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Note S1. Quality control and sample selection of Recount 3 data 19 

Phase 1: We first performed a basic quality control (QC) of samples using the following steps. 20 

• Remove samples annotated as single cell (n=74,412). 21 
• Remove 4SU-labelled samples (n=1,589). 22 

o Mention of ‘4su’ or ‘thiouridine’ in one of these columns: 23 
"sra.library_construction_protocol"; "sra.study_abstract"; 24 
"sra.experiment_title"; "sra.design_description"; "sra.sample_description"; 25 
"sra.library_construction_protocol"; "sra.sample_attributes"; "sra.sample_title" 26 

• Remove samples with only NaN expression values (n=239). 27 
• Remove samples with missing metadata (n=1,711). 28 
• Exclude samples based on the following QC metrics (n=96,597): 29 

o sra.sample_spots      <1e6 or >2e8 30 
o for TCGA samples, recount_qc.bc_frag.count  <1e6 or >2e8 31 
o recount_qc.star.uniquely_mapped_reads_%  <60% 32 
o recount_qc.aligned_reads%.chrm    >20% 33 
o recount_qc.aligned_reads%.chrx    >6% 34 
o recount_qc.aligned_reads%.chry    >0.5% 35 
o recount_seq_qc.%n      >2% 36 
o recount_seq_qc.%a      <20% or >35% 37 
o recount_seq_qc.%c      <20% or >35% 38 
o recount_seq_qc.%g      <20% or >35% 39 
o recount_seq_qc.%t      <20% or >35% 40 
o recount_qc.star.%_of_reads_mapped_to_too_many_loci >0.5% 41 
o recount_qc.junction_count     >500,000 42 
o recount_qc.star.deletion_average_length   >3 43 
o recount_qc.star.number_of_splices:_total   <150,000 44 
o recount_qc.intron_sum_%     >20 45 
o recount_qc.bc_auc.unique_%    <125 46 

• Exclude all data from study SRP025982 (mixed tissues and spiked data for benchmarks). 47 

Phase 2: We only retained genes that were expressed in at least 50% of the samples. 48 

Phase 3: We performed another sample QC using only the maintained genes. 49 

• Exclude samples with 0 expression >50% of the genes. 50 
• Remove duplicate samples. 51 
• Exclude samples with 0 variance. 52 
• Use singular value decomposition (SVD) on quantile-normalised expression to remove 53 

outliers on the first component. 54 

Phase 4: We corrected the remaining samples for covariates using the following steps. 55 

• Correct the expression data for the following technical covariates: 56 
o recount_seq_qc.avg_len 57 
o sra.sample_spots 58 
o recount_qc.bc_frag.count 59 



 

 

o recount_qc.star.uniquely_mapped_reads_% 60 
o sra.library_layout 61 
o recount_qc.aligned_reads%.chrm 62 
o recount_qc.aligned_reads%.chrx 63 
o recount_qc.aligned_reads%.chry 64 
o recount_seq_qc.%a 65 
o recount_seq_qc.%c 66 
o recount_seq_qc.%g 67 
o recount_seq_qc.%t 68 
o recount_qc.bc_auc.unique_% 69 
o recount_qc.intron_sum_% 70 
o recount_qc.star.%_of_reads_mapped_to_too_many_loci 71 
o recount_qc.junction_count 72 
o recount_qc.star.deletion_average_length 73 

• 675 SRA samples were excluded due to missing covariate data. The total number of 74 
samples included was 142,849. 75 

Phase 5: We predicted cell lines and cancer samples. The predictions were based on the sample 76 
principal components and trained using the annotations known for a subset of the samples. For the 77 
prediction of primary tissues vs cell lines, we used logistic regression using the principal 78 
components. 79 

For the prediction of cancer samples, we used the method developed by Fehrmann et al. 51. This first 80 
determines the auto-correlation per component, which is higher for components that reflect copy 81 
number alterations. The sample loadings are then used to create a score per sample that indicates 82 
the number of copy number alterations in the samples. We then used this score in a second logistic 83 
regression model that discriminated between primary tissues and cancer samples. 84 

Neither of these models yielded perfect separation between the three classes of samples. While this 85 
is in part driven by erroneous annotations in the public repositories, it did allow us to select samples 86 
that are likely to be primary tissues or cell types. 87 

51. Fehrmann, R. S. N. et al. Gene expression analysis identifies global gene dosage sensitivity in 88 
cancer. Nat. Genet. 47, 115–125 (2015). 89 

Note S2. Tissue prediction and per-tissue quality control of Recount3 data 90 

To predict tissues for the samples that are predicted not to be cell lines or cancerous, we started 91 
anew with transcripts per million values. We selected the genes expressed in at least 50% of the 92 
samples, performed log2 and quantile normalisation and corrected for the same covariates as 93 
before. We then performed a new principal component analysis and used the components in a 94 
multinominal logistic regression model trained on the known sample annotations. 95 

One major confounder with tissue type is the associated study. Typically, samples from the same 96 
study are sequenced using the same type of sequencer and read length, and most studies 97 
investigate a single tissue. But there are many differences among the different studies. We can 98 
correct for these to some extent by including technical differences as confounders, but we found 99 
that this adversely affected our prediction accuracy. We therefore devised the following strategy to 100 



 

 

create a representative training set. Ideally, we would only use a single sample per tissue from each 101 
study to train the prediction model. In practice, for some tissues, this would result in a rather limited 102 
number of usable samples. To overcome this, we increased the number of samples per tissue per 103 
study to ensure at least 50 training samples per tissue. Based on early tests, we noticed that we 104 
could not reliably discriminate between adipose and breast samples. These samples were therefore 105 
combined in a single adipose-breast network that we refer to as a ‘breast’ network in this 106 
manuscript for clarity. 107 

We then used the R package glmnet 52 to do lasso regression with cross validation to select an 108 
optimal lambda. This model was then applied to all samples, and we assigned each sample the tissue 109 
with the highest posterior probability. Samples for which the highest posterior probability was less 110 
than 0.5 were excluded. 111 

As a final quality control, we performed a principal component analysis per tissue and excluded 112 
outliers. This resulted in 46,410 samples. Per tissue, we eventually used VST 45 for the normalisation 113 
and corrected the data for the covariates. A SVD was used to extract the eigenvectors with gene 114 
loadings that are used by Downstreamer for the gene prioritisation. 115 

For the Recount3 multi-tissue network, we used quantile normalisation and covariate correction for 116 
the 46,410 samples for which we have a predicted tissue assignment. Here we used SVD to obtain 117 
the eigenvectors. 118 

52. Friedman, J. H., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized Linear Models via 119 
Coordinate Descent. J. Stat. Softw. 33, 1–22 (2010).  120 



 

 

Fig. S1. Association between PascalX gene z-score profiles of different traits 121 

Provided separately. 122 

A) Pearson correlations between gene z-scores reveal that most pairwise correlations between traits are positive. B) Mean 123 
correlation in gene z-scores with all other GWASs (y-axis) versus the number of samples in the GWAS (x-axis). C) Mean 124 
correlation in gene z-scores with all other GWASs (y-axis) versus the number of independent genome-wide significant hits 125 
for the respective GWAS determined by clumping ±500kb window and an r2 of 0.1. 126 
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Fig. S2. Association between average PascalX gene z-score and LD and gene density 128 

 129 
A) Association between average gene z-score (y-axis) and the number of genes within a ±500kb window (x-axis). B) As in 130 
(A), but x-axis indicates the log2 of the average LD score of SNPs located ±25kb around the start and end of a gene. The 131 
adjusted r2 of the model associating the average gene z-score and these two parameters as the independent variables is 132 
0.147. p-value < 1e-16. 133 
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Fig. S3. Enrichment of missense and LoF intolerance in the average PascalX gene z-score 135 

 136 
A) Association between average gene z-score (x-axis) and the missense intolerance z-scores from the gnomAD consortium 137 
(y-axis). B) As in (A), but the y-axis indicates the z-score for LoF intolerance. 138 
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Fig. S4. Results on null data with correlation structure and evaluation of optimal threshold 140 
for eigenvector selection 141 

 142 
A) Results on simulated data with representative correlation structure for 1000 randomly generated phenotypes. From top 143 
to bottom: OLS model, GLS model and Downstreamer model. Both Downstreamer and GLS produce well-calibrated p-values 144 
under the null model. B) Evaluation of the optimal number of eigenvectors to use in the approximate GLS model. Evaluated 145 
here for the same simulated data as A, mean statistics for the 1000 pathways are shown on the y-axes, except for the first 146 
plot which shows the number of eigenvectors, representing the degrees of freedom +1. X-axis shows the percentage of 147 
variance explained by the eigenvectors. Y-axes show different statistics on the output. A threshold of 0.9 was chosen as it 148 
yielded optimal power, a mean model r2 close to zero, low standard errors and higher T statistics. We note that the 149 
simulated data had positive-definite correlation structure, but on real data, inclusion thresholds above 0.9 tend to give rise 150 
to inflation as their eigenvalues are approaching the precision limit or are negative.  151 



   

 

 

 

Table S1. The 88 complex traits and diseases to which we applied Downstreamer 152 
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