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Supplementary Methods 
 

HSC lineage commitment 
Here we describe the computational approach to analyze HSC lineage commitment. On the 

computational side, we approached this problem by generating a binary table with all the possible 

combinations of each intersection for each time point. For instance, the table below shows a case of 4 

ISs (in rows) observed in 6 cell markers corresponding to CD34+ cells, myeloid, and lymphoid cells, 

with the number of genomes as values. For simplicity, we will use only 3 labels here to represent 

intersection cases: “CD34,” “myeloid,” and “lymphoid.” 

 
For this time point, we generate intersections by grouping the cell markers by label and then 

converting the number of genomes into a binary format.  

  
This binary format is then transformed into a binary string (“binary flag”), which corresponds to a 

decimal number (“decimal flag”). Each flag is uniquely associated with a specific intersection set. We 

classified each intersection set using the following rule: if an IS is observed in only one set, it is 

classified as uni-lineage and labeled with the name of that set (e.g., myeloid or lymphoid); if an IS is 

observed across multiple mature lineages, it is classified as multi-lineage. Any intersection involving 

CD34+ cells does not affect the classification. In this example, the last column (“T01”) would be 

added as follows: 

 
We used this flag representation for each time point to assess lineage commitment for individual 

clones, reporting the percentage for each time point. A time course representation example is shown in 

the following table: 

chr
Integration 

locus
Str.

Gene 
Name

Gene 
Strand

CD34 CD13 CD14 CD15 CD19 CD3

10 100673764 + A - 0 20 44 0 0 0
10 100701221 + A - 23 33 0 4 67 10
10 100945453 - B - 4 1 0 1 33 0
10 101169869 + C - 0 0 0 0 87 32

Time point 1

chr
Integration 

locus
Str.

Gene 
Name

Gene 
Strand

CD34 CD13 CD14 CD15 CD19 CD3 CD34 Myelo Lympho Binary 
Flag

Decimal 
Flag

10 100673764 + A - 0 20 44 0 0 0 0 1 0 010 2
10 100701221 + A - 23 33 0 4 67 10 1 1 1 111 7
10 100945453 - B - 4 1 0 1 33 0 1 1 1 111 7
10 101169869 + C - 0 0 0 0 87 32 0 0 1 001 1

Time point 1

chr
Integration 

locus
Str.

Gene 
Name

Gene 
Strand

CD34 CD13 CD14 CD15 CD19 CD3 CD34 Myelo Lympho Binary 
Flag

Decimal 
Flag T01

10 100673764 + A - 0 20 44 0 0 0 0 1 0 010 2 2
10 100701221 + A - 23 33 0 4 67 10 1 1 1 111 7 7
10 100945453 - B - 4 1 0 1 33 0 1 1 1 111 7 7
10 101169869 + C - 0 0 0 0 87 32 0 0 1 001 1 1

Time point 1
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This approach allowed us to classify each IS over time. To address potential sub-sampling issues at 

specific time points or in certain samples, which could affect the multi/uni-lineage labels, we refined 

the labels by analyzing lineage tracking over time as follows: 

• Rule 1: Since we aim to observe progressive lineage commitment over time, any fluctuations 

in labels from uni-lineage to multi-lineage can be smoothed out. Specifically, if an IS was 

labeled as uni-lineage at a time point between two multi-lineage time points, we reclassified 

the uni-lineage label as multi-lineage. For example, in the previous case, T06 initially shows a 

uni-lineage lymphoid label, followed by a multi-lineage label, and then by two uni-lineage 

myeloid labels. Here, we converted the uni-lineage lymphoid label to multi-lineage. 

 

 
 

• Rule 2: To avoid misassigning a uni-lineage label to multiple mature lineages over time, we 

set the label as multi-lineage if an IS was labeled as uni-lineage but in different lineages at 

different times. In the earlier example, this rule would adjust the labels for the last IS at time 

points T01 and T03 as follows: 

 

 
 

Multivariate Bayesian regression 
In a linear model, the response variable 𝑦, is defined as a linear combination of input features 𝐗 

(1) 𝑦! 	= 	𝜔" + ∑ 𝜔#𝑥!,#%
#&' + 𝜎! , 𝑖 = 1, . . . , 𝑁. 

Here, 𝑦 is a 𝑁-dimensional vector of target values, 𝑋 is a 𝑁 × 𝐷 matrix of input predictors, 𝜔 =

(𝜔', . . . , 𝜔%)( and 𝜎 represents the source of random error in the model (here Gaussian with mean 0 

and variance 1). In Bayesian linear regression, instead, the target variable 𝑦 is assumed to follow a 

Gaussian distribution with mean parameter defined by equation (1), the linear combination of the input 

chr
Integration 

locus
str.

Gene 
Name

Gene 
Strand

T01 T03 T06 T09 T12 T18 T24

10 100673764 + A - 2 2 0 0 0 0 0
10 100701221 + A - 7 3 1 4 2 0 2
10 100945453 - B - 7 0 0 3 0 1 0
10 101169869 + C - 1 1 0 3 1 3 7

chr
Integration 

locus
str.

Gene 
Name

Gene 
Strand

T01 T03 T06 T09 T12 T18 T24

10 100673764 + A - 2 2 0 0 0 0 0
10 100701221 + A - 7 3 7 4 2 0 2
10 100945453 - B - 7 0 0 3 0 1 0
10 101169869 + C - 1 1 0 3 1 3 7

chr
Integration 

locus
str.

Gene 
Name

Gene 
Strand

T01 T03 T06 T09 T12 T18 T24

10 100673764 + A - 2 2 0 0 0 0 0
10 100701221 + A - 7 3 7 4 2 0 2
10 100945453 - B - 7 0 0 3 0 1 0
10 101169869 + C - 3 3 0 3 1 3 7
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data 𝐗 and the set of latent coefficients 𝜔 and variance 𝜎, representing the noise of the model. The 

likelihood function of the Bayesian model is then defined as  

(2) 𝑝(𝑦|𝑋, 𝜔, 𝜎) = Ɲ(𝑋𝜔, 𝜎), 

where Ɲ is a Gaussian distribution with mean 𝑋𝜔 and covariance 𝜎.  

The Bayesian model formulation introduces an implicit measure of uncertainty in the estimated 

parameters through the specification of prior distributions over the parameter space1. In this model the 

prior over the random errors 𝜎 = (𝜎', . . . , 𝜎)) is a Gaussian with zero mean and unit variance. We 

specify the prior over the latent coefficients 𝜔 as a zero-mean Gaussian distribution 

(3) 𝑝(𝜔|𝜆) = Ɲ(0, 𝛴*'), 

with diagonal covariance matrix 𝛴*', i.e., with diagonal entries [𝜆', . . . , 𝜆%], and the prior distribution 

over 𝜆! defined as a Gamma distribution. Each covariate coefficient 𝜔# , 𝑑 = 1, . . . , 𝐷, has therefore its 

own standard deviation '
+!

. This method is called Automatic Relevance Determination (ARD), and is 

relevant in the Machine Learning field[1]. 

 

Good-Turing estimator 
The Good-Turing formulation2 has been extensively used in ecology to estimate the bias between the 

observed and true number of species in a specific area. If we treat each IS as a species and cell markers 

as distinct assemblages, we can apply the same formulation to refine the richness of ISs in distinct cell 

markers and the count of shared ISs between CD34 and each marker, accounting for undetected species. 

 

One-assemblage formulation. In the single assemblage formulation, we assume the presence of 𝑆 

species with their true relative abundances. In a sample of 𝑁 individuals selected with replacement, 

𝑋! 	represents the species frequency for the 𝑖 − 𝑡ℎ species in the samples, with 𝑖 = 1, . . . , 𝑆 and 

∑ ⬚⬚
-"." 𝑋! 	= 	𝑁. Species with frequency 𝑋 = 0 exist in the assemblages but go undetected, hence are 

not included in the sample data.  

We define 𝑆/01 the number of species observed in the sample and 𝑓" as the count of undetected species. 

Thus, we can express the true number of species as the sum of the observed and unobserved ones, such 

that  

(4)			𝑆	 = 	 𝑆/01 + 𝑓".  

The value of 𝑓" is unknown and in the Good-Turing formulation a lower bound is estimated solely based 

on the rarest observed species, as  

(5)					𝑓"E ≥
)*'
)

2#$

32$
,  

where 𝑓' and 𝑓3 represent the number of singletons and doubletons, respectively. 
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Two-assemblages formulation. The one-assemblage formulation can be extended to estimate the 

number of shared species between two assemblages. Assuming there are 𝑆 species in a combined 

assemblage, we define 𝑆14567# = 𝑆'3 as the true count of species observed in both assemblages. By 

collecting random samples of 𝑁' and 𝑁3 individuals from each assemblage, we can determine the 

observed shared species, 𝑆14567#,/01, and the observed abundance for each species in each assemblage. 

Let 𝑓68 represent the number of shared species observed 𝑟 times in the first assemblage and 𝑣 times in 

the second one. Similarly, 𝑓69 denotes the number of shared species observed 𝑟 times in the first sample 

and at least once in the second one, with similar symmetry for 𝑓98. Also, let 𝑓99 be the count of shared 

species observed at least once in both samples. 

Similar to the one-assemblage formulation, we can define the true number of shared species, accounting 

for species undetected in one or both assemblages, as 

(6)						𝑆14567# = 𝑆14567#,/01 + 𝑓"9 + 𝑓9" + 𝑓"".  

Using the Good-Turing formulation, we can derive an approximation to the unknown elements of the 

formula (𝑓"9, 𝑓9" and 𝑓"") as  

(7)						𝑓"9K ≥ )#*'
)#

2#%$

32$%
	,  

(8)						𝑓9"K ≥ )$*'
)$

2%#$

32%$
,  

(9)						𝑓""K ≥
𝑁' − 1
𝑁'

𝑁3 − 1
𝑁3

𝑓''
3

4𝑓33
 

 

Application. Using the Good Turing estimators, our goal is to approximate the count of undetected 

species based on the occurrences of the rarest detected species and population sizes. In the formulation 

for a single assemblage, the count of undetected species, 𝑓", is solely determined by the population size 

(𝑁) and the number of singletons (𝑓') and doubletons (𝑓3), representing species occurring once and 

twice, respectively. In the two-assemblages formulation, our objective is to adjust the number of species 

shared between two populations. The observed count of shared species is corrected by considering 

species unobserved in both populations (𝑓""), those missing in the first assemblage but observed in the 

second (𝑓"9), and likewise those detected in the first assemblage but missing in the second (𝑓9"). To 

estimate these unknowns, we rely on the occurrences of shared species observed once and twice in the 

first sample, and at least once in the second one (𝑓'9 and 𝑓39), with similar symmetry for 𝑓9' and 𝑓93, 

the count of shared species observed exactly once and twice in both assemblages (𝑓'' and 𝑓33), along 

with the population sizes (𝑁' and 𝑁3). 

In the analyses of linage output, the evaluation of CD34+ output is carried out in terms of the sharing 

ratio of ISs identified in CD34+ and recaptured across mature cell markers. In this formula, the 

numerator reflects the count of species observed in both CD34+ cells and each mature cell marker, while 

the denominator corresponds to the overall size of the CD34+ population. An additional bias is 
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introduced in this analysis due to the challenge of detecting rare species. To address this, we 

incorporated the Good-Turing estimator for shared species between two assemblages as the numerator, 

and the GT formula to estimate the richness of the CD34+ population as the denominator of the sharing 

ratio. To compute the adjusted richness of the CD34+ population, we gather, for each patient, the set of 

ISs observed in CD34+ BM cells and their respective abundances over time. This vector indicates the 

number of times each IS is observed, representing the species frequency detected in the collected 

sample. This allows us to quantify the population size (𝑁) as the sum of species abundances, and the 

number of singletons (𝑓') and doubletons (𝑓3) as the ISs occurring once and twice. Another variable of 

interest is the number of shared species between each mature cell marker and CD34+ BM cells, 

approximated via the two-assemblages GT formulation. The vector of ISs abundances observed in 

CD34+ BM population is retrieved for each patient and summed over time, and similarly collected for 

each mature cell marker, time point, patient and tissue. These vectors are used to compute the unknowns 

of equation (6) (𝑓"", 𝑓"9 and 𝑓9"), providing an estimation of the number of shared species between 

each mature cell marker and CD34+ cells. The adjusted sharing ratio is then employed as a response 

variable in the multivariate Bayesian linear regression model. Patients’ heterogeneity with respect to 

age is analyzed by stratifying patients into three groups and fitting the regression independently, 

incorporating the age of the subjects as additional covariate in the model. 

In the analysis of lineage commitment, each IS at every time point is uniquely categorized as multi- or 

uni-lineage. This is evaluated as a sharing ratio calculated for each time point, representing the ratio 

between the number of IS observed in a specific group and the total number of clones captured at that 

time. To address the challenge of unseen species, we applied the one-assemblage formulation of the GT 

estimator. For each patient, timepoint, and class (multi-lineage or one of the uni-lineage), we extract the 

class-specific vector of ISs and compute the overall abundance across markers. We quantify the 

population size (𝑁), the number of singletons (𝑓') and doubletons (𝑓3) from the vector of ISs frequency 

and apply the GT formulation to yield an adjusted value for the numerator of the sharing ratio. Similarly, 

for each time point we retrieve and sum over all cell markers the observed ISs abundances to estimate 

the number of captured ISs via GT. Subsequently, the computed sharing ratio undergoes correction for 

potential confounding factors through a multivariate Bayesian linear regression. 

 

Somatic mutations with Myeloid panel 
Obtained sequences were aligned with BWA-MEM to the human reference genome (hg19/GRChg37), 

resulting in more than 100,000,000 reads correctly aligned on the targeted exon panel, with an average 

of 4400 and 4300 reads/base in β-Thal and MLD patients respectively, covering 278 amplicons among 

38 genes (Supplementary Table 5-6). List of genes: ABL1, ASXL1, BCOR, BRAF, CALR, CBL, 

CEBPA, CSF3R, DNMT3A, ETV6, EZH2, FLT3, GATA2, HRAS, IDH2, IKZF1, JAK2, KIT, KRAS, 
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MPL, MYD88, NF1, NRAS, PHF6, PRPF8, PTPN11, RB1, RUNX1, SETBP1, SF3B1, SH2B3, 

SRSF2, STAG2, TET2, TP53, U2AF1, WT1, ZRSR2. 

We then generated the pileup files using Samtools (samtools mpileup) (options: -B -q 1) and we 

performed a variant calling on these files using VarScan23 (mpileup2snp: --min-coverage 100 --min-

var-freq 0.01 --min-reads2 1 --p-value 0.05 --output-vcf 1, mpileup2indel: --min-coverage 100 --min-

var-freq 0.01 --min-reads2 1 --p-value 9,1 --output-vcf 1). To remove the false positives, we applied the 

following filters: (1) removal of mutations present in more than one independent sample (patients); (2) 

removal of mutations present in low-covered amplicons (less than 200 reads); (3) removal of mutations 

clearly germline (heterozygous or homozygous, 49 < VAF < 51 or VAF > 99); (4) removal of mutations 

present in the last 3 bp of the reads; (5) removal of mutations in regions enriched in poly-T or poly-A 

(manually curated). 

The average sequencing depth in β-Thal and MLD patients was 4,400 ± 283 and 4,300 ± 1789 

reads/base respectively (Supplementary Table 6). Moreover, we removed mutations with a Varian 

Allele Frequency (VAF) suggestive of heterozygous or homozygous germline variants (49 < VAF < 51 

or VAF > 99). Most somatic mutations (85 out of 96) exhibited a Variant Allele Frequency (VAF) of 

less than 2%. Overall, in β-Thal patients we found on average 7.1 ± 6 mutations (range 2 to 21) in 21 

different genes. The detected mutations underwent annotation utilizing the Genome Aggregation 

Database (gnomAD)4, the Database of Single Nucleotide Polymorphisms (dbSNP)5 and the ClinVar 

database6. In MLD patients we found on average 1.5 ± 0.7 mutations (range 1 to 3) in 14 different genes. 

Out of the identified mutations, only 4 were annotated as known variants with no role as drivers in 

clonal hematopoiesis or cancer.  
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Supplementary Tables 
 

Supplementary Table 1. Patients’ summary. 

Summary table of treated patients under analysis, showing details of the disease, the ID of the patient 

(“Patient ID”), the body weight at treatment, the cell dose expressed as millions of  CD34+ cells 10/kg, 

the transduction efficiency, the GT source (expressed as “BM”, “MPB” for mobilized PB, or “BM and 

MPB”), the VCN at treatment, the age of the patient at treatment, and the maximum follow up available 

with molecular data, and the gender.  

 

Supplementary Table 2. Patients’ Samples and details with ISs.  

The table presents all details of each patient sample used in this work, using the following columns: 

Disease, Patient ID, Tissue of sample origin (PB and BM), Lineage, Cell Marker, Timepoint (expressed 

in months after GT), vector copy number (VCN), amount of genomic material (reported as ng of DNA), 

PCR Method for IS retrieval (between LAM-PCR and SLiM-PCR), sequencing technology and 

platform, N. reads supporting the ISs, N. ISs, population diversity index (using Shannon H index). 

 

Supplementary Table 3. Normalized integration frequency by gene.  

Pair-wise comparison of gene normalized integration frequency for MLD, WAS, and β-Thal patients, 

after homogeneous subsampling and randomization. For each gene (column “GeneName”) and pair-

wise comparison (column “Comparison”) we reported the average number of ISs for study, and the final 

corrected p-value (column “corrected p-value avg”). 

 

Supplementary Table 4. Estimated number of active HSPC. 

For each available patient, the table reports the number of estimated HSPCs observed at early time 

points (<24 months) and from 24 months (column “Pop. Size >24 m”) calculated with the Chao1 model 

and corrected with the VCN (if VCN>1). We also reported the number of IS retrieved <24 months and 

>24 months, and the number of shared IS between the two sets. The last column reports the fraction of 

the estimated HSPCs >12 months on the total number of observed IS >24 months. 

 

Supplementary Table 5. Mean Depth Coverage of somatic mutations data. 

The table shows the mean depth coverage reached for each MLD and β-Thal patient coming from the 

Illumina’s AmpliSeq™ Myeloid Panel Targeted exome sequencing used for the somatic mutations 

analysis. Columns report: Disease, Patient ID, time point in days of the sample, mean depth coverage. 
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Supplementary Table 6. Somatic Mutations. 

The table presents all the somatic mutations for each MLD and β-Thal patient coming from the 

Illumina’s AmpliSeq™ Myeloid Panel Targeted exome sequencing. Columns report: Disease, Patient 

ID, time point in days of the sample, cell type, total number of reads in the position of the mutation, 

number of reads supporting the reference variant, number of reads supporting the mutated variance, 

Variant Allele Frequency (VAF), chromosome, starting position, ending position, nucleotide reported 

by the reference, nucleotide reported by the mutation, functional annotation of the position (intron, 

exon), gene, exon modification, aminoacidic change, effect of the mutation reported by ClinVar, 

frequency of the mutation in the population reported by gnomAD, ID of the mutation reported by 

avsnp147. 

 

Supplementary Table 7. Primers used for the 1st (Exponential) PCR. 

List of primers used for the first exponential PCR with details about Name, Type, and Sequence 

 

Supplementary Table 8. Primers used for the 2nd (Fusion) PCR. 

List of primers used for the second fusion PCR with details about Name, Type, Sequence and Barcode 

(8 nucleotides) of each primer. 

 

Supplementary Table 9. Linker cassette sequences. 

The linker cassette sequences used in the SLiM-PCR procedure. Each linker cassette was generated by 

the annealing of the Short oligo with a Long oligo. The sequence of each oligo and its Barcode (8 

nucelotides) is reported. 
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Supplementary Discussion 
 

IS sensitivity 

In our cohort of patients, IS were collected from samples with different characteristics in 

terms of the amount of DNA, VCN, PCR technologies, sequencing platforms, and other 

variables. Differential proliferation in specific cell subsets after transplantation can lead to 

varying clonal kinetics, which may affect the retrieval of ISs. To address potential 

subsampling and account for sample variability, we implemented mathematical models that 

accounted for confounding factors (Bayesian model) and recapturing probabilities in 

assemblages (Good Turing). Subsampling issues, which might affect the classification of an 

integration site (IS) as either multilineage or unilineage committed, can be addressed through 

accurate filtering procedures (e.g., based on clonal abundance) and evaluated using 

bootstrapping methods that provide confidence intervals for each observation. However, 

analyzing more data reduces the impact of subsampling biases. In fact, avoiding data sparsity 

enhances the accuracy of the results. Conducting multiple longitudinal samplings for each 

patient and incorporating multiple technical replicates in IS analysis can increase the 

confidence in observations, making them suitable for mathematical corrections and 

preventing extreme data rarefaction. The ability to track the clonal repertoire for several years 

after treatment has allowed us to study hematopoiesis in homeostatic conditions, as indicated 

by the paucity of newly retrieved ISs from most patients after reaching the plateau at 12-24 

months post gene therapy. 
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