PBSB. We then incubated 50 μl of 0.1 mg ml−1 PSR with the washed 
beads at 4 °C with rocking for 20 min. Beads were then washed with PBSB and incubated with 
0.001× streptavidin-APC (BioLegend, 405207) and 0.001× goat anti-human Fab fragment FITC 
(Jackson ImmunoResearch, 109-097-003) at 4 °C with rocking for 15 min. Beads were then 
washed and resuspended with PBSB. Beads were profiled via flow cytometry using a Sony 
SH800 cell sorter. Data analysis was performed with FlowJo software version 10.9.0 to obtain 
median fluorescence intensity (MFI) values, which are reported for each antibody across three or 
more replicate wells. Elotuzumab (Fisher Scientific) and ixekizumab (Fisher Scientific) are also 
included in each assay as controls. 
 
Lentivirus production 

We produced SARS-CoV-2 Spike (Wuhan-Hu-1, BA.1, and BQ.1.1 variants) 
pseudotyped lentiviral particles. Viral transfections were done in HEK293T cells (American 
Type Culture Collection, CRL-3216) using BioT (BioLand) transfection reagent. Six million 
cells were seeded in D10 media (DMEM + additives: 10% FBS, L-glutamate, penicillin, 
streptomycin and 10 mM HEPES) in 10-cm plates one day before transfection. A five-plasmid 
system was used for viral production, as described in Crawford et al(76). The Spike vector 
contained the 21-amino-acid truncated form of the SARS-CoV-2 Spike sequence from the 
Wuhan-Hu-1 strain of SARS-CoV-2 (GenBank: BCN86353.1), BA.1 variant of concern 

https://www.ncbi.nlm.nih.gov/protein/BCN86353.1
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(GenBank: OL672836.1), or BQ.1.1 variant of concern (GenBank: OP412163.1. The other viral 
plasmids, used as previously described(76), are pHAGE-Luc2-IRS-ZsGreen (NR-52516), HDM-
Hgpm2 (NR-52517), pRC-CMV-Rev1b (NR-52519) and HDM-tat1b (NR-52518). These 
plasmids were added to D10 medium in the following ratios: 10 μg pHAGE-Luc2-IRS-ZsGreen, 
3.4 μg FL Spike, 2.2 μg HDM-Hgpm2, 2.2 μg HDM-Tat1b and 2.2 μg pRC-CMV-Rev1b in a 
final volume of 1,000 μl. 

After adding plasmids to medium, we added 30 μl of BioT to form transfection 
complexes. Transfection reactions were incubated for 10 min at room temperature, and then 9 ml 
of medium was added slowly. The resultant 10 ml was added to plated HEK cells from which the 
medium had been removed. Culture medium was removed 24 h after transfection and replaced 
with fresh D10 medium. Viral supernatants were harvested 72 h after transfection by spinning at 
300g for 5 min, followed by filtering through a 0.45-μm filter. Viral stocks were aliquoted and 
stored at −80 °C. 
 
Pseudovirus neutralization 

The target cells used for infection in SARS-CoV-2 pseudovirus neutralization assays are 
from a HeLa cell line stably overexpressing human angiotensin-converting enzyme 2 (ACE2) as 
well as the protease known to process SARS-CoV-2: transmembrane serine protease 2 
(TMPRSS2). Production of this cell line is described in detail by Rogers et al (77). with the 
addition of stable TMPRSS2 incorporation. ACE2/TMPRSS2/HeLa cells were plated 1 day 
before infection at 8,000 cells per well. Ninety-six-well, white-walled, white-bottom plates were 
used for neutralization assays (Thermo Fisher Scientific). 

On the day of the assay, purified IgGs in 1× PBS were made into D10 medium (DMEM 
+ additives: 10% FBS, L-glutamate, penicillin, streptomycin and 10 mM HEPES). A virus 
mixture was made containing the virus of interest (for example, SARS-CoV-2) and D10 media. 
Virus dilutions into media were selected such that a suitable signal would be obtained in the 
virus-only wells. A suitable signal was selected such that the virus-only wells would achieve a 
luminescence of at least >1,000,000 relative light units (RLU). Then, 60 μl of this virus mixture 
was added to each of the antibody dilutions to make a final volume of 120 μl in each well. Virus-
only wells were made, which contained 60 μl of D10 and 60 μl of virus mixture. Cells-only wells 
were made, which contained 120 μl of D10 media. 

The antibody/virus mixture was left to incubate for 1 h at 37 °C. After incubation, the 
medium was removed from the cells on the plates made one day prior. This was replaced with 
100 μl of antibody/virus dilutions and incubated at 37 °C for approximately 48 h. Infectivity 
readout was performed by measuring luciferase levels. Medium was removed from all wells, and 
cells were lysed by the addition of 100 μl of BriteLite assay readout solution (PerkinElmer) into 
each well. Luminescence values were measured using an Infinite 200 PRO Microplate Reader 
(Tecan) using i-control version 2.0 software (Tecan) after shaking for 30 sec. Each plate was 
normalized by averaging the cells-only (0% infection) and virus-only (100% infection) 
wells. Neutralization titer was defined as the sample dilution at which the RLU was decreased by 
50% as compared with the RLU of virus-only control wells after subtraction of background 
RLUs in wells containing cells only. Normalized values were fitted with a three-parameter 
nonlinear regression inhibitor curve in GraphPad Prism 9.1.0 to determine the half-maximal 
inhibitory concentration (IC50). Antibody variant half-maximal inhibitory concentrations are 
compared to per-assay wildtype controls to compute fold-changes. Both average half-maximal 
inhibitory concentrations and average half-maximal inhibitory concentration fold-changes are 

https://www.ncbi.nlm.nih.gov/nuccore/OL672836.1
https://www.ncbi.nlm.nih.gov/nuccore/OP412163


 
 

8 
 

reported in Supplementary Data 1. Neutralization assays were performed in biological 
duplicates with technical duplicates. 

Computing frequency of changes to antibody protein sequences 
We computed the frequency of residues involved in affinity-enhancing substitutions 

using the abYsis webtool, which also computes the frequency of amino acids at each position 
based on a multiple sequence alignment. We aligned VH and VL protein sequences using the 
default settings provided in the ‘Annotate’ tool, using the database of ‘All’ sequences as of April 
1, 2023. We also used the Kabat region definition provided by abYsis webtool version 3.4.1 to 
annotate the framework regions and CDRs within the VH and VL sequences which are reported 
in Supplementary Table 3. 
 
Comparing efficiency of machine learning-guided directed evolution methods 

To compare the performance of our experimental campaigns with the structure-informed 
language model against other machine learning methods for protein evolution, we compared the 
fraction of variants tested in the protein engineering campaign to the number of assay-labeled 
training data points used to inform the predictions. Data was sourced from Biswas et al. (63) and 
made contemporaneous by the addition of recently published studies as indicated in 
Supplementary Data 5. The fraction improved, or hit rate, refers to experimentally tested 
predictions which have improved functional activity relative to either a wildtype protein that is 
used as a starting point for directed evolution or the protein used as a reference template for 
design. 
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Supplementary Figures and Tables 

Fig. S1. Evolutionary prediction with sequence-informed language model identifies high 
fitness variants across proteins with diverse functions  
In addition to higher hit rates of high fitness variants, the structure-informed language model 
generally identifies variants with greater magnitude of improvements in fitness. The top ten 
predicted variants with experimental fitness values ranking in the 20th percentile of all variants 
profiled in the deep mutational screen are shown. The grey curve shows the empirical cumulative 
distribution function (ECDF) of all experimental fitness values determined in the screen. The 
dotted lines correspond to the three percentile-based thresholds used in the sensitivity analysis 
(Figure 1d) to classify high fitness variants. bla, Beta-lactamase TEM; CALM1, Calmodulin-1; 
haeIIIM, Type II methyltransferase M.HaeIII; HRAS, GTPase HRas; MAPK1, Mitogen-
activated protein kinase; TMPT, Thiopurine S-methyltransferase; TPK1, Thiamin 
pyrophosphokinase 1; UBI4, Polyubiquitin; UBE2I, SUMO-conjugating enzyme UBC9 
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Fig. S2. Impact of lower limit of quantitation of binding assay on predictive performance 
(A) Scatter plots showing CR6261 variant sequences scored with the structure-informed 
language model compared to experimental binding data and inclusive of the assay’s lower limit 
of quantitation, which is omitted for visualization in Figure 3b. (B) Comparative bar plots 
showing the impact of removing sequences with experimental measurements bounded artificially 
by the assay to dataset-wide correlation. While Spearman correlations shown in Figure 3a are 
computed without any modification to the data, trends in prediction and comparison among 
modeling methods are robust to filtering sequences affected by this assay artifact. 
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Fig. S3. Primary antibody mutagenesis data with structure-informed language model log 
likelihood predictions 
Scatter plots showing the sequence log likelihood prediction and corresponding experimental 
binding measures for each sequence tested used to compute Spearman correlations in Figure 2a 
‘Ab-Ag’ condition. For CR9114 and CR6261 (top and middle), the final column (right) shows 
the cross-reactive binding landscape, that is experimental values are plotted on both axes. Points 
are colored based on the density of the rasterized plot, which was used to accommodate the large 
number of sequences interrogated within these datasets. 
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Fig. S4. Evaluating the ability for language models to learn binding with additional 
sequence context  
Bar plots showing the Spearman correlation between ESM-1v language-model (LM) predictions 
for mutational landscapes of (A) CR9114 (B) CR6261 and (C) g6.31 and experimentally 
determined measurements of binding to the indicated antigens using. Language model variant 
prediction was evaluated in three different settings: i) providing the entire antibody variable 
region and antigen complex (Ab-Ag) ii) providing only the antibody variable region (Ab only), 
and iii) providing only the single antibody variable region of the chain responsible for binding or 
being mutated (Ab VH only or Ab VH/VL only). In contrast to performance improvements in 
binding predictions when antigen information is provided for the structure-informed language 
model, no benefits are observed with sequence-only general protein language models. 
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Fig. S5. Comparison of antibody binding prediction to an alternate model for structure-
based sequence scoring 
The structure-informed language model, ESM-IF1, performs better for antibody binding 
prediction than the message-passing neural network-based model, ProteinMPNN (49), which can 
also be used to score sequences for a given target protein structure. Notably, ESM-IF1 is only 
trained on single chain protein structures while the training dataset for ProteinMPNN includes 
multichain protein complexes. Spearman correlations between model prediction scores and 
experimental binding data are shown for each of the datasets presented in Figure 2. Both models 
were evaluated using the same input target structures and scoring method (Methods).  
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Fig. S6. Structural and sequence similarity of antigens used in antibody protein complexes  
(A) For cross-reactive antibodies, inclusion of the antigen structure is informative even for 
predicting binding to a different antigen. In Figure 2a, we report a correlation of 0.65 between 
structure-informed language model log likelihoods of CR9114 variants and experimental affinity 
measurements to H1 despite using a structure solved with CR9114 in complex with H5. We use 
both the protein sequence and backbone structure coordinates of the entire complex as input. 
Across both HA subunits, H5 and H1 have considerable sequence differences, yet only 1.07 Å 
root mean square deviation (RMSD) across the entire protein backbone. (B) Comparison of 
antigenic structural similarity between the target protein complex structure used as input (PDB 
3GBN (45)) to compute predictions and structure of H1 from the strain experimentally tested 
(PDB 7MFG (78)),  (C) Table summarizing the sequence identity of residues composing the 
antibody epitope on HA and entire protein sequence for relevant strains used in this study. 
Additionally, sequence sampling with a low temperature was performed to assess recovery of 
native-like HA sequences. Sequence recovery of sequences sampled for HA, given an input 
protein complex with the corresponding bnAb, is within the range of natural influenza HA 
sequences. 
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Fig. S7. Functional diversity of structure-informed language model-recommended 
mutations 
Among the 20 single amino acid substitutions tested for LY-CoV1404, 12 of 20 = 60% improve 
neutralization against at least one of the two strains tested. Similarly, 9 of 20 = 45% of the single 
amino acid substitutions tested for SA58 improve neutralization. While some variants improve 
function against both pseudovirus strains, others overwhelmingly only improve against one. This 
suggests that focusing sequence exploration to structurally compatible mutations does not 
compromise functional diversity. 
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Fig. S8. Sequence-only language model guided evolution of LY-CoV1404 and SA58  
Strip plots showing two rounds of directed evolution for antibodies (A) LY-CoV1404 and (B) 
SA58 using the same experimental algorithm with variants recommended by an ensemble of 
sequence-only protein language models (58), a method which has previously been demonstrated 
to improve antibody affinity. The top final design using the structure-informed language model 
(shown in green), as presented in Figure 3c, has substantially greater order of magnitude 
improvements to the final design achieved with the language models. Given the improved 
experimental outcomes in comparison to the competitive baseline, these results strongly support 
the use of incorporating structural information. 
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Fig. S9. Polyspecificity of evolved antibodies 
(A) The median fluorescence intensity (MFI) signal obtained from flow cytometry is shown for 
several evolved antibodies with improved affinity and compared to two clinical monoclonal 
antibodies with high and low polyspecificity used to define a clinically viable range. (B) Fold-
change in polyspecificity signal is plotted against fold-change in affinity as IgG against BQ.1.1 
for LY-CoV1404 and XBB.1.5 for SA58. There is no correlation between the improvements in 
on-target improvements in affinity and off-target nonspecific changes in polyspecificity 
(Spearman r = 0.007). 
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Fig. S10. Mapping neutralization-enhancing substitutions  
Neutralization-enhancing mutations are labeled on the structure of the wild-type antibody in 
complex with the RBD of SARS-CoV-2 spike protein (LY-CoV1404: PDB 7MMO (50); SA58: 
PDB 7Y0W (54)). Notably, several mutations are identified to have significant beneficial 
impacts on binding neutralization and affinity (Supplementary Data 1 & 2) despite located 
away from the binding interface.  
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Fig. S11. Comparison to other machine learning-guided directed evolution campaigns  
'Fraction improved' refers to the hit rate of variants tested that are improved relative to a wildtype 
protein used as a starting point for directed evolution or a reference protein used as a design 
template. Higher hit rates indicate more efficient experimental exploration. Our experimental 
campaigns achieve among the highest hit rates with the lowest number of assay-labeled training 
data points to-date (8, 56, 58, 63–73). 
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Protein(s) 
(Uniprot ID) Organism Functional 

Assay 
Mutagenesis 

Method 
Utilized 

assay PDB Structure 

Total 
coverage 
of DMS 

(%) 

Access 
date* Reference 

UBE2I 
(P63279) 

 

Human 

POPCode, a 
variant of 

multiple-site 
directed 

mutagenesis. 

Competitive 
growth assay in 

yeast. 

score 5F6E chain A 
 100 

12/10/20
18 

(Weile et al, 
2017) 

TPK1 
(Q9H3S3) 

 

score 
 

3S4Y chain A 
 92.46 

CALM1 
(P0DP23) score 5V03 chain R 

 100 

HRas 
(P01112) Human 

Systematic site-
directed 

mutagenesis. 

Two-hybrid 
assay. unregulated 2CE2 chain X 

 100 12/10/20
18 

(Bandaru et al, 
2017) 

MAPK1 
(P28482) Human 

Systematic site-
directed 

mutagenesis. 

Competitive 
growth assay. VRT 4ZZN chain A 

 99.44 12/10/20
18 

(Brenan et al, 
2016) 

TPMT 
(P51580) Human 

Systematic site-
directed 

mutagenesis. 

Fluorescence of a 
GFP fusion 

protein. 

score 
 

2BZG chain A 
 92.9 12/10/20

18 
(Matreyek et al, 

2018) 

UBI4(b) 
(P0CG63) Yeast 

Site directed 
mutagenesis by 
cassette ligation. 

Fluorescence 
activated cell 

sorting (FACS). 

Relative_E1-
activity_limiti

ng 

4Q5E chain B 
 100 12/10/20

18 
(Roscoe & 

Bolon, 2014) 

GAL4 
(P04386) 

 
Yeast 

Systematic site-
directed 

mutagenesis. 

Two-hybrid 
assay. 

Nonselection
_24 

3COQ chain B 
 90.64 12/10/20

18 
(Kitzman et al, 

2015) 

bla(b) 
(P62593) E. coli 

Systematic site-
directed 

mutagenesis. 

Antibiotic 
resistance. 

Ampicillin_2
500 

1M40 chain A 
 100 12/10/20

18 
(Stiffler et al, 

2015) 

haeIIIM 
(P20589) 

H. 
aegyptius 

Random 
mutagenesis. 

Competitive 
growth assay. DMS_G3 3UBT chain B 

 99.37 12/10/20
18 

(Rockah-Shmuel 
et al, 2015) 

 
Table S1. List of proteins, protein structures, and assay information for deep mutational 
scanning experiments. Summary of the DMS datasets used in this analysis, including functional 
assay, method of mutagenesis, and structure used for inverse folding scoring. We also note the 
specific DMS assay from each study we use for calculating correlation with inverse folding log 
likelihoods. 
 
*Access date is as reported in Livesey & Marsh, 2020 study from which these data were sourced 
and this table was adapted 
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CR9114     HA1 HA2 

Strain HA 
Subtype Use in Fig.2 

Sequence 
Identity 

(%) 

Epitope 
Identity 38 40 41 42 291 292 293 18 19 20 21 36 38 41 42 45 46 48 49 52 56 

Influenza A/New 
Caledonia/20/1999 (H1N1) H1 Experimental 

Screening 63.1 14/21 H V N L S L P V D G W A Q T Q I N I T V I 

Influenza 
A/Wisconsin/67/2005 

(H3N2) 
H3 Experimental 

Screening 40.2 10/21 N T E L D K P V D G W A L T Q I N I N L I 

Sampled Sequence; T=1e-6 H5 - 53.3 12/21 N L N I S M P T D G L P K T Q I D I D V V 

Influenza 
A/Vietnam/1203/2004 

(H5N1) 
H5 Target 

Structure - - H Q D I S M P V D G W A K T Q I D V T V I 

                          

CR6261     HA1 HA2 

Strain HA 
Subtype Use in Fig.2 

Sequence 
Identity 

(%) 

Epitope 
Identity 18 38 40 41 42 291 292 293 318 19 20 21 38 41 42 45 46 49 52 52 56 

Influenza A/New 
Caledonia/20/99 (H1N1) H1 Experimental 

Screening 86.9 21/21 H H V N L S L P T D G W Q T Q I D T V N I 

Influenza A/Hong 
Kong/1073/1999 (H9N2) H9 Experimental 

Screening 53.9 13/21 Q H K E L T L P V A G W K T Q I D T V N V 

Sampled Sequence; T=1e-6 H1 - 57.5 17/21 H H V N L S L P T D G F R T Q I N T V N K 

Influenza A/Brevig 
Mission/1/1918 (H1N1) H1 Target 

Structure - - H H V N L S L P T D G W Q T Q I D T V N I 

 
Table S2. Conservation analysis of cross-reactive antibodies used in computational 
benchmarking. Conservation analysis of cross-reactive antibodies used in computational 
benchmarking. Epitopes were sourced from Dreyfus et al., Science (2012) for CR9114 and the 
Immune Epitope Database & Tools for CR6261. 
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LY-CoV1404 

Chain 
Mutated Design Region 

WT Amino 
Acid 

Frequency 

Mutant 
Amino Acid 
Frequency 

HC D88Q HFR3 0.03333 0.00382 
HC V90S HFR3 0.03316 0.05155 
HC S62N CDR-H2 0.13159 0.16299 
HC V81T HFR3 0.03432 0.00205 
HC F24Y HFR1 0.01738 0.00002 
HC I31T CDR-H1 0.00933 0.09048 
HC H99Y HFR3 0.01593 0.00138 
HC T70S HFR3 0.88405 0.06153 
HC I105L CDR-H3 0.02764 0.05760 
LC A98I CDR-L3 0.02297 0.03198 
LC Q39K LFR2 0.92316 0.00238 
LC T5Q LFR1 0.89340 0.00933 
LC K47E LFR2 0.52285 0.01490 
LC M49L LFR2 0.05585 0.77076 

 
SA58 

Chain 
Mutated Design Region 

WT Amino 
Acid 

Frequency 

Mutant 
Amino 
Acid 

Frequency 
HC T53L CDR-H2 0.03814 0.00963 
HC A61S CDR-H2 0.59797 0.13159 
HC E10Q HFR1 0.24182 0.01366 
LC N95V CDR-L3 0.13399 0.00685 
LC S85A LFR3 0.01109 0.00698 
LC S54T CDR-L2 0.65138 0.05372 
LC M4V LFR1 0.29424 0.03348 

 
Table S3. Analysis of neutralization-enhancing mutations. Single amino acid substitutions 
with beneficial effects on neutralization are reported alongside the region of the variable domain 
they are located within, as well as the wild-type and mutant amino acid frequencies in observed 
human antibody sequences. 
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Supplementary Data 1: Neutralization data with IC50 values of evolved antibodies across both 
evolutionary campaigns 
 
Supplementary Data 2: Binding data with IgG KD values of evolved antibodies  
 
Supplementary Data 3: Antibody variant prediction benchmarking results 
 
Supplementary Data 4: MFI values for polyspecificity experiments 
 
Supplementary Data 5: Efficiency comparison of machine learning-guided directed evolution 
methods 
 
 
Supplementary Information: Antibody sequences  
 
 


