iScience, Volume 🔳 🔳

Supplemental information

Selective aqueous anion recognition

in an anionic host

Noa Bar Ziv, Chengwei Chen, Bryce da Camara, Ryan R. Julian, and Richard J. Hooley

Supplemental Information

Supplemental Figures

Figure S-1. Reaction scheme of self-assembled cages 1 and 2. Related to Figure 1.

Figure S-2. ¹H NMR spectrum of cage 1 (D₂O, 400 MHz, 298K). Related to Figure 1 and STAR methods, synthesis of cage 1.

Figure S-3. ¹⁹F NMR spectrum of a) cage 1 and b) NaNTf₂ with hexafluoroisopropanol (HFIP) as a standard (D₂O, 376 MHz, 298K). Related to Figure 1 and STAR methods, synthesis of cage 1.

Figure S-4. ESI-MS spectrum of cage **1**. The flow rate, sheath gas flow rate, aux gas flow rate, spray voltage, capillary temperature, and the S-lens RF level were set to be 3 ul/min, 5 arb, 10 arb, 2.8 kV, 215 C, and 40% respectively. Full mass spectra were acquired with a resolution of r = 30,000. Related to Figure 1 and STAR methods, ESI-MS spectrum of cage **1**.

Figure S-5. Expansion of the ESI-MS spectrum of **1**, showing obtained and simulated isotope region [**1**]⁴⁻ + [Fe₂L₂]²⁻. Related to Figure 1 and STAR methods, ESI-MS spectrum of cage **1**.

Figure S-6. ¹H NMR spectrum of cage **1**•AsF₆. The peak for H_f is under the HDO peak (D₂O, 400 MHz, 298K). Related to Figure 2 and STAR methods, synthesis of cage **1**•AsF₆.

Figure S-7. ¹³C{¹H} NMR spectrum of cage $1 \cdot AsF_6$ (D₂O, 101 MHz, 298K). Related to Figure 2 and STAR methods, synthesis of cage $1 \cdot AsF_6$.

Figure S-8. ¹⁹F NMR spectrum of cage $1 \cdot AsF_6$ (D₂O, 376 MHz, 298K). Related to Figure 2 and STAR methods, synthesis of cage $1 \cdot AsF_6$.

Figure S-9. ¹⁹F NMR spectrum of a) **1-AsF**₆ with added NaAsF₆; b) **1-AsF**₆; and c) NaAsF₆ (D₂O, 376 MHz, 298K). Related to Figure 2 and STAR methods, synthesis of cage **1-AsF**₆.

Figure S-10. gCOSY NMR spectrum of cage $1-AsF_{6}$. The peak for H_f is under the HDO peak (D₂O, 400 MHz, 298K). Related to Figure 2 and STAR methods, synthesis of cage $1-AsF_{6}$.

Figure S-11. ESI-MS spectrum of cage **1**•AsF₆. The flow rate, sheath gas flow rate, aux gas flow rate, spray voltage, capillary temperature, and the S-lens RF level were set to be 5 ul/min, 10 arb, 12 arb, 2.8 kV, 200 C, and 40% respectively. Full mass spectra were acquired with a resolution of r = 60,000. Related to Figure 2 and STAR methods, ESI-MS spectrum of cage **1**•AsF₆.

Figure S-12. Expansion of the ESI-MS spectrum of **1**•AsF₆, showing obtained and simulated isotope region [**1**•AsF₆]⁵. Related to Figure 2 and STAR methods, ESI-MS spectrum of cage **1**•AsF₆.

Figure S-13. Expansion of the ESI-MS spectrum of $1 \cdot AsF_6$, showing obtained and simulated isotope region $[1]^{4-} + [Fe_2L_2]^{2-}$. Related to Figure 2 and STAR methods, ESI-MS spectrum of cage $1 \cdot AsF_6$.

Figure S-14. ¹H NMR spectrum of cage $1 \cdot PF_6$. The peak for H_f is under the HDO peak (D₂O, 400 MHz, 298K). Related to Figure 1 and STAR methods, synthesis of cage $1 \cdot PF_6$.

Figure S-15. ¹⁹F NMR spectrum of cage $1 \cdot PF_6$ (D₂O, 376 MHz, 298K). Related to Figure 1 and STAR methods, synthesis of cage $1 \cdot PF_6$.

Figure S-16. ¹⁹F NMR spectrum of a) $1 \cdot PF_6$ with added NaPF₆; b) $1 \cdot PF_6$; and c) NaPF₆ (D₂O, 376 MHz, 298K). Related to Figure 3 and STAR methods, synthesis of cage $1 \cdot PF_6$.

Figure S-17. ¹³C{¹H} NMR spectrum of cage **1-PF**₆ (D₂O, 101 MHz, 298K). The low solubility of the complex precluded a high signal to noise ratio in any reasonable amount of time. Related to Figure 1 and STAR methods, synthesis of cage **1-PF**₆.

Figure S-18. gCOSY NMR spectrum of cage $1 \cdot PF_6$. The peak for H_f is under the HDO peak (D₂O, 400 MHz, 298K). Related to Figure 1 and STAR methods, synthesis of cage $1 \cdot PF_6$.

Figure S-19. ESI-MS spectrum of cage **1**•**PF**₆. The flow rate, sheath gas flow rate, aux gas flow rate, spray voltage, capillary temperature, and the S-lens RF level were set to be 3 ul/min, 5 arb, 10 arb, 3.5 kV, 200 C, and 40% respectively. Full mass spectra were acquired with a resolution of r = 30,000. Related to Figure 1 and STAR methods, ESI-MS spectrum of cage **1**•**PF**₆.

Figure S-20. Expansion of the ESI-MS spectrum of **1**•**PF**₆, showing obtained and simulated isotope region [**1**•**PF**₆]⁵⁻. Related to Figure 1 and STAR methods, ESI-MS spectrum of cage **1**•**PF**₆.

Figure S-21. Expansion of the ESI-MS spectrum of $1 \cdot PF_6$, showing obtained and simulated isotope region $[1]^{4-}+[Fe_2L_2]^{2-}$. Related to Figure 1 and STAR methods, ESI-MS spectrum of cage $1 \cdot PF_6$.

Figure S-22. Expansion of the ESI-MS spectrum of $1 \cdot PF_6$, showing obtained and simulated isotope region $[1 \cdot PF_6 + Na^+]^{4-}$. Related to Figure 1 and STAR methods, ESI-MS spectrum of cage $1 \cdot PF_6$.

Figure S-23. ¹H NMR spectrum of cage $1 \cdot SbF_{6}$. The peak for H_f is under the HDO peak (D₂O, 400 MHz, 298K). Related to Figure 1 and STAR methods, synthesis of cage $1 \cdot SbF_{6}$.

Figure S-24. ¹⁹F NMR spectrum of cage $1 \cdot SbF_6$ (D₂O, 376 MHz, 298K). Related to Figure 1 and STAR methods, synthesis of cage $1 \cdot SbF_6$.

Figure S-25. ESI-MS spectrum of cage **1-SbF**₆. The flow rate, sheath gas flow rate, aux gas flow rate, spray voltage, capillary temperature, and the S-lens RF level were set to be 5 ul/min, 5 arb, 10 arb, 4 kV, 200 C, and 20% respectively. Full mass spectra were acquired with a resolution of r = 15,000. Related to Figure 1 and STAR methods, ESI-MS spectrum of cage **1-SbF**₆.

Figure S-26. Expansion of the ESI-MS spectrum of **1·SbF**₆, showing obtained and simulated isotope region [**1·**SbF₆]⁵⁻. Related to Figure 1 and STAR methods, ESI-MS spectrum of cage **1·SbF**₆.

Figure S-27. Expansion of the ESI-MS spectrum of $1 \cdot SbF_6$, showing obtained and simulated isotope regions $[1]^{4-+}$ [Fe₂L₂]²⁻. Related to Figure 1 and STAR methods, ESI-MS spectrum of cage $1 \cdot SbF_6$.

Figure S-28. ¹H NMR spectrum of cage **1•CIO**₄. The peak for H_f is under the HDO peak (D₂O, 600 MHz, 298K). Related to Figure 1 and STAR methods, synthesis of cage **1•CIO**₄.

Figure S-29. ESI-MS spectrum of cage **1-CIO**₄. The flow rate, sheath gas flow rate, aux gas flow rate, spray voltage, capillary temperature, and the S-lens RF level were set to be 5 ul/min, 5 arb, 10 arb, 3.5 kV, 200 C, and 20% respectively. Full mass spectra were acquired with a resolution of r = 15,000. Related to Figure 1 and STAR methods, ESI-MS spectrum of cage **1-CIO**₄.

Figure S-30. Expansion of the ESI-MS spectrum of **1**•CIO₄, showing obtained and simulated isotope region [**1**•CIO₄]⁵. Related to Figure 1 and STAR methods, ESI-MS spectrum of cage **1**•CIO₄.

Figure S-31. Expansion of the ESI-MS spectrum of $1 \cdot CIO_4$, showing obtained and simulated isotope region $[1]^{4-+}$ [Fe₂L₂]²⁻. Related to Figure 1 and STAR methods, ESI-MS spectrum of cage $1 \cdot CIO_4$.

Figure S-32. ¹H NMR spectrum of cage **1**, made with $Fe(NTf_2)_2$ and NaBF₄. The peak for H_f is under the HDO peak (D₂O, 400 MHz, 298K). Related to Figure 1 and STAR methods, Synthesis of **1**, made with $Fe(NTf_2)_2$ and NaBF₄.

Figure S-33. ESI-MS spectrum of cage **1**, made with $Fe(NTf_2)_2$ and NaBF₄. The flow rate, sheath gas flow rate, aux gas flow rate, spray voltage, capillary temperature, and the S-lens RF level were set to be 3 ul/min, 5 arb, 10 arb, 3.2 kV, 200 C, and 40% respectively. Full mass spectra were acquired with a resolution of r = 30,000. Related to Figure 1 and STAR methods, ESI-MS spectrum of cage **1**, made with Fe(NTf_2)_2 and NaBF_4.

Figure S-34. Expansion of the ESI-MS spectrum of **1**, made with $Fe(NTf_2)_2$ and NaBF₄, showing obtained and simulated isotope region $[1 + BF_4]^{5-}$. Related to Figure 1 and STAR methods, ESI-MS spectrum of cage **1**, made with $Fe(NTf_2)_2$ and NaBF₄.

Figure S-35. Expansion of the ESI-MS spectrum of **1**, made with $Fe(NTf_2)_2$ and NaBF₄, showing obtained and simulated isotope region $[1]^{4-}$ + $[Fe_2L_2]^{2-}$. Related to Figure 1 and STAR methods, ESI-MS spectrum of cage **1**, made with $Fe(NTf_2)_2$ and NaBF₄.

Figure S-36. ¹H NMR spectrum of cage 2-AsF₆ (D₂O, 400 MHz, 298K). Related to Figure 1 and STAR methods, Synthesis of cage 2-AsF₆.

Figure S-37. ¹⁹F NMR spectrum of cage **2**•**AsF**₆ (D₂O, 376 MHz, 298K). Related to Figure 1 and STAR methods, Synthesis of cage **2**•**AsF**₆.

Figure S-38. ¹³C{¹H} NMR spectrum of cage **2**•AsF₆ (D₂O, 101 MHz, 298K). The low solubility of the complex precluded a high signal to noise ratio in any reasonable amount of time. Related to Figure 1 and STAR methods, Synthesis of cage **2**•AsF₆.

Figure S-39. ¹H NMR spectrum of cage **2•PF**₆ (D₂O, 400 MHz, 298K). Related to Figure 1 and STAR methods, Synthesis of cage **2•PF**₆.

Figure S-40. ¹⁹F NMR spectrum of cage $2 \cdot PF_6$ (D₂O, 376 MHz, 298K). Related to Figure 1 and STAR methods, Synthesis of cage $2 \cdot PF_6$.

Figure S-41. ESI-MS spectrum of cage **2•PF**₆. The flow rate, sheath gas flow rate, aux gas flow rate, spray voltage, capillary temperature, and the S-lens RF level were set to be 3 ul/min, 5 arb, 10 arb, 3.5 kV, 200 C, and 50% respectively. Full mass spectra were acquired with a resolution of r = 30,000. Related to Figure 1 and STAR methods, ESI-MS spectrum of cage **2•PF**₆.

Figure S-42. Expansion of the ESI-MS spectrum of **2•PF**₆, showing obtained and simulated isotope region [**2•**PF₆]⁵⁻. Related to Figure 1 and STAR methods, ESI-MS spectrum of cage **2•PF**₆.

Figure S-43. Expansion of the ESI-MS spectrum of $2 \cdot PF_6$, showing obtained and simulated isotope region $[2]^{4-}$ + $[Fe_2L_2]^{2-}$. Related to Figure 1 and STAR methods, ESI-MS spectrum of cage $2 \cdot PF_6$.

Figure S-44. Expansion of the ESI-MS spectrum of $2 \cdot PF_6$, showing obtained and simulated isotope region $[2 \cdot PF_6 + Na^+]^{4-}$. Related to Figure 1 and STAR methods, ESI-MS spectrum of cage $2 \cdot PF_6$.

Figure S-45. ¹H NMR spectrum of cage **2**, made with $Fe(NTf_2)_2$ and $NaBF_4$ (D₂O, 400 MHz, 298K). Related to Figure 1 and STAR methods, Synthesis of **2**, made with $Fe(NTf_2)_2$ and $NaBF_4$.

Anion Recognition: Binding in Unoccupied Cages

Figure S-46. ¹H NMR spectra of **1** with 10 equivalents of NaPF₆ added, over 14 days (D₂O, 400 MHz, 298K). Related to Figure 5.

Figure S-47. ¹⁹F NMR spectra of **1** with 10 equivalents of NaPF₆ added, over 14 d (D_2O , 376 MHz, 298K). Related to Figure 5.

Figure S-48. ¹H NMR spectrum of a) **1**, made with $Fe(NTf_2)_2$ and $NaBF_4$ with 10 equivalents of cyclohexane added and b) **1-BF**₄ (D₂O, 400 MHz, 298K). Related to Figure 7.

Anion Recognition: Anion Exchange Experiments in Occupied Cages

Figure S-49. ¹⁹F-¹⁹F EXSY NMR spectrum of $1 \cdot PF_6$ (2 mM, D₂O, 376 MHz, 300 ms mixing time, 298K). Related to Figure 4.

Figure S-50. ¹H NMR spectra of $1 \cdot PF_6$ with 10 equivalents of NaAsF₆, over 14 days (D₂O, 400 MHz, 298K). Related to Figure 4.

Figure S-51. ¹⁹F NMR spectra of $1 \cdot PF_6$ with 10 equivalents of NaAsF₆, over 14 days (D₂O, 376 MHz, 298K). Related to Figure 4.

Figure S-52. ¹H NMR spectra of **1**•AsF₆ with 10 equivalents of NaPF₆, over 14 days (D₂O, 400 MHz, 298K). Related to Figure 4.

Figure S-53. ¹⁹F NMR spectra of **1**•AsF₆ with 10 equivalents of NaPF₆, over 14 days (D₂O, 376 MHz, 298K). Related to Figure 4.

Figure S-54. ¹H NMR spectra of $1 \cdot PF_6$ with 10 equivalents of NaSbF₆, over 14 days (D₂O, 400 MHz, 298 K). Related to Figure 7.

Figure S-55. ¹⁹F NMR spectra of $1 \cdot PF_6$ with 10 equivalents of NaSbF₆, over 14 days (D₂O, 376 MHz, 298K). Related to Figure 7.

Figure S-56. ¹H NMR spectra of $1 \cdot PF_6$ with 10 equivalents of NaSbF₆, over 1 day at 70°C (D₂O, 400 MHz, 298K/343K). Related to Figure 7.

Figure S-57. ¹⁹F NMR spectra of $1 \cdot PF_6$ with 10 equivalents of NaSbF₆, over 1 day at 70°C (D₂O, 376 MHz, 298K/343K). Related to Figure 7.

Figure S-58. ¹H NMR spectra of $2 \cdot PF_6$ with 10 equivalents of NaAsF₆, over 14 days (D₂O, 400 MHz, 298K). Related to Figure 7.

Figure S-59. ¹⁹F NMR spectra of **2-PF**₆ with 10 equivalents of NaAsF₆, over 14 days (D₂O, 376 MHz, 298K). Related to Figure 7.

Figure S-60. ¹H NMR spectra of $2 \cdot AsF_6$ with 10 equivalents of NaPF₆, over 14 days (D₂O, 400 MHz, 298K). Related to Figure 7.

Figure S-61. ¹⁹F NMR spectra of $2 \cdot AsF_6$ with 10 equivalents of NaPF₆, over 14 days (D₂O, 376 MHz, 298K). Related to Figure 7.

Figure S-62. ¹H NMR spectrum of d) $1 \cdot PF_6$; and $1 \cdot PF_6$ with tris(2-aminoethyl)amine after c) 5 minutes; b) 1 week; and a) 2 weeks (D₂O, 400 MHz, 298K). Related to Figure 6.

Synthesis: Alternate Methods of Cage Assembly

Figure S-63. ¹H NMR spectrum of cage $1 \cdot PF_6$, made with Fe(PF₆)₂ (D₂O, 400 MHz, 298K). Related to Figure 1.

Figure S-64. ¹⁹F NMR spectrum of a) **1-PF**⁶ made with Fe(PF₆)₂ and b) NaPF₆ with hexafluoroisopropanol (HFIP) as a standard (D₂O, 376 MHz, 298K). Related to Figure 1.

Figure S-65. ¹H NMR spectrum of cage 1, made with $Fe(BF_4)_2$ (D₂O, 400 MHz, 298K). Related to Figure 1.

Figure S-66. ¹⁹F NMR spectrum of a) **1** made with $Fe(BF_4)_2$ and b) NaBF₄ with hexafluoroisopropanol (HFIP) as a standard (D₂O, 376 MHz, 298K). Related to Figure 1.

Figure S-67. ¹H NMR spectrum of cage $1 \cdot AsF_6$, made from pure water (D₂O, 400 MHz, 298K). Related to Figure 1.

Figure S-68. ¹⁹F NMR spectrum of a) **1-AsF**₆, made from pure water and b) NaAsF₆ with hexafluoroisopropanol (HFIP) as a standard (D_2O , 376 MHz, 298K). Related to Figure 1.

Figure S-69. ¹H NMR spectrum of cage $1 \cdot PF_6$, made with Fe(NTf₂)₂ and 10 equivalents of KPF₆ (D₂O, 400 MHz, 298K). Related to Figure 1.

Figure S-70. ¹⁹F NMR spectrum of a) **1**•**PF**₆, made from Fe(NTf₂)₂ and KPF₆ and b) NaAsF₆ with hexafluoroisopropanol (HFIP) as a standard (D₂O, 376 MHz, 298K). Related to Figure 1.

Characterization: ¹⁹F NMR Spectra of Guests and Cages including HFIP Standards

Figure S-71.¹⁹F NMR spectra of anionic guests with hexafluoroisopropanol (HFIP) as a standard (D₂O, 376 MHz, 298K). Related to Figure 3.

Figure S-72. ¹⁹F NMR spectrum of a) $1 \cdot AsF_6$ and b) NaAsF₆ with hexafluoroisopropanol (HFIP) as a standard (D₂O, 376 MHz, 298K). Related to Figure 3.

Figure S-73. ¹⁹F NMR spectrum of a) $1 \cdot PF_6$ and b) NaPF₆ with hexafluoroisopropanol (HFIP) as a standard (D₂O, 376 MHz, 298K). Related to Figure 3.

Figure S-74. ¹⁹F NMR spectrum of a) **2•PF**₆ and b) NaPF₆ with hexafluoroisopropanol (HFIP) as a standard (D₂O, 376 MHz, 298K). Related to Figure 3.