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eAppendix 1. Coefficient interpretation 
Race and ethnicity were collected as percentages of each Census-classified race and 
ethnicity in a Census block group. Each race and ethnicity variable was log-transformed 
due to string right-skewed distributions. When modeled in our regression, this means 
that the variables were centered on 0 after the log transformation, making the reference 
value 𝑒0 = 1 for all groups. The model coefficients are given relative to a log-unit 

increase from the reference value, or 𝑒1 − 𝑒0 = 2.72 − 1 = 1.72. In other words, the full 
interpretation of coefficients might be: 
 

𝛽𝐴𝑠𝑖𝑎𝑛 = −0.05 
 

e−0.05 = 0.95 
 
Relative to an area with a population of 1% Asian residents, a 1.72% increase in the 
percent of Asian residents is associated with 5% fewer monitors. The reference 
population would be composed of 1% Asian residents, but also 1% each of AIAN, Black 
or African American, NHPI, Two or More races, some other race, and Hispanic or Latino 
ethnicity. In other words, the reference population is composed of 93% non-Hispanic 
White residents and 1% each of every other group. 
 
eFigure 1. Racial and ethnic composition visualized at the county level using 
Fisher class intervals 
County-level racial and 
ethnic composition with 
the groups used in our 
study are mapped in 
eFigure 1. Fisher class 
intervals are used, as 
these maximize 
differences between 
class intervals according 
to the distribution. 
 
Block group–level 
population is shown in 
eFigure 2. Decile 
intervals are used to 
show the distribution, 
which is right-skewed. 
 
  

eFigure 1. Racial and ethnic composition are visualized at the county level using Fisher 
class intervals. 
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eFigure 2. Block group–level population size 

eFigure 2. Block group–level population size 
Not all monitors had a measurement scale listed in the AQS dataset (eTable 1). Rather 
than exclude these monitors, we imputed the measurement scale based on the modal 
scale for that pollutant. Alternative strategies may have included exclusion of missing 
data, single imputation with multinomial regression, and multiple imputation with 
multinomial regression. Exclusion would only be appropriate when missingness occurs 
completely at random, which is unlikely and difficult to prove. With any imputation 
method, we impose our own assumptions about which variables would best account for 
structure in missingness, if missing at random (not completely at random). With modal 
imputation, a single imputation strategy, we use information from related observations 
based on criteria pollutant.  
 

eTable 1. Measurement 
scales and missingness 
by pollutant 

Measurement Scale 

Microscale Middle Neighborhood Urban Regional Missing 

CO N (%) 74 (21.4) 33 (9.5) 151 (43.6) 37 (7.8) 23 (6.6) 38 (11.0) 

NO2 N (%) 66 (10.1) 37 (5.6) 261 (39.8) 122 (18.6) 51 (7.8) 119 (18.1) 

O3 N (%) 4 (0.3) 19 (1.2) 581 (36.3) 502 (32.4) 298 (18.6) 195 (12.2) 

Pb N (%) 38 (10.4) 86 (23.6) 132 (36.3) 6 (1.6) 0 (0.0) 102 (28.0) 

PM N (%) 103 (10.7) 173 (4.7) 2224 (60.6) 392 (10.7) 233 (6.3) 547 (14.9) 

SO2 N (%) 16 (1.5) 71 (6.6) 534 (49.7) 143 (13.3) 70 (6.5) 240 (22.3) 
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eFigure 3. Outcome variable creation 
We used several procedures to create our outcome variable (eFigure 3), which was the 
number of monitors sampling a Census block group’s population for each criteria 
pollutant. First, Air Quality System monitor locations were collected as a csv from the 
EPA’s AirNow webpage. The criteria pollutant sampled by each monitor was examined, 
and only parameter codes for criteria pollutants were included. Using the latitude and 
longitude fields, the monitor dataframe was converted to a spatial point feature. The 
World Geodetic System 1984 (WGS84) coordinate reference system was used, and the 
point feature was transformed to the Albers Equal Area projection. 
 
Next, the 2020 Block Group Centers of Population dataset was obtained from the U.S. 
Census Bureau as a csv file. The dataframe was converted to a spatial point feature, 
also using the WGS84 coordinate reference system and the Albers Equal Area 
projection. 
 
To link the monitor locations to the population centroids, we created a buffer around 
each monitor. The size of the buffer was determined based on the measurement scale 
of the monitor (micro-scale: 100 m, middle scale: 100 m–0.5 km, neighborhood scale: 
0.5–4 km, urban scale: 4 km–50 km, regional scale: “tens to hundreds of kilometers,” 
50–150 km used1). The upper extent of the monitors was used for our model, but a 
sensitivity analysis (see Supplement 6) was conducted with the lower extent of the 
monitors. The monitors were split into five shapefiles, one for each measurement scale. 
Based on the scale values (100 m, 0.5 km, 4 km, 50 km, 150 km), buffers were created 
around all monitors. 
 
The buffer polygons were then split into six spatial features, one for each pollutant. For 
each measurement scale, a spatial join was performed to identify which buffers for each 

pollutant contained the population centroids. For each pollutant, the resultant 

eFigure 3. Outcome variable creation schematic 
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dataframes were combined (rbind). The number of times a Census block group’s FIPS 
code appeared in the combined dataframe indicated the number of monitors for that 
pollutant measuring that area’s population. These values were merged with the ACS 
demographic data. 
 
eAppendix 3. Alternative strategies for measuring the outcome 
We considered several alternative strategies for defining the outcome (who is 
monitored), including distance-based methods and kriging, but were determined to be 
too reductive and less interpretable. Additionally, population monitoring based on the 
scaled determined by the EPA more direct policy and population health implications. 
 
Monitors sample at different scales and therefore measure different things. Population A 
may live 0.5 hm from a microscale monitor, but these are intended to measure pollution 
which may be localized to a particular area. They may also live 3 km from a 
neighborhood scale monitor, which is intended to capture trends in concentration typical 
to their location. Neither kriging nor proximity-based approaches would not allow us to 
consider this nuance. 
 
Distance to nearest monitor was considered, as being closer to a monitor may mean 
your exposure is more closely related to what was recorded. However, we also argue 
that more monitoring reduces measurement error, and this would be lost without 
considering the effect of multiple monitors. If Population A lived 1 km from one monitor 
and Population B lived 1 km from one monitor 1.1 km from three monitors, the outcome 
would be identical for both populations. 
 
In an earlier iteration of the study, we created a kriged surface of monitor density. Unlike 
the proximity approach, this does consider the effect of multiple monitors. However, this 
would still ignore the measurement scale. We also determine that the methods and 
results were less interpretable than a generalized linear model. 
 
Many factors may affect how reliably a monitor samples a given area. Without finer 
scale monitor data, we can’t know if the monitor provides a good approximation of 
exposure in the measurement area (and there is probably temporal variation in how well 
it approximates). There is almost certainly spatial heterogeneity within these areas. We 
assume the choice in monitor placement and measurement scale are informed by 
spatial and temporal heterogeneity within the area. While this is a fairly large 
assumption, it is grounded in EPA regulatory monitoring guidelines — we can identify 
gaps where, by the EPA and local authority’s own measures, we know little to nothing 
about air quality.  
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eFigure 4. Identifying confounders with a directed acyclic graph 
Well-established associations among the variables were delineated (eFigure 4).1–4 
Variables were selected based on EPA monitoring objectives: 
 

1. Determine the highest 
concentration expected to occur 
in the area covered by the 
network. (industrial activity, 
human activity, pollution 
sources) 

2. Measure typical concentrations 
in areas of high population 
density. (population size, 
urban environment) 

3. Determine the impact of 
significant sources or source 
categories on air quality. 
(industrial activity, human 
activity, pollution sources) 

4. Determine background 
concentration levels. (industrial 
activity, human activity, 
pollution sources) 

5. Determine the extent of regional 
pollutant transport among 
populated areas; and in support 
of secondary standards. (urban 
environment, human activity) 

6. Measure air pollution impacts on 
visibility, vegetation damage, or 
welfare-based impacts. 
(population size, urban 
environment, pollution 
sources) 

 
The minimal adjustment set is 
derived using the 
adjustmentSets function in 
dagitty, an R package for graphical analysis of structural causal models. This function 
enumerates sets of covariates that allow for unbiased estimation of causal effects from 
observational data. 

 
  

eFigure 4. Directed Acyclic Graph 
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eAppendix 3. Sensitivity analysis procedures 
When constructing buffers based on the upper extent of each monitor’s measurement 
scale (100 m, 0.5 km, 4 km, 50 km, 150 km), we also constructed buffers based on the 
lower extent (1 m, 100m, 0.5 km, 4 km, 50 km). The same procedures were used as 
above (Supplement 2. Measurement scale imputation). 
 
eAppendix 4. Sensitivity analysis results 
When restricting the monitor measurement scales to the lower bound, most effects in 
each model followed a similar direction with some exceptions. The effect of Asian race 
reversed direction in the CO and SO2 models. The effect of Hispanic or Latino ethnicity 
also reversed in the SO2 model, and the effect of Some Other Race was amplified. 
Across all effects, confidence intervals widened in every model, but these overlapped 
with the initial confidence intervals in most cases. In the Pb model, confidence intervals 
widened substantially, such that most effects were not credible, with the exception of the 
effect of Asian race. Using the lower bound of measurement scales, only 394 Census 
block groups (0.2%) were considered monitored for Pb. The magnitude of most effects 
changed only slightly in the models of CO, PM, and O3, but the magnitude was 
amplified in most effects of the NO2 model. 
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eFigure 5. Monitor locations over time 

eFigure 5 shows changes in monitor density throughout the history of EPA air quality 
monitoring, beginning in 1957. All monitors are represented with a single circle, 
regardless of measurement scale. The Clean Air Act was first passed in 1963 and later 
amended in 1977 and 1990. Pb monitors were the first to be placed, and many CO, 
SO2, O3, and NO2 monitors were added in the early-to-mid 1970s. PM and O3 are 
monitored more heavily beginning in the late 1980s. 
 
See figure 5 here: 
https://drive.google.com/file/d/1ynIImn0Tq55mVVWMD04dKyTh9dnFLm2G/view?usp=share_link 
 
 
  

eFigure 5. Monitor locations over time 

https://urldefense.com/v3/__https:/drive.google.com/file/d/1ynIImn0Tq55mVVWMD04dKyTh9dnFLm2G/view?usp=share_link__;!!AI0rnoUB!61-37V2-RhhrsvR8VdUBTcMd78_EdzehbAlpaFseaku60aslhRCva0vDWnBu9LySyX5-bjbLDNLGQghDGVmat2RUjVdz$


© 2024 Kelly BC et al. JAMA Network Open. 

 
eTable 2. Recording strategies by pollutant 
Of the 7,771 monitors studied in this analysis, 4,811 (61.9%) monitored continuously, 
1,781 (22.9%) monitored intermittently, and 1,113 (14.3%) did not have a recording 
strategy listed (eTable 2). Of the monitors without a missing strategy, all O3 monitors 
were continuous, all Pb monitors were intermittent, and all CO were continuous. Nearly 
all SO2 and NO2 monitors were continuous. PM is the only pollutant with a substantial 
split between continuous and intermittent monitors. 
 

eTable 2. Recording 

strategies by pollutant 
Recording Strategy 

  Continuous Intermittent Missing 

  N = 4811 N = 1787 N = 1113 

PM N (%) 1785 (48.6) 1539 (41.9) 348 (9.5) 

O3 N (%) 1369 (85.6) 0 (0) 230 (14.4) 

SO2 N (%) 806 (75) 4 (0.4) 264 (24.6) 

NO2 N (%) 547 (83.4) 2 (0.3) 107 (16.3) 

Pb N (%) 0 (0) 242 (66.5) 122 (33.5) 

CO N (%) 304 (87.9) 0 (0) 42 (12.1) 
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