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Figure S1. Tensile test samples of HEA fibers according to the ASTM D3379-75 

standard. 
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Figure S2. Annealing time dependence of Ms and Hc of HEA fibers. Error bars refer to 

the standard deviations of three experiment. Source data for Figure S2 are provided as 

a Source data file. 
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Figure S3. M-T curves measured in the temperature range 300–850 K under a magnetic 

field of 1000 Oe of as-spun and 800 ℃-120 min annealed HEA fibers. Source data for 

Figure S3 are provided as a Source data file. 
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Figure S4. Tensile stress-strain curves of HEA fibers with different annealing time. 

Source data for Figure S4 are provided as a Source data file. 
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Figure S5. HAADF-STEM images of a as-spun and b 800 ℃-120 min annealed HEA 

fibers with accompanying high-resolution EDX images. 
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Figure S6. Frequency distribution analysis confirming the random distribution of the 

elements of as-spun HEA fibers from APT analysis. Source data for Figure S6 are 

provided as a Source data file. 
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Figure S7. APT analysis of 800 ℃-120 min annealed HEA fibers. a 3D 

reconstruction maps of a typical APT tip showing the uniform distribution of all 

elements in near atomic-scale. b Frequency distribution curves and the fitted binomial 

distribution curves. 
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Figure S8. Lorentz TEM (LTEM) images taken from a as-spun and b 800 ℃ - 120 min 

HEA fibers. The magnetic domain walls are indicated by yellow arrows. 
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Figure S9. HRTEM image and corresponding FFT patterns of the Ta-rich phase in as-

spun HEA fibers. 
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Figure S10. Tensile strain-load curves of in-situ tensile tests of as-spun and 800 ℃-120 

min annealed HEA fibers. Source data for Figure S10 are provided as a Source data file. 
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Figure S11. In-situ EBSD and KAM observation of a as-spun and b 800 ℃-120 min 

annealed HEA fibers at different tensile strain. The areas with high KAM values are 

inside the grains for the as-spun fibers. The areas with high KAM values are located at 

grain boundaries for the 800 ℃-120 min annealed fibers. 
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Figure S12. TEM observation of a (Ta2(Co/Fe/Ni)3Si particle in the as-spun HEA fiber 

after deformation, where dislocation pile-ups are indicated by white arrows, micro-

voids are indicated by yellow arrows. 
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Table S1. Summary table of coercivity and tensile-strain of typical soft magnetic fibers. 

Compositions Coercivity (Oe) Tensile strain (%) Ref. 

Fe77Si8B15 53.1 4 [1] 

Fe77Si8B15 35.0 4 [1] 

Fe77Si8B15 36.5 4 [1] 

Fe77Si8B15 25.4 4 [1] 

Fe77Si8B15 10.0 4 [1] 

Fe77Si8B15 7.5 4 [1] 

Fe77Si8B15 4.4 4 [1] 

Fe67Co18B14Si1 0.05 3.8 [2] 

Fe80B20 0.08 3.4 [1, 2] 

Fe59Ni15B13Si11C2 1.2 2.4 [1, 2] 

Fe47Ni27Si11B13C2 0.76 2.5 [1, 2] 

Fe90Si5B5 9.3 0.62 [3] 

Fe78B13Si9 0.03 4 [1, 4] 

Fe78B13Si9 0.09 2 [1, 4] 

Fe80P12C8 0.1 5 [5, 6] 

Fe80P11C8B 0.05 4 [5, 6] 

Fe80P10C8B2 0.04 3 [5, 6] 

Fe80P9C8B3 0.05 2 [5, 6] 

Fe80P8C8B4 0.04 0.5 [5, 6] 

Fe76Si13B8Nb2Cu1 0.25 2 [7] 

Fe68.5Co5Ta3Cu1Si16.5B6 0.66 1.5 [8] 

Fe90Si10 56.9 6.75 [9] 

Fe50Ni50 0.12 3 [10] 

Fe20Ni80 0.02 4 [10] 

Fe35Ni65 0.08 3 [10] 

Co80Si10B10 12.9 0 [1] 

Co68.15Fe4.35Si12.5B15 2.6 0 [1] 

Co68.15Fe4.35Si12.5B15 2.5 0 [1] 

Co68.15Fe4.35Si12.5B15 4.9 0 [1] 

Co80Si10B10 10.3 0 [1] 

Fe29Co71 37.5 5 [11] 

Fe29Co71 18.3 8.9 [11] 

Fe5Co71Si10B11Cr3 0.06 1.7 [12] 

Fe3.8Co67Ni1.5B11.5Si14.5Mo1.7 0.26 1.6 [12] 

Co69Fe5.5Ni1Si14.5B10 0.03 1.8 [13] 

Co69Fe5.5Ni1Si13.5P1B10 0.02 1.5 [13] 

Carbon fiber@Fe 119.7 1.1 [14] 

Carbon fiber@Ni 80.8 1 [14] 

Carbon fiber@FeCo 38.9 0.8 [14] 

Carbon fiber@FeNi 28.9 0.7 [14] 

Fe34Co29Ni29Al3Ta3Si2 8.1 23 This work 
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Table S2. Curie temperatures and lattice parameters of as-spun and 800 ℃-120 min 

annealed HEA fibers. 

 Curie temperature (K) Lattice parameters (Å) 

As-spun 770 a=b=c=3.582 

800 ℃-120 min 690 a=b=c=3.582 
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