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Supplemental optimization algorithm: Mini-Batch
SDCA

Goal: Minimize P (ω) = 1
N

∑N
n=1 ϕn(ω) + g(ω) where ω ∈ Rp, ϕn(ω) = log(1 +∑3

i=1 e
−Xinω), g(ω) = 1

2N ω′Pω. The conjugate function of g(ω) is g(α) =
N
2 α

′P−1α.
Parameters: θ ∈ [0, 1]; mini-batch size m, mini-batches {I1, · · · , IN/m}
Initialize: α0

1 = · · · = α0
n = ᾱ(t) = 0, αi, ᾱ ∈ Rp; ω(0) = 0;

Iterate: for epoch = 1, 2, · · ·
Ī(t−1) = ∅
for t = epoch, 2 · epoch, · · ·
u(t−1) = (1− θ)ω(t−1) + θ▽g∗(ᾱ(t−1))
Randomly pick one mini-batch I from {I1, · · · , IN/m} − Ī(t−1) and update

the associated dual variables
Ī(t) = Ī(t−1) ∪ I
αi(t) = (1− θ)αt−1

i − θ▽ϕi(u
(t−1)) for i ∈ I

α
(t)
j = α

(t−1)
j for j /∈ I

ᾱ(t) = ᾱ(t−1) + 1
N

∑
i∈I(α

(t)
i − α

(t−1)
i )

ω(t) = (1− θ)ω(t−1) + θ▽g∗(ᾱ(t))
Ī(t) = Ī(t−1) ∪ I
if Ī(t) = {I1, · · · , IN/m}
end

end

Supplemental M-step

In this section, we show the details of solving the closed-form solutions to max-
imize Q2, Q3, and Q4 at M-step. According to the E-step, Q2 function can be
written as

Q2

[
π1|β(k), π

(k)
1

]
=

S∑
s=1

Eγs|. [γs] log

[
π1

1− π1

]
+ (2S − 1) log(1− π1), (1)
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where
p∗s = Eγs|. [γs] = P (γs = 1|β(k), π

(k)
1 ) =

as
as + bs

, (2)

as = P (β(k)|γs = 1)P (γs = 1|π(k)
1 ), bs = P (β

(k)
s |γs = 0)P (γs = 0|π(k)

1 ) and

P (γs = 1|π(k)
1 ) = π

(k)
1 . The first derivative of Q2 with respective to π1 is shown

as

∂Q2

∂π1
=

1

π1

S∑
s=1

p∗s +
1

1− π1

S∑
s=1

p∗s −
1

1− π1
(2S − 1). (3)

The second derivative of Q2 with respective to π1 is shown as

∂2Q2

∂π1
= − 1

π2
1

S∑
s=1

p∗s +
1

(1− π1)2

S∑
s=1

p∗s −
1

(1− π1)2
(2S − 1)

= − 1

π2
1

S∑
s=1

p∗s −
1

(1− π1)2
(2S −

S∑
s=1

p∗s − 1)

(4)

According to Eq (2), 0 ≥ p∗s ≤ 1, then
∑S

s=1 p
∗
s ≤ S. When S ≥ 1, we have

2S −
∑S

s=1 p
∗
s − 1 ≥ 0, and ∂2Q2

∂π1
≤ 0. Let ∂Q2

∂π1
= 0, we obtain

π
(k+1)
1 =

∑S
s=1 p

∗
s

2S − 1
(5)

And π
(k+1)
1 makes Q2 reach the maximum value due to ∂2Q2

∂π1
≤ 0. The closed-

form solutions to maximize Q3 and Q4 can be similarly derived.
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Supplemental simulation detail

Obtain haplotype data Si from Cosi2

a) S1, S2 denoted the haplotypes
from African and European, respec-
tively;
b)Each Si included 80,000 haplo-
types.

Repeat sampling 500 times

Each time, sampling 15,000 ,
45,000 haplotypes from African
and European population re-
spectively without replacement

Generate 15, 000 trio families

a) Pairing four haplotypes as the hap-
lotypes of parents from the same pop-
ulation;
b) Randomly select one haplotypes
from each parent to generate the
haplotypes for children.

Model phenotype of children by
using logistic regression model

Sampling 1500 probands
and their parents

1500 case trios including
population substructure

with African and European

Fig S1. Simulation diagram.

Supplemental simulation exclusion parameters tuning

According to the parameter tuning rule in the section “Selection parameter
tuning”, for simulated data, we detail the parameter tuning procedure using the
1500 trio scenario (these details apply similarly to the smaller dataset scenario)
as follows. We begin by setting the two exclusion parameters to be the same,
i.e., v0 = v2. We use a regularization plot to identify a stable choice for the
exclusion parameter of common variants, v0. The range of possible values of v0
to investigate with the regularization plot results in values that translate to a
95% confidence interval for the odds ratio ranging from [0.99, 1.01] to [0.97,1.03],
Fig S2. According to the regularization plot, we choose the exclusion parameter
such that the 95% prior probability for an odds ratio for excluded common
variants is between [0.972, 1.028], v0 = 0.0002. Once the value for the exclusion
parameter for common variants was identified, v0 = 0.0002, we repeated the
process using regularization plots with respect to the exclusion parameter, v2,
considering values that generate 95% confidence intervals for the odds ratio to
range from [0.995, 1.005] to [0.98, 1.02], Fig S3. It may be helpful to refine v2
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Fig S2. Regularization plot with respect to v0 and v2 (v0 = v2) at
temperature 1/t= 10. The range of v0 was from v0 = 2.6× 10−5,
corresponding to a 95% probability interval for an odds ratio of an excluded
SNP to be [0.99,1.01], to v0 = 0.00023, corresponding to a 95% probability
interval for an odds ratio being [0.97,1.03].

by repeating the regularization plot across a finer grid consisting of the first 10
points of Fig S3 (see Fig S4). We chose the value of the exclusion parameter
v2 for rare variants in the following way: We require the corresponding 95%
probability interval for the odds ratio to fall in the range of [0.995, 1.005] to
[0.985, 1.015], which translate to a range of v2 from 6.51× 10−6 to 5.28× 10−5.
We pick the value of v2 such that there is no shrinkage in the regularization
plot for three consecutive values of v2, and we choose the 3rd point as the value
for our exclusion parameter of v2. Therefore, the exclusion parameter of rare
variants for this data set was set as the 29th point in the regularization plot, i.e.
v0 = 5.7× 10−5, corresponding to a 95% probability interval for the odds ratio
being [0.985,1.015]. Based on the tuned exclusion parameters, we specified the
region and individual variable selection in each data set.

Supplemental simulation results

In this section, we discuss the individual-level variant selection performance of
TRIO RVEMVS when all variants were considered, i.e., variants that were not
polymorphic across all datasets. Considering that most of the rare variants
were not polymorphic across all data sets, we defined the Average True and
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Fig S3. Regularization plot with respect to v2 given v0 = 0.0002, at
temperature 1/t= 10. The range of v2 was from v2 = 6.51× 10−6, which
corresponds to a 95% probability interval for an excluded SNP to range from
[0.995,1.005], to v2 = 0.0001, which corresponds to a 95% probability interval
for odds ratio of an excluded SNP to be [0.98,1.02].
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Fig S4. Regularization plot that zoomed in range of the first 10 points of v2
in Fig S3.
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False Positive Rate (ATPR and AFPR) for individual variants as follows:

ATPR =
1

# of data sets

∑
data set d

Nd(selected|associated)
Nd(# of polymorphic associated variants)

AFPR =
1

# of data sets

∑
data set d

Nd(selected|unassociated)
Nd(# of polymorphic unassociated variants)

(6)

where Nd(selected|·) denotes the number of detected variants given the variants
are associated or unassociated in data set d.

When both common and rare variants were considered, the ATPR, Eq (6),
was 2.45%, and the AFPR was 0.07%; when only rare variants were considered
the ATPR was 0.94% and AFPR was 0.07%. The ATPR and AFPR across
varying MAF ranges are summarized in Table S1. Among the data sets with
1500 case-trios, the average number of polymorphic associated rare variants
was 130, and the average number of associated singletons was 105 (about 80%
of polymorphic causal rare variants were singletons). Excluding singletons, the
ATPR was 11.90%, and AFPR was 0.28% when both common and rare variants
were included in the analysis; when only considering rare variants, the ATPR
was 4.87% and AFPR was 0.48%.

Table S1. The average true and false positive rate of individual variants
detection in different MAF ranges.

Sample size MAF<0.01 0.01 ≤ MAF<0.05 MAF≥ 0.05 0<MAF<0.5

ATPR (%)
1500 0.22 94.2 100 2.45
350 0 25.37 83.8 4.33

AFPR (%)
1500 0 6.02 0.07 0.07
350 0 2.62 1.39 0.13
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Fig S5. In the simulated 500 trio data sets, the histogram for the proportion
of data sets in which associated rare variants are polymorphic.
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