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OBSERVED WLM
An overview of the experimental setup as well as a post-fission
stable WLM are shown in Figure S1.
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Figure S1: CryoEM of sNTs. A. Low magnification image of the sNTs obtained by the methods explained in Figure
1A. Asterisks indicate sites of sNT fission. B. Stable WLM upon sNT fission as observed by cryoEM.
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PHASE BEHAVIOR
In order to study the rearrangement of lipid membranes using
SCFT, we start by calculating the equilibrium phase behavior,
in terms of the chemical potential of the lipids relative to the
solvent, 𝜇 ≡ 𝜇ℓ − 𝜇s and composition of the lipids, 𝑓 , defined
as the molecular fraction of a lipid tail. The former controls
the membrane tension and the latter controls the spontaneous
curvature of a lipid monolayer. The phase diagram, shown
in Figure S2, is calculated by comparing the grandcanonical
free energies of different structures.
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Figure S2: Phase behavior of lipids in solvent is shown in terms
of the fractional composition of the lipid, 𝑓 , and exchange
chemical potential, 𝜇 = 𝜇ℓ − 𝜇s, of the lipid relative to that of
the solvent. We consider the phases: homogeneous solution
(H), spherical micelles (S), cylindrical wormlike micelles
(WLM); and membranes (M).

In addition to the membrane structures that interest us, we
also find spherical and worm-like micelles. The free-energy
calculations were performed for a single spherical micelle (S),
worm-like micelle (WLM), and membrane (M), coexisting
with a homogeneous solution. The curves indicate where
forming a S, WLM or M first lowers the free energy at the
given 𝑓 and 𝜇.

The simplest form of M is a flat planar membrane, how-
ever, other possibilities include membrane nanotubes (NTs)
and vesicles. The geometry (e.g. NT or vesicle diameter) is
controlled by additional factors, such as tension, spontaneous
curvature and penalties to bending. It is also possible for mul-
tiple structures to coexist, as in the case of double-membrane
nanotubes (dNTs), which will be discussed later. In this case,
interactions between membranes, such as hydration repulsion,
also become relevant.

Although S and WLM are no longer stable at large 𝑓 , they
remain metastable. The WLM-M coexistence curve meets the
H-M coexistence curve at an angle and can be continued to
larger 𝑓 . This is to say that there is a region on the low 𝜇 side
of the H-M curve where WLM have a lower free energy than
membranes, though both have a higher free energy than H.
A membrane under tension (lower 𝜇 than coexistence) may
thus lower its free energy by converting to a WLM, before

lowering the free energy further by dissolving the WLM into
H.

As described in the main text, throughout this work,
unless otherwise stated, we will use 𝜒𝑁 = 30 and 𝑓 = 0.8.
The constants that we derive, such as the ordering transition,
bending and splay moduli as well as spontaneous curvatures
are specific to these parameters.

PROPERTIES OF MEMBRANE BILAYERS
AND TUBES
We are primarily interested in the mechanisms by which
membranes rearrange during fission and fusion, however, it is
useful to elucidate the equilibrium properties of membranes
and NTs. The stability of membranes as well as the tension
in the membrane can be controlled by the chemical potential
of the lipids, 𝜇. Membranes are stable at high 𝜇, but at low 𝜇

they dissociate into a homogeneous mixed state containing a
small concentration of lipids. We first locate the membrane-
homogeneous transition and the relationship between the free
energy per unit area, tension, in the membrane and 𝜇. We then
calculate the free energy of an NT as well as its equilibrium
radius and bending energy.

The free energy of a planar membrane is shown in Fig-
ure S3. The transition occurs at 𝜇MH = −11.3512

√
�̄� 𝑘𝐵𝑇 .

Expanding the free energy per unit area, 𝜎 ≡ 𝐹/𝐴, to linear
order in distance from the transition, (𝜇MH − 𝜇), we find
𝜎 ≈ 1.374(𝜇MH − 𝜇)/𝑅2

0 from Figure S3. The width of the
bilayer at 𝜇 = 𝜇MH, given by the distance over over which the
total lipid concentration is greater than 0.5, is 𝑑 = 1.22𝑅0.
𝜎 and 𝑑, along with 𝜅 discussed below, are used to scale
quantities in the main paper.
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Figure S3: The free energy per unit area of a planar bilayer
membrane is shown as a function of lipid chemical potential,
𝜇. The red dotted line shows 𝐹/𝐴 = 1.374(𝜇MH − 𝜇)/𝑅2

0.

We are primarily interested in NTs and thus turn our
attention thereto. There is a number of ways of calculating the
bending energy of a membrane, such as that described in Ref.
1. SCFT gives us direct access to the free energy, making our
task simpler than that of simulations. The first step is to find
the radius of an NT from our SCFT calculations.
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We define the radius of an NT as

𝑟NT ≡
∫
𝑑r 𝜙ℓ (r)𝑟2∫
𝑑r 𝜙ℓ (r)𝑟

(1)

where 𝜙ℓ (r) is the concentration of lipids at position r and
𝑟 = 0 defines the cylindrical axis. We can then study the
membrane bending energy which can be written as (2–4)

𝑈bend =

∫ [ 𝜅
2
(𝐾 − 𝐶0)2 + 𝜅𝐾𝐺

]
𝑑𝐴 (2)

where 𝜅 and 𝜅 are the bending modulus and the saddle
splay modulus, respectively. The extrinsic curvature, 𝐾 =

1/𝑅1 + 1/𝑅2, is the sum of the two principal curvatures and
the Gaussian curvature, 𝐾𝐺 = 1/(𝑅1𝑅2), is their product. The
inverse length, 𝐶0, is the spontaneous curvature. In the case
of a cylinder there is only one curvature, thus 𝐾 = 1/𝑟NT and
𝐾𝐺 = 0, and it follows from the symmetry of the membrane
that 𝐶0 = 0. Taking the integral in Equation 2 over the area
of the cylinder and adding in the, previously discussed, free
energy per unit area allows us to write the free energy of a
cylindrical membrane, 𝐹NT, per unit length, 𝐿, as

𝐹NT
2𝜋𝐿

= 𝑟NT𝜎 + 𝜅

2𝑟NT
(3)

where the first term is simply the free energy per unit area
multiplied by the circumference of the cylinder and the second
term is the bending energy.

Extracting 𝜎 from Figure S3, we then fit Equation 3 to
the free energy in Figure S4A to obtain the bending modulus,
𝜅 = 0.209

√
�̄� 𝑘𝐵𝑇 . Minimizing the free energy, Equation 3,

with respect to the radius results in 𝑟NT =
√︁
𝜅/2𝜎. Figure S4B

shows a comparison with the radius found from SCFT.
Repeating this argument for a spherical vesicle of radius

𝑟V, the free energy then becomes

𝐹V
4𝜋

= 𝑟2
V𝜎 + 2𝜅 + 𝜅 (4)

Unlike a cylinder, a spherical vesicle cannot minimize
this free energy with any finite radius. If 𝜎 < 0, the vesicle
can always decrease its free energy by growing, as with a
cylinder, however if 𝜎 > 0 the vesicle shrinks unbounded.
This is obviously a result of truncating the bending energy
expansion, as higher powers of 1/𝑟V would become more
significant as 𝑟V decreases. Nonetheless, we still have a simple
way of extracting the saddle splay modulus: we employ SCFT
calculations similar to the ones above, but with spherical
symmetry. Using 𝜇 ≳ 𝜇MH, so 𝜎 ≲ 0, the vesicle ‘tries’ to
grow but is repelled by the reflecting upper boundary. This
procedure produces a small correction to the 𝑟2

V term caused
by the aforementioned repulsion, however the constant term,
2𝜅 + 𝜅, is unaffected, allowing us to extract 𝜅 = −0.07459

√
�̄� .

An example plot is shown in Figure S5.
Turning our attention back to cylinders, concentration

profiles for single- and double-nanotubes, sNTs and dNTs, are
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Figure S4: A Free energy of NTs per unit length and B
equilibrium radii of NTs as a function of lipid chemical
potential, 𝜇. Red, dotted curves show fits to A 𝐹/2𝜋𝐿 =

𝑟NT𝜎 + 𝜅/2𝑟NT and B 𝑟NT =
√︁
𝜅/2𝜎. Close to and above

𝜇 = 𝜇MH (where 𝜎 is small or negative), the radius is limited
by the size of the system, and exhibits a plateau.
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Figure S5: Free energy of a spherical vesicle as a function of
radius, at 𝜇 = −11.35

√
�̄� 𝑘𝐵𝑇 . The radius is controlled by a

repulsion of the membrane against a reflecting boundary.
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Figure S6: Profiles of A sNT and B dNT at 𝜇 =

−11.373
√
�̄� 𝑘𝐵𝑇 . Concentrations are shown of the (red) tail,

(blue) head and (green) solvent as a function of the radial
distance from the cylinder axis.

shown in Figure S6. At fixed chemical potential, NTs have a
preferred radius, as discussed above. In a dNT, the radius of
each is set by a combination of the preferred radius of each
(that of a sNT) and the repulsion between head groups. The
free energy of the dNT, relative to the mixed state, is slightly
higher than double that of a sNT, due to a deviation from
the equilibrium radius. Close to coexistence, however, this
difference becomes small.

As we have seen, equilibrium membranes (above 𝜇MH) are
planar (zero spontaneous curvature) and cylinders only form
under tension. Throughout our calculations we are interested
in the fission of NTs, as they exist in biological systems. In
these cases, there are various influences, such as proteins and
other cellular components, causing the membrane to retain
its cylindrical shape. Close to 𝜇MH, we restrict the cylindrical
radius simply by restricting the size of our box. This is similar
to how we restricted the spherical vesicle and can also be seen
in the plateau of the radius in Figure S4C, where the cylinder
comes up against the reflecting boundary.

The results we have shown thus far were calculated from
one-dimensional calculations, exploiting symmetries of the
system. Several calculations in the main paper also use cylin-
drical symmetry, however, when this is not possible, as for
the more complicated membrane rearrangements, we employ
a cuboidal box. For the chemical potentials that we use, the
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Figure S7: A planar monolayer profile is illustrated. Concen-
trations are shown of the (red) tail, (blue) head and (green)
solvent as a function of position along the dimension normal
to the membrane.

square cross-section of the box has little effect. This is con-
firmed by the following: (i) the circular symmetry of the NTs
(where expected - small deviations are noted for low tensions),
(ii) recalculations where the system was initialized in rotated
configurations, and (iii) comparisons between the full 3D
calculation (in a cuboidal box) and the 2D (cylindrically-
symmetric) calculations, where applicable. At higher 𝜇, the
cylinder pushes against the box boundaries and begins to
deform, but this deformation is small (if present at all) for the
values of 𝜇 presented.

PROPERTIES OF MEMBRANE MONOLAYERS
It is also instructive to examine the properties of membrane
monolayers. To do this, we construct systems with profiles like
those in Figure S7. Reflecting boundaries are implemented
on either end of the simulation. Similar calculations can be
conducted in planar, cylindrical or spherical geometries in
order to examine the properties of planar, cylindrical and
spherical monolayers.

Unlike bilayers, monolayers are not symmetric, and we
cannot say a priori that the spontaneous monolayer curvature
is 𝐶0,𝑚 = 0. For the case of a cylindrical monolayer, the free
energy per unit length becomes

𝐹NT,𝑚

2𝜋𝐿
= 𝑟NT�̃�𝑚 + 𝜅𝑚𝑟NT

2

(
1
𝑟NT

− 𝐶0,𝑚

)2
(5)

= 𝑟NT𝜎𝑚 + 𝜅𝑚

2𝑟NT
− 𝐶0,𝑚𝜅𝑚 (6)

where �̃�𝑚 is the free energy per unit area of the monolayer,
𝜎𝑚 = �̃�𝑚 + 𝜅𝑚𝐶2

0,𝑚/2 is the free energy per unit area of a
planar monolayer and 𝜅𝑚 is the monolayer bending modulus.
The free energy of a spherical monolayer with radius 𝑟V is

𝐹V,𝑚

4𝜋
= 𝑟2

V�̃�𝑚 +
𝜅𝑚𝑟

2
V

2

(
2
𝑟V

− 𝐶0,𝑚

)2
+ 𝜅𝑚 (7)

= 𝑟2
V𝜎𝑚 + 2𝜅𝑚 − 2𝜅𝑚𝐶0,𝑚𝑟V + 𝜅𝑚 (8)
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Figure S8: Free energies are shown for A cylindrical and B
spherical monolayers as functions of radius, with 𝜇 = 𝜇MH
chosen so that the free energy density of a planar membrane
is 𝜎𝑚 = 0. Red curves illustrate fits to A Equation 6 and B
Equation 8.

where 𝜅𝑚 is the monolayer saddle splay modulus.
Similar to our previous calculations, we examine the free

energy of cylindrical and spherical monolayers. In this case,
we control the radius of the cylindrical or spherical struc-
tures through our choice of the system radius. The resulting
free energies are shown in Figure S8. Fitting the curves to
Equation 6 and Equation 8 allows us to extract the monolayer
bending and saddle splay moduli, 𝜅𝑚 = 0.09909

√
�̄� 𝑘𝐵𝑇 and

𝜅𝑚 = −0.03741
√
�̄� 𝑘𝐵𝑇 , and the spontaneous monolayer cur-

vature, 𝐶0 = 0.1734𝑅−1
0 . As one might expect, the bending

and saddle splay moduli for the monolayers are close to half
of that for the bilayer.

The small deviation from 𝜅 = 2𝜅𝑚 likely occurs because
we ignored the membrane thickness, Δ𝑅. The bending energy
of a bilayer is given by the bending energy of the two mono-
layers i.e. the sum of Equation 6 for the 𝑟NT of the inner and
outer membranes, with 𝐶0,𝑚 having opposite signs for the two
membranes. For a large bilayer radius, the inner and outer radii
are approximately the same and we recover Equation 3 with
𝜅 = 2𝜅𝑚, plus a small correction of order Δ𝑅2/𝑟3

NT. Although
insignificant for large radii, this correction may account for the
deviation from strictly 𝜅 = 2𝜅𝑚 since the fits from which we
extracted 𝜅 and 𝜅𝑚 included small radii. A similar argument
applies to 𝜅 and 𝜅𝑚.

LEAFLETS UNDER DIFFERENT TENSION
Throughout this work, we have assumed that all membranes
(and membrane leaflets) are under the same tension, fixed
by their chemical potential. When using constriction due
to tension as a proxy for other, more complicated, ways of
constricting the membrane, this approximation is likely appro-
priate, but should be both noted and tested. Testing the effects
of tension differentials is particularly important in systems
such as mitochondria, where the inner and outer membranes
are attached to different reservoirs with, presumably, in gen-
eral, different tensions. A thorough investigation is beyond the
scope of this manuscript, but here we lay the groundwork for
simulating membranes under different tensions using SCFT.

As described above, the tension in a membrane (or leaflet)
is set by the lipid chemical potential. Furthermore, the in-
stantaneous exchange of lipids between leaflets implies that
membranes in the same simulation (with a fixed lipid chemical
potential) will have the same tension. Even if we introduce
multiple (miscible) lipid species, with separate chemical po-
tentials, they will instantly mix. The solution is to introduce a
repulsion between the head groups of otherwise identical lipid
species, thereby relegating lipids to a specific leaflet, while
allowing their tail groups to mix. This was done previously in
(5). Example membranes with the same and different tensions
in each leaflet are shown in Figure S9. The difference in
tension is visible in the asymmetry in the head-group density
on either side of the membrane.

We utilize a head-head repulsion of 𝜒𝑁 = 300 in order to
reduce overlap to almost zero. Note that this large 𝜒𝑁 value
does not bring about the significant challenges usually seen in
SCFT with large 𝜒𝑁 because there are no interfaces between
repulsive heads.

It is also important to note that at a fixed chemical potential
and finite head-head repulsion, there is a shift in the free energy
and thus zero-tension chemical potential which, though small,
is noticeable on the scale of our calculations. For 𝜒𝑁 = 300
the shift in 𝜇MH is approximately 9.9 × 10−3

√
�̄� 𝑘𝐵𝑇 , thus

the 𝜇 values in the plot below are this amount lower than
the quantities above to obtain the same tension. The shift in
the free energy is due to the small number of extra lipids
allowed in the system due to the finite amount of mixing, and
disappears as the head-head repulsion diverges.

The next steps are to repeat the sNT calculations using a
different tension for the inner and outer leaflets. Preliminary
calculations (not shown) suggest that the average tension
dictates the radius of the composite tube, thus we anticipate
only a small effect on the barrier. One can also repeat the dNT
calculations using combinations of leaflets in a membrane to
create the desired membrane tension. Note that this must be
done carefully. If the above technique is used and apposing
leaflets are of different species, then the extra repulsion may
far exceed the usual hydration repulsion, and would likely
preclude fusion. This investigation is left for future work.
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Figure S9: Profiles of planar bilayers, similar to Figure S6 and
Figure S7, calculated at (a) zero tension, and (b) a total tension
of zero, but the two leaflet having tensions of Δ𝜎 = ±𝜅/𝑑2.
Different head types are shown in blue and cyan.

LIPID DIFFUSION IN PLANAR MEMBRANES

In order to extract dynamical information from our particle-
based simulations, we conduct simulations of planar mem-
branes in order to compare the in-membrane self-diffusion
constant of lipids to that found in experiments. An illustration
of such a planar membrane and a plot of average lipid dis-
placement is shown in Figure S10. From this we can extract
a diffusion constant of approximately 𝐷 = 1.9 · 10−4nm2/Δ𝑡.
Approximating the in-plane diffusion constant of lipids as
4𝜇m2/s (6) allows us to estimate a SOMA time step size of
Δ𝑡 = 2 · 10−10𝑠. Other particle-based simulation methods,
such as MARTINI (7), use time steps of 10−14𝑠, making this
a significant increase in speed. The uncertainties in both the
membrane thickness (particularly between various cellular
components) and lipid diffusion time are quite high, partic-
ularly as both quantities vary significantly depending on the
particular membrane under consideration and the membrane
environment. The resulting estimate for our time step is thus
only a rough approximation. Based on the variation in the
aforementioned literature values, we expect our estimate to
be within a factor of 4 of the true value.
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Figure S10: Mean-squared lipid displacement in the membrane
plane as a function of time step, for a planar membrane in
SOMA. The scaling of the vertical axis was calculated by
equating an average membrane bilayer thickness of 4nm
(8) with the thickness found in SCFT (see Figure S6) of
approximately 1.22𝑅0. The inset shows an image of the planar
bilayer used in SOMA. Fitting the mean-squared displacement,
Δ𝑅2

MSD, to 𝑅2
MSD = 4𝐷𝑡 yields 𝐷 = 1.9 · 10−4nm2/Δ𝑡, where

Δ𝑡 is a SOMA time step.

MEMBRANE TUBE COLLAPSE RATE
Unlike the SCFT calculations, the coarse-grained simulations
can give us an order-of-magnitude estimate for the time
taken to undergo the aforementioned transformation processes.
Using the time step calculated above, Δ𝑡 = 2 · 10−10 s, allows
us to investigate the time taken to rearrange membranes.

The collapse of an NT into a WLM is shown in Figure S11.
Approximating the membrane width as 4 nm (8) and using the
previously-calculated time step, we estimate that the collapse
of the NT proceeds at a rate of approximately 100𝜇m/s. At
higher lipid concentration (or chemical potential), the NT
has a larger diameter and collapses more slowly and the
converse is also true. Repeating the above calculation, the
rate of collapse appears to be proportional to the free-energy
difference between sNT and WLM, which varies linearly with
tension. Using the fact that 𝑅𝑐 =

√︁
𝜅/2𝜎, we can write the

speed of WLM elongation as 𝑣 = 𝐶
(
𝑅−2
𝑐 − 𝑅−2

𝑐𝑊

)
, where 𝑅𝑐𝑊

is the radius of a membrane tube at sNT-WLM coexistence.
For the case outlined above, 𝐶 ≈ 1.973 · 106nm3/s and
𝑅𝑐𝑊 ≈ 8nm.

The illustrated NT is under high tension, chosen to in-
tentionally increase the speed due to the slow speed of sim-
ulations.1 If we were to decrease the tension so as to adjust
the collapse rates in our simulations, the simulations would
take prohibitively long. It should also be noted that we are
approximating lipids as polymers and polymer membranes
can withstand much higher tension and areal strain before
rupture (9, 10) and the illustrated system is likely beyond the
tension where lipid membranes would be stable.

1The initial condition was calculated from an NT at 𝜇 − 𝜇MH = −0.26𝜅 ,
where the radius of the tube is 𝑅𝑐 ≈ 3.9nm.
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Figure S11: The collapse of a sNT into a WLM in a SOMA
simulation is shown at intervals of 2 · 105Δ𝑡. Approximating
the membrane thickness as 4nm (8), the collapse proceeds at
approximately 2 · 10−5nm/Δ𝑡.

TRANSITION PATHWAY DETAILS
In order to clarify the pathways presented in the main text,
this section reproduces, annotates and expands upon Figures
5-8 and discusses variations to the mechanisms presented in
the main text. In cases where membrane changes may not be
obvious, we have highlighted the relevant locations on the
images.

We first consider a variation of the sNT collapse mech-
anism. As discussed in the main text, the minimum free
energy path (MFEP) connecting an intact sNT and a pair of
capped sNTs does not include pores. Seeing as short-lived
pores are apparently readily nucleated by interactions between
membranes in a dNT, we wished to investigate the fission
mechanism of a sNT where we enforce that the initial condi-
tion contains a pore. This is illustrated in Figure S12. rather
than closing the pore, and then undergoing fission in the usual
way (collapse to HF, then WLM, then fission of the WLM)
the pore facilitates fission by simultaneously unzipping the
sNT and closing it, until there are two capped sNTs connected
by a WLM, with pores in the caps, which then close.

Note that the starting state of Figure S12 necessarily
involves an external field that renders the pore in the sNT
metastable. Without such an external field, a pore in the sNT
is not metastable, i.e. if allowed to relax, it would close and
an intact sNT would form. A pore in a sNT could be rendered
metastable, e.g. by proteins. In this case, the free-energy
barrier between the sNT with a pore and the WLM is lower
than that associated with a collapse of an intact sNT.

Figure S13 reproduces Figure 6A in the main text, and
represents the simplest pathway for merging the inner and
outer membranes in a dNT. Starting from A the unperturbed
dNT, the outer membrane bends inwards towards the inner
membrane (highlighted in B). A small contraction of the
inner NT is also visible. C A stalk then grows between the
inner and outer membranes. The membrane thins on either
side of the stalk - this is first apparent in D. E-F The stalk
widens horizontally and the connection thins (thins vertically,
from the vantage point of the lower panels). This produces a
thin hemifusion diaphragm (HD), which separates the inner
and outer regions. G-H The HD may then broaden. The free-
energy barrier to rupturing this HD is small, and we have
observe it rupturing, to form a pore, in some particle-based
simulations.
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Figure S12: Images of the fission of a sNT starting from a state containing a pore at 𝜎 = 0.387𝜅/𝑑2.
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Figure S13: Enlarged versions of the images in Figure 4A in the main text. Panel A has been added and represents the
unperturbed double membrane. The change in panel B has been highlighted. Unlike in the main text, outer tubes have not been
made transparent.
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Figure S14 reproduces Figure 6B in the main text, and
represents the variation on the previous pathway, where a pore
intermediate is present in the outer membrane. The transition
begins similarly, bending the outer membrane towards the
inner and forming a stalk. Once again, the membranes become
thinner around the stalk. This time, however, a pore nucleates
in D. The stalk widens when the pore forms (going from panel
C to D). The stalk continues to widen, and zips around the
pore. The expanding connection is highlighted in E. The next
three steps, F-H, are the same as in the previous pathway.

In fact, there are more variations of this pathway. Fig-
ure S15 shows a path where a stalk forms (as in Figure S14)
and nucleates a pore in the inner membrane. As before, the
stalk then grows around the pore. Another variant of this,
shown in Figure S16, is to first form a pore, which then causes
a stalk to form next to it and subsequently zip around the pore.
A similar mechanism (not shown) can occur, involving a pore
first forming in the outer membrane. Other variations may
involve multiple stalks, for example on either side of the pore,
stalks forming at different positions i.e. not adjacent along the
axis of the cylinder, but at different angles etc.

The barrier to each of these pathways is similar – the
difference is negligible on the scale of our calculations. The
difference in free-energy barrier between these pathways is
so similar because of the following: the barrier (free energy
difference between the peak and preceding minimum) is de-
termined by the highest peak compared with the unperturbed
dNT state. The barrier to reversing the transition (see discus-
sion in the main text) is small along any of these paths, which
is to say, the barrier height is dominated by the difference in
free energy between the hemifused state and the unperturbed
dNT state.
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Figure S14: Enlarged versions of the images in Figure 4B in the main text. Panel A has been added and represents the unperturbed
double membrane. Interesting points in panels B and E have been highlighted.
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Figure S15: A path similar to Figure S14 but with a pore forming on the inner membrane, at 𝜎 = 0.387𝜅/𝑑2.
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Figure S16: A path similar to Figure S15 but with the pore forming before the stalk, at 𝜎 = 0.387𝜅/𝑑2.
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Figure S17 reproduces Figure 6D in the main text for
𝜎 = 0.387𝜅/𝑑2, with images added to illustrate the collapse
of the inner NT and the concomitant formation of a WLM.
The initial state, panel A, is the unperturbed dNT. Both NTs
become thinner in panel B. As the inner NT thins, on its
way to a WLM, the hydrostatic repulsion pushing on the
outer NT decreases, allowing it to partially adopt a thickness
closer to its equilibrium radius. In panel C the inner NT
collapses, connecting to itself. The connection grows in panel
D, forming a long WLM that connects two capped NTs. The
growth continues and, in panel F, the outer membrane bends
inward towards the WLM.

In the next phases of the evolution, depicted in panel G, a
stalk forms at the saddle-point of the inward-bending outer
NT. Note that the image in panel F has been rotated 90◦ (about
the cylinder axis) relative to panel G, in order to illustrate the
inward bend. The orientation is consistent in all other images.
Just ‘above’ and ‘right’ of the stalk in panel G, there is another
inward bend from the outer NT, and the WLM bends slightly
‘right’ towards the outer membrane. A second stalk forms
here, as shown in panel H. In panel I this is followed by a
pore forming in the inner NT. This pore connects the inner
and intermediate regions, making this pathway ‘leaky’.

After the stalks and pore have formed, panel J, the ‘left’
stalk widens, followed by the right stalk widening in panel K.
The two wide stalks merge at the ‘top’ and then at the ‘bottom’,
in panels L and M, respectively. The inside of the ‘upper’ inner
NT is now once again disconnected from the intermediate
region. Note that in panel M the ‘lower’ portion of the WLM
remains a WLM. Panel H shows that this WLM shortens
and widens, similar to what we saw in Figure S13, forming a
diaphragm, which separates the ‘upper’ and ‘lower’ inner NTs.
The diaphragm then ruptures in panel O, reconnecting the
inner NTs and adopting the same final state seen in Figure S13
and Figure S14. At lower tension (higher 𝜇) the hemifusion
diaphragm is more circular. The preferred shape appears to
be controlled by the curvature of the membranes.

As with the previous pathway, variations of this mecha-
nism exist. Some features are consistent between all pathways
that we have observed, e.g. the presence of two stalks.2 The
steps L-O, however, may occur differently, with a pore first
opening in the ‘lower’ NT (similar to the pore in I) and the
connections growing around this pore (similar to the steps
K-L).

2As described in the main text, if one stalk is manually removed from the
string, it reforms when the string is relaxed.

Figure S18 reproduces Figure 7 in the main text for 𝜎 =

0.387𝜅/𝑑2. The HD, shown in the final panel of Figure S13,
expands around the dNT. As the HD expands, the highly-
curved region highlighted in B becomes thin. This is apparent
from the light color. C As the curvature increases further,
a pore opens in the outer membrane and D expands. The
pore closes by connecting the outer membrane to the inner
membrane. This re-connection is beginning to form in E. The
result is two dNTs connected by an sNT, the cylindrically
hemifused state. As with the other pathways, a variation exists
of this pathway, where a pore opens in the outer membrane
earlier, i.e. close to the time represented by B. The pore then
travels around the membrane until C. Once again, we showed
only the variation with the lowest free energy.

Figure S19 reproduces Figure 9A in the main text. Once
again, the main changes are highlighted. Starting from the
cylindrically hemifused state (final state in Figure S18) B
a pore forms in the inner membrane. The pore begins to
‘unzip’ the inner and outer membranes. As it unzips, the ‘open’
side of the inner NT bends inward and connects to the other
side, closing the inner NT. D What remains is an inner NT,
connected to the outer NT by a stalk. E The stalk ruptures.

Figure S20 reproduces Figure 9b in the main text. This
time, rather than forming a pore first, the inner NT connects
to itself forming an HD separating the inner region. This is
highlighted in B. The formation of this HD is likely helped by
the inward bend seen at the top of A. C The HD extends into a
stalk, or WLM. The inner NT is now a capped NT, connected
to an HD by a WLM. D The WLM ruptures, leaving the HD
intact. E The HD ruptures shortly thereafter.

Figure S21 reproduces Figure 9c in the main text. A The
outer membranes come closer to one another (right hand side)
and B a pore forms between them. As we have seen before,
the pore expands as shown in B-D, leaving only a WLM. The
WLM then ruptures. There is some variation in the geometry
of this mechanism (though not the topology) depending on
the tension in the NT. At high tension, the sNT in the middle
is longer than at low tension (See Figure 9 in the main text).

In the case of a long sNT, the outer membranes do not
bend towards one another, rather a pore opens on one side of
the sNT (i.e. close to a connection point). Once the WLM
forms, it ruptures at a connection point and retracts, similar to
what we saw for the fission of a WLM connecting two capped
NTs. At low tension, where the sNT is short, the WLM is
merely a short stalk and ruptures in the middle.

In addition to the pathways illustrated in the main text, the
CH state may collapse through via the fission of the ST, as
illustrated in Figure S22. The ST collapses via the canonical
pathway and then retracts. Once disconnected, this state
continuously transforms into two capped tubes, connected by
a stalk. We expect that in experimental systems, the double
tubes would retract further before this occurs, thus the barrier
should be that of the canonical pathway and involve the
retraction of a capped single tube. This is not shown due to
the small size of our simulations box.
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Figure S17: Enlarged versions of the images in Figure 4D in the main text. Panels A-E have been added and represent the
collapse of the inner NT into a WLM. Interesting points have been highlighted to aid visualization and discussion.
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Figure S18: Enlarged versions of the images in Figure 7 in the main text. Interesting points have been highlighted to aid
visualization and discussion.
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Figure S19: Enlarged versions of the images in Figure 9a in the main text. Interesting points have been highlighted to aid
visualization and discussion.
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Figure S20: Enlarged versions of the images in Figure 9b in the main text. Interesting points have been highlighted to aid
visualization and discussion.
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Figure S21: Enlarged versions of the images in Figure 9c in the main text. Interesting points have been highlighted to aid
visualization and discussion.
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Figure S22: Collapse of the CH state via the canonical fission of the ST at 𝜎 = 0.129𝜅/𝑑2.
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