
S1 Morphological Indices:
As depicted in Fig. S1, the calculation of morphological indices for intracranial aneurysms (IA) entails the precise isolation of
each IA sac from its corresponding parent vessel structure1. Various geometrical parameters are computed for the isolated
aneurysm region after the above-said IA isolation. The following IA geometric characteristics were quantified: volume, height,
maximum sac width, vessel diameter, minimum ostium diameter, maximum ostium diameter, aneurysm surface area, and
ostium surface area. These variables are summarized in Table S1.

Figure S1. An illustration of the geometric characteristics of typical IAs is provided. (a) shows an isolated IA sac from the parent vessel
(highlighted in red). In (b), the solid red lines represent the centerlines generated using the Voronoi diagram2, where the height of the IA is
determined by the length of the centerline within the aneurysm region. The blue line indicates the maximum width of the IA. In (c), the blue
circle represents a 2D cutting plane used to measure the minimum and maximum ostium diameters, and the blue surface area on the cutting
plane indicates the ostium area.

Table S1. A summary of morphological variable

Parameter Descriptions
Aneurysm volume Volume of the aneurysm aneurysm
height Height of the aneurysm
Sac max width Maximum width of the aneurysm sac
Size ratio width The size ratio between aneurysm width and parental artery diameter
Ostium minimum The maximal ostium diameter
Ostium maximum The minimal ostium diameter
Aneurysm area Area of the aneurysm
Ostium area Area of the ostium
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S2 Hemodynamic Indices: wall shear stress
Wall shear stress (WSS) arises from the frictional and tangential forces exerted on the vessel wall by the blood flow. It is
quantified as follows3:

WSS = µγ̇ (1)

Where µ is the dynamics viscosity and γ̇is the share rate.
This study automatically computed WSS utilizing a commercial CFD solver (Fluent, ANSYS Inc., USA). Following the

estimation of WSS at each timestep, the extrema (minimum and maximum values) and the spatially averaged WSS were
determined. Subsequently, the temporally averaged WSS minimum (TA-WSS-Min), maximum (TA-WSS-Max), spatial average
(STA-WSS) and temporally averaged low wall shear (≤ 2 Pa) area (TA-LSA)4 were calculated.

Additionally, the Oscillatory Shear Index (OSI), a nondimensional parameter indicating the change in direction of WSS, was
calculated at each point on the vessel wall. The OSI provides insight into the oscillatory nature of the shear stress experienced
by the vessel wall over the cardiac cycle5, as follows:

OSI = 0.5(1−

∣∣∣∫ T
0 τidt

∣∣∣∫ T
0 |τi|dt

) (2)

The calculated OSI value ranges from 0 to 0.5, with 0 indicating no directional change in the WSS vector, whereas an OSI
value of 0.5 corresponds to a 180° angular change in directionality during a cardiac cycle.
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S3 Velocity-Informatiss Indices:
In this study, velocity-informatics technique is employed to quantify blood flow characteristics using spatial pattern
analysis, as documented in our recent studies6, 7.

This method involves a systematic process comprising four key steps. First, an algorithm adapted from previous litera-
ture1, is employed to isolate the velocity field within the aneurysm dome. Second, The isolated velocity fields are resampled
onto a uniform grid using interpolation techniques, achieving a voxel resolution of 0.2×0.2×0.2 mm³. In the third step,
as illustrated in Fig. S2, Utilizing Leopardi’s method for equal partitioning of a unit sphere, the sphere’s surface is divided
into 360 equal segments, each representing a unique partition direction8. A partition direction is characterized by a vector
originating from the center of the unit sphere and terminating at the centroid of the segment. Each velocity vector within an IA
is subsequently assigned to the partition vector that most closely aligns with its direction. After completing these two steps, the
directional velocity data (DVelocity) and the velocity magnitude data (MVelocity) are mapped onto the corresponding pixels.
The resulting DVelocity and MVelocity data sets are converted into three-dimensional(3D) 8-bit images, with intensity values
scaled between 0 and 255. More details can be found in our prior publications6, 7.

Figure S2. A sequence of three plots showing the process of calculating DVelocity: (a) isolating velocity vectors within IA, (b) utilizing
Leopardi’s method for defining velocity directions (each partition on the unit sphere corresponds to one unique direction, and (c) computed
angular directions for every velocity vector. Recall that all velocity vectors were converted to a rectilinear grid; thus, this process yielded 3D
DVelocity images.

Finally, the resultant 3D images representing DVelocity and MVelocity were subjected to detailed quantitative analysis
using Pyradiomics1, a sophisticated Python library tailored for radiomic feature extraction9. Pyradiomics provides an extensive
array of parameters utilizing various image analysis methods. These include first-order statistics as well as techniques such
as the gray level co-occurrence matrix (GLCM)10, gray level run length matrix (GLRLM)11, gray level size zone matrix
(GLSZM)12, and gray level dependence matrix (GLDM)13 which bellow a brief explanation of features utilized in Table 2 of
manuscript provided below.

The descriptions of variables computed using GLCM, GLRLM, and GLSZM are similar to those provided in the PyRa-
diomics documentation9 and are detailed below for completeness:

The Gray Level Co-occurrence Matrix (GLCM) quantifies the spatial relationship between pairs of con-
nected voxels based on their intensity values. It is denoted as P(i, j | δ ,θ), where δ represents the distance between the
voxels and θ represents the angle of their relative orientation. The parameter θ takes on one of four discrete values for
2D images and increases to 13 discrete values for 3D images. The Velocity-Informatics varibles computed using GLCM
in Table 2 of the manuscript, are explained in Table S2.

For an image (or image-like data) with dimensions Nx ×Ny and Ng different intensity levels, the GLCM is mathematically
defined by the following equation9, 10:

GLCMθ

δ
(i, j) = |{((r,s),(t,v)) : I(r,s) = i, I(t,v) = j}| ∀ i, j ∈ {1,2,3, . . . ,Ng} (3)

1https://pyradiomics.readthedocs.io/en/latest/
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where (t,v) is defined as:

(t,v) =


(r+δ ,s) if θ = 0◦

(r+δ ,s+δ ) if θ = 45◦

(r,s+δ ) if θ = 90◦

(r−δ ,s+δ ) if θ = 135◦

Here, | · | represents the cardinality (number of elements) of a set. I(r,s) and I(t,v) denote the intensity values of the image
at positions (r,s) and (t,v) respectively.

Table S2. A summary of velocity-Informatics GLCM variable

Parameter Descriptions

Difference Average
Quantifies the relationship between the frequency of pairs with similar intensity values
and those with differing intensity values.
Difference Average = ∑

Ng−1
k=0 k · px−y(k)

Difference Entropy
Quantifies the randomness or variability in the differences between intensity values within
a neighborhood.
Difference Entropy = ∑

Ng−1
k=0 px−y(k) log2 (px−y(k)+ ε)

Difference Variance
Quantifies heterogeneity by assigning greater weights to pairs of intensity levels that
deviate significantly from the mean.
Difference Variance = ∑

Ng−1
k=0 (k−DA)2 · px−y(k)

Idm
Quantifies the local homogeneity of an image. It assesses how similar intensity values are
within neighboring pixel pairs, with higher values indicating greater homogeneity.
IDM = ∑

Ng−1
k=0

px−y(k)
1+k2

Idn

It is a quantitative metric for assessing the local homogeneity of an image. This formula
normalizes the intensity value differences between neighboring pixels by dividing by the
total number of discrete intensity levels present in the image. This normalization ensures
that the measure accounts for variations in intensity ranges, providing a more standardized
evaluation of homogeneity.
IDN = ∑

Ng−1
k=0

px−y(k)
1+ k

Ng

JointEnergy

Quantifies the presence of homogeneous patterns in an image. A higher Energy value
indicates that there are more occurrences of neighboring intensity value pairs at higher
frequencies throughout the image.
JointEnergy=∑

Ng
i=1 ∑

Ng
j=1 (p(i, j))2

JointEntropy

Quantifies the randomness or variability in neighborhood intensity values within an image.
It assesses the uncertainty associated with the distribution of paired intensity values in
spatially neighboring pixels or voxels.
Joint Entropy =−∑

Ng
i=1 ∑

Ng
j=1 p(i, j) log2(p(i, j)+ ε)

SumEntropy

Represents the sum of neighborhood intensity value differences within an image. It
quantifies the total unpredictability or randomness in the distribution of paired intensity
differences across the image.
SumEntropy = ∑

Ng
k=2 px+y(k) log2(px+y(k)+ ε)

The Gray Level Run Length Matrix (GLRLM) quantifies the number of connected voxels with the same
intensity, characterized by an angle θ between pairs of voxels. Matrix elements GLRLMθ (i, j) denote the number of voxels
with intensity i and run length j in the specified direction. The Velocity-Informatics variables computed under the framework
of GLRLM in Table 2 of the manuscript, are explained in Table S3.

For an image with dimensions Nx ×Ny and Ng different intensity levels, the GLRLM is mathematically defined by the
following equation9, 11:

GLRLMθ (i, j) = |{(m,n) : |{(k, l) ∈ Nb(m,n, j,θ) : I(k, l) = i}|> 0}| ∀ i, j ∈ {1,2,3, . . . ,Ng} (4)
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where Nb(m,n, j,θ) is defined as:

Nb(m,n, j,θ) =


{(m+1,n),(m+2,n), . . . ,(m+ j,n)} if θ = 0◦

{(m+1,n+1),(m+2,n+2), . . . ,(m+ j,n+ j)} if θ = 45◦

{(m,n+1),(m,n+2), . . . ,(m,n+ j)} if θ = 90◦

{(m−1,n+1),(m−2,n+2), . . . ,(m− j,n+ j)} if θ = 135◦

Here, | · | denotes the cardinality (number of elements) in a set. I(k, l) represents the intensity of the voxel at position (k, l)
in the image.

Table S3. A summary of velocity-Informatics (GLRLM) variable

Parameter Descriptions

GLN

Measures the similarity of gray-level intensity values within an image. A lower GLN value indicates
greater uniformity or similarity in intensity values across the image, implying less variation and a more
consistent distribution of gray levels throughout the image.

GLN =
∑

Ng
i=1

(
∑

Nr
j=1 P(i, j|θ)

)2

Nr(θ)

LongRunEmphasis

Evaluates the distribution of long-run lengths within a texture. Its higher value indicates a greater
prevalence of longer run lengths, suggesting the presence of coarse structural textures characterized
by extended homogeneous segments.
LRE=∑

Ng
i=1 ∑

Nr
j=1 P(i, j|θ) j2

Nr(θ)

LRHGLE

Measures the joint distribution characterized by long run lengths associated with higher
gray-level values in an image.

LRHGLRE =
∑

Ng
i=1 ∑

Nr
j=1 P(i, j|θ)i2 j2

Nr(θ)

RunEntropy

Quantifies the uncertainty or randomness in the distribution of run lengths and gray levels within a texture.
Its higher value indicates greater heterogeneity in the texture patterns, reflecting more diverse variations
in both the lengths of homogeneous segments and the associated gray levels across the image.
RE =−∑

Ng
i=1 ∑

Nr
j=1 p(i, j|θ) log2(p(i, j|θ)+ ε)

RLN

measures the similarity or uniformity of run lengths across the image. Its lower value indicates greater
homogeneity among run lengths, suggesting that the lengths of consecutive homogeneous segments
in the image are more consistent and less variable.

RLN =
∑

Nr
i=1

(
∑

Ng
j=1 P(i, j|θ)

)2

Nr(θ)

RunPercentage
Measures the coarseness of texture by calculating the ratio of the number of runs to the number of voxels
in the ROI.
RP = Nr(θ)

Np

RanVariance
Measure that quantifies the variance in the lengths of runs within an image.
RV = ∑

Ng
i=1 ∑

Nr
j=1 p(i, j|θ)( j−µ)2 , here µ = ∑

Ng
i=1 ∑

Nr
j=1 p(i, j|θ) j

Gray Level Size Zone Matrix (GLSZM) was first introduced by Thibault et al.12 to quantify the distribution of
connected regions of voxels with identical intensity levels within an image. In this context, a "zone" is a contiguous cluster of
pixels (or voxels in 3D) that share the same intensity value. The element (i,j) in the GLSZM represents the number of zones
with an intensity level i and a size j.

A significant advantage of GLSZM over GLCM and GLRLM is that GLSZM does not rely on specific orientations or
directions (θ ) for its calculation. This orientation independence means that GLSZM generates a unique matrix by considering
all possible directions, providing a comprehensive representation of intensity zones in the image. The Velocity-Informatics
variables computed using GLSZM in Table 2 of the manuscript are explained in Table S4.
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Table S4. A summary of velocity-Informatics GLSZM variable

Parameter Descriptions

LargeAreaEmphasis
evaluates the distribution of large-size zones within an image where a greater value shows
more coarse textures.
LAE = 1

Nz
∑

Ng
i=1 ∑

Ns
j=1 P(i, j) j2

LAHGLE
Quantify the proportion in the image of the joint distribution of larger size zones with
higher gray-level values.
LAHGLE = 1

Nz
∑

Ng
i=1 ∑

Ns
j=1 P(i, j)i2 j2

SizeZoneNonUniformity

Quantifies the variability of size zone volumes within an image. Its lower value indicates a
more homogeneous distribution of zone sizes, reflecting uniformity in the volume
distribution across the texture.

SZN = 1
Nz

∑
Ns
j=1

(
∑

Ng
i=1 P(i, j)

)2

SmallAreaEmphasis

Evaluates the distribution of small-size zones within a texture. Its higher value suggests a
higher prevalence of smaller size zones and finer textures, highlighting the presence of intricate
details and finer variations in the image texture.
SAE = 1

Nz
∑

Ng
i=1 ∑

Ns
j=1

P(i, j)
j2

ZoneEntropy
Quantifies the uncertainty or randomness in the distribution of zone sizes and gray levels.
ZE =−∑

Ng
i=1 ∑

Ns
j=1 p(i, j) log2 (p(i, j)+ ε)

ZonePercentage
Measures the coarseness of texture by calculating the ratio of the number of zones to the
number of voxels in the Region of Interest (ROI).
ZP = Nz

Np

ZoneVariance
Measures the variance in gray level intensities within the zones.
ZV = ∑

Ng
i=1 ∑

Ns
j=1 p(i, j)( j−µ)2 ,here µ = ∑

Ng
i=1 ∑

Ns
j=1

S4 Visual Assessments of Gross Hemodynamics with IAs Over A Cardiac Cycle
Time-resolved results from the additional three cases (see Figs. 7 and 8) in the manuscript are provided below for the sake of
completeness.
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Figure S3. Comparison of velocity magnitude: Manual vs. automated workflow across different cardiac phases: (a) IA Geometry and
cross-sectional cutting plans,(b) a Flow rate waveform,(c) Velocity magnitude contour at specific cross-sectional cutting planes (see (a)) and
cardiac phases (see (b))
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Figure S4. Comparison of velocity magnitude: Manual vs. automated workflow across different cardiac phases: (a) IA Geometry and
cross-sectional cutting plans,(b) a Flow rate waveform,(c) Velocity magnitude contour at specific cross-sectional cutting planes (see (a)) and
cardiac phases (see (b))
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Figure S5. Comparison of velocity magnitude: Manual vs. automated workflow across different cardiac phases: (a) IA Geometry and
cross-sectional cutting plans,(b) a Flow rate waveform,(c) Velocity magnitude contour at specific cross-sectional cutting planes (see (a)) and
cardiac phases (see (b))
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