SUPPLEMENTAL INFORMATION FOR

Edge-centric connectome-genetic markers of bridging factor to comorbidity between depression and anxiety

Running title: Bridging factor of depression-anxiety comorbidity

Author List

Zhiyi Chen^{1,2,3*†}, Yancheng Tang^{4†}, Xuerong Liu¹, Wei Li^{1†}, Yuanyuan Hu^{5,6†}, Bowen Hu^{7†}, Ting Xu^{2,8,9}, Rong Zhang², Lei Xia¹, Jing-Xuan Zhang¹, Zhibing Xiao⁷, Ji Chen¹⁰, Zhengzhi Feng¹, Yuan Zhou^{5,6*}, Qinghua He², Jiang Qiu², Xu Lei², Hong Chen², Shaozheng Qin^{7*}, Tingyong Feng^{2*}

Affiliations

¹ Experimental Research Center for Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, 400038, China

² School of Psychology, Southwest University, Chongqing, 400415, China

³ Key Laboratory of Cognition and Personality, Ministry of Education, 400415, China
⁴ Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, 200083 China

⁵ CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China

⁶ Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China

⁷ State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100032, China

⁸ The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, Chengdu, 611731, China

⁹ The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China

¹⁰ Center for Brain Health and Brain Technology, Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, 200240, China

[†]These authors contributed equally: Zhiyi Chen, Yancheng Tang, Wei Li, Yuanyuan Hu, and Bowen Hu

*Correspondence at: Zhiyi Chen <u>(chenzhiyi@tmmu.edu.cn</u>), Yuan Zhou <u>(zhouyuan@psych.ac.cn</u>), Shaozheng Qin <u>(szqin@bnu.edu.cn</u>), and Tingyong Feng <u>(fengty0@swu.edu.cn</u>)

CONTENT

SUPPLEMENTAL METHODS	1
1. Participant	1
2. Behavioral data clean and imputation	6
3. Neuroimaging data collection and preprocessing	8
4. Network-wise associations between depressive and anxious symptoms	9
5. Estimates of topological properties from network model	9
6. Normalized Shannon's entropy	9
7. Statistical powers of network analysis	10
8. Stability estimates to network analysis	. 12
9. Parallel analysis, permutation test and general linear regression model	. 12
10. Edge-centric functional connectome (eFC) construction	. 14
11. Edge-centric connectome-based predictive model (eCPM)	. 15
12. Quantitative univariate twin study analysis	. 15
13. AHBA dataset and preprocessing	. 16
14. Partial least squares (PLS) model	. 17
15. GAMBA decoding	. 17
16. Enrichment analysis	. 18
SUPPLEMENTAL RESULT	. 19
1. Topological centrality of depression-anxiety comorbidity network	. 19
2. Bridging symptoms of depression-anxiety comorbidity network	. 21
3. Network Stability	. 22
4. Linegraph of edge-centric functional connectome	. 25
5. Contributive features of eFCs in the eCPM	. 25
6. Representation similarity of the eFC to <i>cb</i> factor	. 29
7. Heritability of representation similarity between the eFC and the <i>cb</i> factor	. 33
8. Transcriptomic signatures for RS of the <i>cb</i> factor	. 34
9. Association of single-gene expression level to RS values	. 44
10. Enrichment analysis for PLS1 component	. 50
11. Enrichment analysis for PLS2 component	. 54
12. Tissue-specific, cell type-specific and disease-specific enrichment in the PLS1	. 57
13. Decoding the macroscale brain network associations with PLS gene sets	. 59
14. Decoding the brain cognitive ontology associations with PLS gene sets	. 60
15. Decoding the cognitive terms of PLS gene sets	. 62
16. Decoding the cortical metabolisms of PLS gene sets	. 75
17. Decoding neurological and neuropsychiatric diseases from gene sets at BrainMap	. 76
18. Disconnectivity patterns of gene sets	. 78
19. Tissue-specific, cell type-specific and disease-specific enrichment in the PLS2	. 79
SUPPLEMENTAL REFERENCES	. 82

SUPPLEMENTAL METHODS

1. Participants

To strengthen the sample representativeness, we recruited this non-WEIRD (Western, Educated, Industrialized, Rich and Democratic) nationwide sample covering the almost all the regions of China (total n = 2, 022, aged from 19-27, M ± S.D., 20.04 ± 2.00 years old) from independent collectors during Nov, 2019 - Feb, 2022 (Tab. S1). The data collection has been completed by this consortium (Gut-Gene-Brain-Behavior Data Project of Chinese Personality, GGBBP), with five independent research teams (i.e., Principal Investigators, H.Q.H., Q.J., L.X., C.H., F.T.Y.) for relatively independent data collections. In this vein, despite the same scanner center, the whole sample could be partitioned into these relatively independent subsamples that the present study used (Tab. S2). The geospatial distributions of the present sample has been shown to cover almost all the regions of the China, which were derived from 945 counties/administrative regions across 327 cities. Furthermore, a total of 30 ethnicities were included in the present sample, especially in these ethnic minorities (< 1% of the whole population in the China) (Tab. S3). Rather biases to include participants with socioeconomic advantages, this sample also included ones with low- and middle- incomes by categorizing them from annual data of the National Bureau of Statistics of the China. Finally, we took the potential confounding of COVID-19 into accounts by excluding participants who were infected by SARS-Cov-2 in these neuroimaging-related analyses. Details for the symptoms scores in this sample have been sorted in the Tab. S4.

	Females	Males
Sociodemographic chara	acteristics	
Ν	1326	696
Age, years, M (SD)	20.20 (2.04)	19.88 (1.96)
Ethnicity, the number	29	25
of categories		
Handedness, <i>left</i>	107 (1219)	90 (606)
(right)		
Family incomes per	2.04 (1.42)	2.06 (1.39)
year, grades, M (SD)		
Scanning-related psych	ological status	
Mood States, scores,	96.96 (15.59)	97.71 (16.20)
M (SD)		
Mind wondering		
during scanning,		
scores, M (SD)		
Discontinuity of Mind	9.65 (2.08)	9.20 (2.27)
Theory of Mind	8.91 (2.34)	8.96 (2.53)
Self	11.35 (1.65)	11.07 (1.83)
Planning	10.10 (2.59)	9.80 (2.61)
Sleepiness	10.29 (2.53)	10.09 (2.68)
Comfort	8.87 (2.27)	8.39 (2.48)
Somatic awareness	9.65 (2.38)	10.03 (2.43)

Health concern	10.91 (1.73)	10.71 (1.79)
Visual Thought	10.29 (2.42)	10.07 (2.37)
Verbal Thought	8.66 (2.44)	8.22 (2.48)

Tab S1. Sociodemographic characteristics of this nationwide sample (n = 2,022**).** The mood states for all the participants were estimated by abbreviated Profile of Mood States Scale (PMOS) for describing the current mood status when they reached lab, with total 40 items covering stress, anger, fatigue, depression, energy, panic and self-esteem. Furthermore, the post-scanning examinations to the scanning mind-wondering had been done by the updated the Amsterdam Resting-State Questionnaire (ARSQ) 2.0 covering 10 factors mentioned within the table, which was an index to quantify resting-state minds during scanning. The grades of family incomes (per year) were categorized into five ones by criterion that made by National Bureau of Statistics of China: $1 = < \pm 25,000, 2 = \pm 25,000 - 100,000, 3 = \pm 100,000 - 240,000, 4 = \pm 240,000 - 400,000, 5 = > \pm 400,000.$

Ethnicity	N	Proportion
Han	1685	83.3%
Bai	11	0.5%
Buyi	25	1.2%
Zang	11	0.5%
Chaoxian	3	0.1%
Chuanqing	4	0.2%
Dai	1	<0.1%
Dongxiang	1	<0.1%
Dong	16	0.8%
Dulong	1	<0.1%
Yi	3	0.1%
Ha-ni	5	0.2%
Kazakhstan	5	0.2%
Hui	39	1.9%
Li	4	0.2%
Susu	2	<0.1%
Manchu	16	0.8%
Mongolian	12	0.6%
Miao	33	1.6%
Na-xi	1	<0.1%
Nv	1	<0.1%
Qiang	3	0.1%
Chi	2	<0.1%
Tujia	61	3.0%
Tu	6	0.3%
Uygurs	25	1.2%
Yao	3	0.1%
Yii	21	1.0%
Yugu	1	<0.1%

Zhuang

Tab S2. Ethnicity of participants in the present sample (n = 2,022). The "Han" is the ethnic majority in the China, while others (ethnic minorities) are less than 1% of the whole populations.

	Main sample	Validation sample	Generalization	Generalization	Generalization	Generalization
			sample	sample (ethnic	sample (ethnic	sample
				minorities)	majority)	(post-COVID19)
Sociodemographic cha	racteristics					
Ν	241	240	244	133	237	219
Sex, females	142	159	129	86	179	146
Age, <i>years, M (SD)</i>	19.20 (1.94)	18.56 (0.82)	21.92 (2.07)	19.95 (1.71)	19.09 (0.89)	19.17 (1.01)
Ethnicity, the number	1 (Han)	13	19	23 (excluded Han)	1 (Han)	18
of categories						
Handedness, <i>left</i>	28 (213)	14 (226)	23 (221)	23 (110)	25 (212)	30 (189)
(right)						
Family incomes per	1.98 (1.40)	2.45 (1.57)	2.14 (1.42)	1.58 (1.11)	2.09 (0.89)	1.79 (1.27)
year, grades, M (SD)						
Scanning-related psyc	hological status					
Mood States, scores,	97.55 (16.27)	99.10 (15.69)	94.81 (15.40)	97.41 (14.40)	98.70 (15.87)	99.23 (16.50)
M (SD)						
Mind wondering						
during scanning,						
scores, M (SD)						
Discontinuity of Mind	9.35 (2.05)	9.44 (2.18)	9.56 (2.11)	9.48 (2.01)	9.66 (2.19)	9.39 (2.07)
Theory of Mind	8.51 (2.40)	8.67 (2.42)	9.00 (2.48)	9.48 (2.21)	8.80 (2.32)	8.92 (2.39)
Self	11.07 (1.73)	11.12 (1.81)	11.25 (1.72)	11.52 (1.50)	11.29 (1.69)	11.23 (1.67)
Planning	9.77 (2.52)	9.72 (2.78)	9.83 (2.68)	10.18 (2.42)	10.02 (2.49)	9.87 (2.71)
Sleepiness	10.26 (2.51)	10.37 (2.65)	10.32 (2.62)	9.69 (2.52)	10.59 (2.22)	10.18 (2.63)
Comfort	8.66 (2.32)	8.70 (2.38)	8.57 (2.49)	8.66 (2.14)	8.53 (2.30)	8.67 (2.38)
Somatic awareness	9.51 (2.26)	9.33 (2.45)	9.91 (2.51)	9.97 (2.23)	9.68 (2.42)	10.02 (2.30)

Health concern	10.87 (1.71)	10.78 (1.69)	10.86 (1.81)	10.87 (1.74)	10.50 (1.76)	10.73 (1.78)
Visual Thought	10.01 (2.31)	10.04 (2.54)	10.25 (2.28)	10.61 (2.28)	10.27 (2.35)	10.29 (2.32)
Verbal Thought	8.18 (2.26)	8.27 (2.54)	8.52 (2.39)	8.86 (2.57)	8.61 (2.35)	8.73 (2.47)

Tab S3. Sociodemographic characteristics of each subsample. The mood states for all the participants were estimated by abbreviated Profile of Mood States Scale (PMOS) for describing the current mood status when they reached lab, with total 40 items covering stress, anger, fatigue, depression, energy, panic and self-esteem. Furthermore, the post-scanning examinations to the scanning mind-wondering had been done by the updated the Amsterdam Resting-State Questionnaire (ARSQ) 2.0 covering 10 factors mentioned within the table, which was an index to quantify resting-state minds during scanning. The grades of family incomes (per year) were categorized into five ones by criterion that made by National Bureau of Statistics of China: $1 = < \pm 25,000, 2 = \pm 25,000 - 100,000, 3 = \pm 100,000 - 240,000, 4 = \pm 240,000 - 400,000, 5 = > \pm 400,000$. In the China, the "Han" was the ethnic majority, with over 95% populations.

	Mean (Std. D)	Min/Max	Interquartile range (IQR)	Proportion of exceeding threshold, %	Proportion of both exceeding threshold, %
SDS	56.18 (10.97)	31.25/100	47.50-63.75	74.20 (1499/2020)	81.32 (1219/1499)
ΤΑΙ	43.36 (7.70)	22.00/72.0	38.00-48.00	68.30 (1380/2020)	

Tab S4. Summary to symptom scores for Zung self-reported depression scale (SDS) and trait part of state-trait anxiety inventory (STAI). Threshold to rate high depression (anxiety) was set by referring to Dunstan & Scott, 2019 (Dennis *et al*, 2013).

2. Behavioral data clean and imputation

We utilized on the R packages of "DataExplorer" to automatically detect the outliers and missing data from our dataset relating to measurements to the depression and anxiety (see Supplement 2). No prominent outliers were captured, whereas it found complete random missing (CRM) values in a portion of variables (A1-A10: ARSQ1-10, Amsterdam Resting-State Questionnaire), with all less than 5% from the total counts. Thus, we further used the R packages of "MICE" to inspect and impute these missing values by using predictive matching method (PMM). Based on the Monte Carlo simulations, the the third pool was selected as the final dataset given the visual inspections from density plots (Fig. S1-2).

Fig S1. Density plots of five imputation data pools. We showcased top 10 items with missing values after imputing simulated values, with each magenta line for one density of imputed dataset. A total of five simulated datasets are provided. Blue line indicates the density of original dataset (before imputation). Source data are provided as a Source Data file.

To measure the symptoms in the pre- clinical cohorts, we capitalized on the Zung's self-report depression scale (SDS) and status-trait anxiety inventory (STAI), respectively. The SDS was one of the most widely-used tool to measure one's depressive symptoms or activities, with prominently good psychometric merits in general population^{1,2}. This scale contained 20 items describing the depressive symptoms in daily life, with higher scores for severer symptom by 5-point Likert-formed style³. In addition, the trait domain of this Spielberger's STAI (STAI-T) had been used to measure one's anxious symptoms in the present study, given the superior reliability⁴. This STAI-T also included 20 items to depict anxiety-related affects and feelings, which was widely deployed for network analysis⁵⁻⁷. Given no non-clinical measurements to bipolar disorder, the present study included symptoms relating to depression and anxiety mentioned above only. All the participants were required to rate all the items of these scales, one-by-one. We detected and further simulated these missing data by using Monte-Carlo predictive matching method (PMM) from multiple imputation.

- 7 -

Fig S2. Density plots of imputation for each data pool. We showcased top 10 items with missing values after imputing simulated values, with each magenta line for one density of imputed dataset. total of five simulated datasets are provided, with each one was colored by magenta line. At the left, the blue line indicated density of original dataset (before imputation). Source data are provided as a Source Data file.

3. Neuroimaging data collection and preprocessing

All the neuroimaging data have been acquired by the same scanner (Siemens Prisma, 3T, SIMENS MAGNETOM, Erlangen, Germany), but were implemented by relatively independent collectors (*see above*). To reduce head-motion, we made use of foam padding. Participants were instructed to keep eyes open, and to take a rest without thinking during 480-seconds scanning.

Scanning parameters for the resting-state functional MRI have been detailed underneath: Time Repetitive (TR) = 2000 ms, Time Echo (TE) = 30 ms, slices = 62, Field of View (FoV) = 224 mm, base resolution = 112, Flip angle (FA) = 90°, Dist.factor = 15 %, Phase enc.dir = P>>A, Accel.factor slice = 2, Echo spacing = 0.54 ms. Corresponding field mappings were scanned with the following parameters: TR/TE1/TE2 = 620 ms/4.92 ms/7.38 ms, Voxel size = $2.0 \times 2.0 \times 2.0 \times 2.0$ mm, Slices = 62, FoV = 224 mm, Base resolution = 112, Dist.factor = 15 %, FA = 60°.

The algorithm to estimate head-motion signal frame-by-frame that was used frequently for proceeding to thorough scrubbing, was called "Power frame-to-frame displacement (Power's FD correction)". All of the images were corrected by the frame-to-frame head-motion displacement (FD) strategy to rigorously control motion-related effects. Specifically, we first calculated the FD value for every volume/frame (time point) point) of each participant. The FD was broadly considered to be a robust measure for instantaneous head motion, and can be estimated as a scalar quantity for six-dimensional rigid body parameters by an empirical equation, $FD_i = |\Delta d_{ix}| + |\Delta d_{ix}| + |\Delta d_{iz}| + |\Delta d_{iz}| + |\Delta a_i| + |\Delta \beta_i| + |\Delta \gamma_i|$, where $\Delta_{ix} = d_{(i-1)x} - d_{ix}$ and similarly for the other rigid body parameters ([$d_{iy}, d_{iz}, \alpha_i, \beta_i, \gamma_i$]). Then, these frames (volumes), whose the FD value was greater than 0.2 mm (as well as 1 back and 2 forward neighbors of them) were excluded from the participant's time series in the analysis. To align point-to-point co-fluctuations in edge-centric connectome constructions, we included participants who were fully free from head-motion corrections.

Preprocessing of these neuroimaging data was in line with mainstreaming pipelines (e.g., HCP), and mainly included nine steps:

(1) Slice timing correction (piecewise cubic spline temporal interpolation);

(2) Motion correction (rigid-body, to the median volume of the resting-state of each run, and then between-runs/sessions);

(3) Quality control for motion correction;

(4) Linear and non-linear spatial normalization of the EPI template into these T2* functional images;

(5) Quality control for 4;

(6) Correction of slow time drifts (high-pass filtering with discrete cosines, cut-off frequency 0.01Hz);

- (7) Correction of physiological noise (20 components, selection threshold 0.15);
- (8) Resampling of the functional data in the MNI space with 3mm isotropic resolution);
- (9) No spatial smoothing.

4. Network-wise associations between depressive and anxious symptoms

To test whether the network-wise correlations of depressive and anxious symptoms beyond univariate analysis, we capitalized on the multivariate Mantel's test, with statistical significance at p < .05. This test had been implemented by R packages of "LinkET", in conjunction of "vegan" and "tidyverse". All the parameters were in line with defaults ones that these packages provided. Results showed the statistically significant correlations between networks of depressive and anxious symptoms (r = .40, p < .001, n = 2,022), enabling to infer the network-wise association between them.

5. Estimates of bridging centrality from network model

To capture bridging symptoms in the depression-anxiety comorbidity, we carried on the EBICglasso (graphic least absolute shrinkage and selection operator with Extended Bayesian Information Criterion) Gaussian graph-theoretical model for establishing symptom-centered network to estimate bridging centrality. Here, each item was modeled as "node", and these "edges" were estimated by the conditional correlations of pairs of these node for forming the "graphic network". As guided by didactic framework, the EBICglasso algorithm was used for regularization of this network to control the false-positive errors, thus generating the final symptom-centered network. Furthermore, we estimated topological centrality of this network by using 5 topologically nodal and 5 topologically bridging centrality, with high values of centrality for detecting hubs, including Strength, Betweenness, Closeness, Expected Influence (EI) for nodal ones and including bridge strength, bridge betweeness, bridge closeness as well bridge 1-step/2-step EI for bridging ones. Bridge strength indicates a node's total connectivity with other disorders; Bridge betweenness assesses the number of times a node lies on the shortest path between any two nodes from two distinict disorders; Bridge closeness reflects the average distance from a node to all nodes outside of its own disorder; The 1-step Bridge expected influence, much like bridge strength, indicates a node's sum connectivity with other disorders. However, in the case of bridge expected influence, we do not take the absolute value of edges before summing them; The 2-step Bridge expected influence indicates a node's strength by summing values of edge with both direct and indirect connections to other disorder. In total, these metrics reflect the multifarious measurements on many aspects of bridging centrality. Details of how to calculate these topological metrics can be found elsewhere^{9,10}. Estimates of this network have been carried by R packages of "bootnet", "qgraph" and "networktools".

6. Normalized Shannon's entropy

We deployed the normalized Shannon's entropy (SE) to quantify the extent of which symptoms possessed high bridging centrality across differently topological properties. The mathematical description of the SE has been detailed underneath, where *p* indicated probability of a given hub across all the 5 bridging centrality.

$$H(X) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

Specifically, extracting these nodes with top 50% higher centrality (herein called "hubs") in each topological property were iterated, thus generating 20 (hubs) x 5 (topological metrics of bridging centrality) matrix. Further, this matrix was vectored to describe which topological properties were captured to determine "hubs" for a given node. Finally, the SE was estimated for all the given nodes, indicating how often this node was rated "hub" across these 5 topological properties. For comparability, we linearly normalized these raw SE into interval of [0, 1]. In total, the nodes with higher SE were more likely to be hubs across multifarious topological properties (i.e. bridging centrality).

7. Statistical powers of network analysis

We used Monte Carlo simulation method that proposed recently to conduct the sample size estimations for this network analysis⁸. As guided by this method, we firstly optimized the outcome (sensitivity = 0.6) and statistical power (specificity = 0.8). Then, the Monte Carlo simulations (n = 5,000) had been done to calculate these parameters across putative sample sizes, with curve-fitting methods to estimate these statistics. Finally, by using the Bootstrapping method (n = 10,000), the uncertainty bounds had been estimated around these curves for determining sample size. These analyses were validated as well. These sample size analyses have been carried out by using R packages of "powerly". We found that 1,622 participants were required to ensure such statistical powers in the present study (Fig. S3-6).

Fig S3. Monte Carlo simulations to performance (outcome, upper) and statistical power (bottom). At the top panel, each column showed the model performances of a given sample size across 30 Monte Carlo replications. The dashed red line indicated an acceptable criterion to determine optimal model performance. At the bottom panel, each blue point indicated the statistical value from network model by given sample sizes. The dashed red line indicated an acceptable criterion to determine optimal model performance. No inferential statistics are conducted here. Source data are provided as a Source Data file.

Fig S4. Curve-fitting statistics varied from different sample sizes. At the top panel, each blue point indicated the statistical value from network model by given sample sizes. The dashed red line indicated an acceptable criterion to determine optimal model performance. This translucent red line indicated a optimal curve-fitting. In the left-middle panel, the spline coefficients (marked by the red triangle) are presented by varying from 10 different basis functions. In the right-middle panel, each line represented a basis function to show the changes of values across sample size. Colors were just used to differentiate basis functions each other. In the left-bottom panel, the squared errors are estimated across different spline degrees of freedom. Colors for lines were just used to differentiate sample sizes each other. For the right panel, colors for lines were used to differentiate spline degrees of freedom each other. No inferential statistics are conducted here. Source data are provided as a Source Data file.

Fig S5. Estimates of confidence of sample sizes to fulfill required statistics. At the top panel, the blue (gray) shadow pictured the 95% (100%) confidence bands of statistics from network model across 10000 Bootstrapping pseudo-samples. The dashed red line indicated an acceptable criterion to determine optimal model performance. In the bottom panel, the red dashed line indicated the optimal density of statistics from network model to given sample sizes. No inferential statistics are conducted here. Source data are provided as a Source Data file.

Fig S6. Results of sample size estimates to outcome and statistical powers. At the bottom panel, this black solid curve indicated probability of model performances by Empirical Cumulative Distribution Function (ECDF). This red point depicted the cutoff of this curve. No inferential statistics are conducted here. Source data are provided as a Source Data file.

8. Stability estimates to network analysis

We used the Bootstrapping method to estimate the stability of this network analysis, that was to evaluate whether these network-analytic outcome could be replicated when the participants of this sample were randomly dropped out. In this vein, the stability coefficient (CS) depicting the correlations of network-wise statistics between original sample and pseudo-samples that produced by randomly dropped out participants. As default parameters, a correlation of at least 0.7 (default) between statistics based on the original network and statistics computed with less cases was used as constrictions.

9. Parallel analysis, permutation test, general linear regression model and measure invariance

As in line with the *p* factor, we constructed a factor structure with a common factor, and further showed well goodness-of-fits (RMSEA = 0.065, 90% CI: 0.056 - 0.071; SRMR = 0.033, TLI = 0.901, CFI = 0.936, BIC = 81.521). Moreover, multi-factor structures were examined as well (see Tab. S5). Moreover, we used the parallel analysis in the exploratory factor analysis (EFA) to examine whether other multi-factor structures were overfitting. Parallel analysis is a technique used to decide how many factors to retain in the EFA. It works by comparing eigenvalues from the actual data to those from random data of the same size. After performing EFA on the original dataset to extract initial eigenvalues, random datasets are created and analyzed similarly to calculate

average eigenvalues for each factor. Actual data eigenvalues that are larger than the corresponding averages from the random data suggest meaningful underlying factors. Factors are retained if their eigenvalues exceed the average random eigenvalues, distinguishing them from noise. This method helps prevent retaining too many or too few factors for causing overfitting or underfitting, providing a more empirical approach to determine factor structure ^{9,10}. By doing so, we found that the number of factors that decomposed from these 12 bridging symptoms should not exceed to two. Thus, we only examined one-factor and bifactor structure in this dataset. Although the multi-factor structures were found better goodness-of-fits, these structures were determined to at high risks of overfitting, and were thus regarded for poor performance in the model fitting.

Structure	RMSEA	RMSEA 90% CI	SRMR	TLI	CFI	BIC
bifactor	0.100	0.095-0.106	0.066	0.764	0.807	744.530
3-factor	0.034	0.027-0.041	0.016	0.972	0.986	-139.640
4-factor	0.029	0.021-0.038	0.012	0.980	0.993	-117.887
5-factor	0.022	0.01-0.033	0.008	0.989	0.997	-90.645
6-factor	0.000	0-0.022	0.004	1.002	1.000	-60.924
7-factor	0.000	0-0.028	0.002	1.006	1.000	-21.371

Tab S5. Goodness-of-fit to multi-factor structures. RMSEA = root-mean-square error of approximation; SRMR = Standardized Root Mean Square Residual; TLI = Tucker-Lewis Index; CFI = Comparative Fit Index; BIC = Bayesian Information Criterion. Model performances to the multi-factors were italicized as they exposed to the risk of overfitting.

To estimate whether the single factor structure could be best-fitting one in characterizing general structure of these 12 bridging symptoms, we capitalized on the permutation test at n = 1,000. Specifically, we identified that these 12 bridging symptoms were derived from both depression and anxiety, with 5 of 12 to anxiety (i.e., item 5, 12, 14, 16, 18) and with 7 of 12 to depression (i.e., item 1, 11, 13, 16-19). Thus, in the first step, we randomly shuffled the item number from all the item in depression and anxiety, respectively. In the second step, the items that were renumbered had been selected out by matching the original ones (that we found above, e.g., item 5, 12, 14, 16 in the anxiety and item 1, 11, 13 in the depression), thus generating a pseudo-bridging symptom set with 12 items. In the third step, this procedure had been iterated for 1,000 times to obtain the null distribution of these bridging symptoms. In the last step, the statistical significance was calculated by comparing Explained Variance Ratio (EVR, %) from the original one to this null distribution.

Beyond the conceptual framework, to justify whether this conceptualized "*cb* factor" is statistically distinct to the general psychopathological factor (i.e., *p* factor), we build upon the general linear regression model by using the "glm" function at the R, with the DV for the total scores of all the depression and anxiety symptoms (representing severity in the comorbidity) and with IV for the individual bridging symptom (s), *cb* factor scores, or *p* factor scores, respectively. Given the colinearity issue, no statistical inferences were used to in the model comparisons. Model performances were evaluated by AIC (Akaike Information Criterion) and BIC (Bayesian

Information Criterion), R2 and RMSE (Root Mean Squared Error). Results showed that the *cb* factor explained well to the total scores of all the symptoms compared to the p factor (see Tab. S6).

Model (IV)	AIC	BIC	R2	RMSE	P value for β (uncorrected)
TAI5	13868.03	13884.86	0.067	7.459	< .001
TAI12	13960.81	13977.65	0.023	7.632	< .001
TAI14	13859.78	13876.61	0.071	7.443	< .001
TAI16	13813.57	13830.40	0.092	7.359	< .001
TAI18	13824.21	13841.04	0.086	7.378	< .001
SDS1	13907.55	13924.39	0.048	7.532	< .001
SDS11	13935.55	13952.39	0.035	7.584	< .001
SDS13	13880.37	13897.20	0.061	7.481	< .001
SDS16	13843.20	13860.03	0.078	7.413	< .001
SDS17	13734.40	13751.24	0.126	7.216	< .001
SDS18	13760.26	13777.10	0.115	7.262	< .001
SDS19	13976.14	13992.98	0.015	7.661	< .001
The <i>cb</i> factor	13355.59	13372.43	0.275	6.571	< .001
The <i>p</i> factor	14006.72	14023.56	0.001	7.719	0.345

Tab S6. Model performance for comparisons between regressors (individual symptoms, the cb factor scores and the p factor scores). The best-fitting model has been marked by bold font. The general linear regression model was used here, with the two-sided z test to examine whether the β could reach statistical significance (p < .05, uncorrected).

To ensure the measure invariance across populations, we have capitalized on the Jeffreys-Zellner-Siow Bayesian factor (BF) statistics with aprior Cauchy distribution for estimating between-group variants of the *cb* factor scores on sex (male vs. female), ethnicity (majority vs. minority) and pandemic periods (pre-pandemic vs. post-pandemic). Here, the strong posterior evidences to support between-group variance were mathematically quantified as $BF_{10} > 3$. Results showed the weak Bayesian evidences to support significant between-group variants for *cb* factor scores, including sex ($BF_{10} = 2.7$), ethnicity ($BF_{10} = 0.2$) and pandemic periods ($BF_{10} = 0.1$), respectively, which demonstrated no prominent across-population variations in this conceptualized metric. Full results have been tabulated into the **Tab S7**.

Population variables	BF ₁₀	95% Credible Interval	Median	Error, %
Sex	2.680	0.039 - 0.222	0.131	0.008
Ethnicity	0.163	-0.049-0.183	0.067	0.163
Pandemic periods	0.094	-0.095-0.178	0.041	0.207

Tab S7. Bayesian factor evidence strengths of population-based variances for the *cb* factor. BF_{10} indicated the strength of Bayesian evidence supporting alternative hypothesis than null hypothesis.

10. Edge-centric functional connectome (eFC) construction

Rather nodal functional connectivity, we established the eFC to characterize the "edge-to-edge" communication patterns by using brain resting-state functional connectivity MRI (rs-fcMRI). The Schaefer-100 atlas was used to parcel cortical areas into 100 regions, and time series of each region were extracted to be z-scored firstly. Then, we obtained "edge time series" by estimating the dot products of these time series, one-by-one, that was to calculate instantaneous co-fluctuations, with positively high values for the instantaneously synchronization (and vice verse). Thus, we gained 4,950 (100×99/2) "edge time series" for all the "node pairs" of these parceled regions. Finally, as same as nodal functional connectome, the edge-to-edge connectome was built upon for containing 12,248,775 (4,950 × 4,949/2) unique eFCs by correlating each pair of these 4,950 "edge time series" for each participant, with each edge-to-edge correlation coefficient for defining one eFC strength. The high eFC strength indicated similarity of nodal communication patterns¹¹. For examining whether the high centrality of these edge-centric nodes that we found in the visual inspections reached statistical significance, we used the Permutation test at n = 1,000. We outputted the degree centrality of this graph as "true value", and randomly shuffled edges in this graph for 1,000 times to generate 1,000 pseudo-graphs. Furthermore, the degree centrality for all these pseudo-graphs had been all estimated to generate the null distribution. Finally, the statistical significance was estimated by comparing this "true value" in this null distribution.

11. Edge-centric connectome-based predictive model (eCPM)

Once these eFCs had been calculated, the edge-centric connectome-based predictive model (eCPM) was built to predict the *cb* factor scores to untangle its brain signatures. In line with the original CPM, we firstly estimated the inter-subject conditional correlations of all the eFCs to the *cb* factor scores. Second, we retained eFCs that reached statistical significance (*p* < .05, uncorrected), and generated the thresholding postive and positive mask, respectively. The positive (negative) mask included all the eFCs that were positively (negatively) correlated with the *cb* factor scores. These correlations were adjusted for these variables of no interests, including sex, age, scanning-related psychological status, socioeconomic status, and ethnicity. Furthermore, in each mask, the sum of all the eFC values has been caculated as individual neural feature for each participants, thus extracting the positive and negative eFC feature. Finally, we trained the machine-learning models with support vector algorithm to predict the cb factor scores by using the positive eFC feature, negative eFC feature or both in the main sample, but to test the performance of this trained model in these independent samples. Model performance was estimated by the mean square error and R^2 of predicted values to true ones. Here, the linear support vector regression (SVR) model was deployed, with no specific parameter modifications to strengthen methodological robustness. We used the linear kernel in this SVR model, which adopted default model parameters. These analyses were all carried out the "Statistics to Machine Learning toolbox" of MATLAB (MathWorks Inc.).

12. Quantitative univariate twin study analysis

We utilized on the Beijing Twin Study Dataset (2011-2017) containing 245 pairs of twins to probe into the phenotypic heritability of the eFC features (127 monozygotic twins and 118 pairs of

dizygotic twins, aged at 16-28, M = 21.0, S.D. = 2.57). All the collections and preprocessing of their neuroimaging data were in line with the main analysis. Details for this dataset can be found elsewhere^{12,13}. We firstly established a univariate ACE (A, additive genetic effect; common factor, C; unique environment, E) model by using the OpenMx package (3.1.2) at R platform. Once we have built upon the full ACE model, these nested submodels dropping out at least one parameters (e.g., AE, CE, E) were compared to this full one for gaining the statistical significance of the additive genetic effects (a^2) in this given model. The X^2 , along with Akaike information criterion (AIC) or Bayesian Information Criterion (BIC), were used to quantify the goodness-of-fitting, with the less AIC or BIC for better fitting performance. A statistical significant X^2 difference between full model and one nested submodel indicated that the nested model fitted worse than the full model, otherwise non-significant one could determine that this nested model with fewer parameters (compared to full models) was the best-fitting model, given the model parsimony.

13. AHBA dataset and preprocessing

AHBA dataset was built by AIBS (Allen Institute for Brain Science) (http://human.brain-map.org, RRID: SCR 007416) for providing whole-brain spatially heterogeneous gene expression level from six donors. These adult donors provided their postmortem brains (age = 42.50 ± 13.38 , 1 females, two whole-brain samples and five left-hemisphere brain samples). All the donors are required to be no history of neuropsychiatric disorders or neurological conditions, such as brain injury, epilepsy and any substance abuses. These postmortem brains have been sampled within 30 hours from death (https://help.brain-map.org/download/attachments/2818165/). Each postmortem brain was firstly sliced into ~ 500 anatomical samples in each hemisphere. Then, the DNA microarray high-pass sequences technique was used to test the gene expression level for each sample. Afterwards, gene information for each sample was mapped into 3D MRI coordinate space (standard MNI space) by using precedent high-resolution T1 images. The whole dataset contained 3072 samples, and obtained qualified gene expression data from 58,692 probes. To obtain the group-averaged gene expression atlas, the normalization processes were implemented across samples and across donors. To conduct connectome-transcriptional analysis, we selected Schaefer-100 atlas with 100 regions for assignments.

As recommended pipeline¹⁴, we preprocessed whole-brain transcriptional dataset by following this workflow (https://github.com/BMHLab/AHBAprocessing). Main steps for preparing this dataset included six section. (1) Gene information re-annotation. To obviate outdated gene annotation, the probe-to-gene mapping was implemented by using re-annotator toolbox for updating annotation information (probe n = 45,821 corresponding to 20,232 genes) (https://earray.chem.agilent.com/earray) in the hg38 sequencing database; (2) To remove background noise, the IBF (intensity-based filter) was used to filter probes that exceeded background (gene n = 10,190); (3) to tackle with multiple-probes for one gene, the gene annotation was determined by the highest correlation of RNA-seq to a given gene (probe selection); (4) for connectome-transcriptional analysis, each sample tissue was aligned into Schaefer-100 atlas in the MNI space, and the samples would be removed once the centroid Euclidean distance of sample to region in this atlas exceeded 2 mm; by using such criterion, 820 samples were retained to cover 100 regions in the atlas, with each sample for 10,027genes; (5) to

correct the inter-sample and inter-donor heterogeneity, scaled robust Sigmoid normalization has been used; for inter-sample variant, the first-step normalization was implemented across all the probes within sample; for each brain, the probes were normalized across all the sample; (6) for each region, gene expression levels are averaged across all the samples from six donors (gene selection). Following that, the final atlas-gene matrix was outputted to be pending for connectome-transcriptional alignment (100 x 10,027).

14. Partial least squares (PLS) model

Given the co-linearity structure for co-expressions of these gene in the AHBA, we build upon the partial least square (PLS) regression model to fitting the transcriptional expression levels from 10,027 genes to eFC-the-*cb*-factor representation similarity (RS). In this model, the first component could be captured by a linear combination of standardized predictors and responses, which was required to extract maximum variances (u_1 , v_1). Thus, the correlation between u_1 and v_1 would be the maximum pair. Then, the observation matrix for each variate (**A**, **B**) could used to estimate the vector scores (u_1° , v_1°) for the first component. In this vein, the vector scores could be calculated by a Lagrange multiplier method.

$$\max (u_1^{\wedge} \cdot v_1^{\wedge}) = \rho^{(1)\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{B}^{\gamma(1)}; \gamma^{(1)} = \frac{1}{\delta 1} \mathbf{B}^{\mathrm{T}} \mathbf{A} \rho^{(1)}$$

Following that, the regression model can be used for fitting response to u_1 , one-by-one and verse vice. Then, the residual matrix can be obtained as A1 and B1. If the elements in both residual matrix approached zero, this component would be assumed to explained this model. If it is not this case, both residual matrix should be used to replace original correlation matrix for recalculating these statistics until the condition was fulfilled. In the resultant step, if the rank of observation matrix ($n \times m$) was smaller than minimum value at position of (n-1, m), all the qualified components would be considered to be extracted completely. In this case, the PLS can be used to fit $u \sim x$ to $y \sim u$. Statistical significance for each component has been estimated by the Permutation test. Further, the bootstrapping method with n = 5,000 was deployed estimating weights and corresponding statistics (Z values) for these genes. To balance both Type-I and Type-II errors, the statistical threshold was set to Z > 3 (PLS+) or Z < -3 (PLS-) to determine the significantly overexpressed or underexpressed genes. To prevent from over-fitting, we added the 10-fold cross-validation method in modelling this PLS regression. Results showed the acceptable mean-square error (MES) in all the submodels (averaged MSE = 1.43, IQR: 0.87-1.62), which demonstrated no significant over-fitting issue in establishing this PLS model.

15. GAMBA decoding

GAMBA platform was used to reveal the association between gene expression level and neuroimaging-derived phenotype by regression model. Main steps for decoding the gene list that we obtained in the current study has been provided in main texts. Here provided original descriptions for statistical details (<u>http://dutchconnectomelab.nl/GAMBA/</u>)¹⁵:

The association between the cortical gene expression profile and regional properties of different neuroimaging phenotypes is assessed using linear regression.

$$\mathbf{y}_{i} = \boldsymbol{\beta}_{i} \,\boldsymbol{\beta} \mathbf{1} \boldsymbol{X} \mathbf{j} + \boldsymbol{\varepsilon}$$

where Y_i indicates the normalized gene expression profile of gene i or the averaged profile of a gene set *i*, X^j the normalized cortical profile of neuroimaging phenotype *j*, and cov the normalized covariate. Normalization is performed by substracting each value by the mean, followed by diving values by one standard deviation. The standardized regression coefficient β_i and the corresponding p-value are obtained.

Furthermore, GAMBA tests whether the observed association is spatially specific and gene specific. The null-spin, null-random, null-coexpression, and null-brain models are used. Per gene and per brain imaging phenotype, GAMBA performs a z-test to examine whether the observed β_1 (i.e., the effect size) was higher than the average effect size observed in the null models.

$$z = (\beta_1 - u)/\sigma$$

where μ , σ indicate the mean and standard deviation of β_1 in different null conditions. A two-sided p-value was computed as follows:

$$p = 2\emptyset(-z)$$

where Φ is the standard normal cumulative distribution function. GAMBA implements Bonferroni and FDR correction with adjustable thresholds to correct for multiple comparisons in the analysis of each imaging modality. Results reaching significance are shown in darker colors, otherwise in lighter colors.

16. Enrichment analysis

We deployed the board-certified meta-analytical platform called "Metascape" (https://metascape.org/gp/index.html) with newest version (updated by ChatGPT resources) to delineate functional processes that were enriched from above gene sets (PLS1 and PLS2). The gene set was used as input for this platform, and was further annotated by multiple biological databases. Based on cumulative hypergeometric distribution, the statistical significance of such enrichment of biological process/pathways for this given gene set was estimated, with Benjamini-Hochberg FDR corrections. To promote understanding of such molecular understructures, the protein-to-protein interaction (PPI) enrichment was examined as well. By measuring physical interactions, the resultant PP network was established. Furthermore, we carried out the Molecular Complex Detection (MCODE) for capturing PP modules, with the same statistical inferences and corrections. To probe into the tissue-specific cell type-specific enrichment, we utilized on built-in databases (e.g., PaGenBase, Cell Type Signatures) of this platform for disentangling these associations as well.

The tissue-specific enrichment analysis had been further carried out by the additional Specific Expression Analysis (SEA, <u>http://genetics.wustl.edu/jdlab/csea-tool-2/</u>) tool¹⁶. This dataset possessed strengths to show the gene enrichment specificity by estimating the specificity index

probability (pSI). This metric described how this given gene set could enrich higher into specific tissues compared to other ones from different thresholds to include background enrichment terms (e.g., 0.0001, 0.001, 0.05)¹⁷. Furthermore, the neurodevelopmental enrichment across 6 brain systems (e.g., amygdala, cerebellum) from early fetal to young adulthood periods was examined in the SEA tool as well, with the *q* values < .05 at Benjamini-Hochberg FDR corrections.

SUPPLEMENTAL RESULTS

1. Topological centrality of depression-anxiety comorbidity network

We estimated mainstreaming topologically properties for the nodal and bridging centrality to this network, favoring to represent many aspects of this network architectures, including Strength, Betweenness, Closeness, Expected Influence (EI) for nodal ones and including bridge strength, bridge betweeness, bridge closeness as well bridge 1-step/2-step EI for bridging ones **(Tab. S8-9)**. Those nodes whom centrality was ranked at top 50% have been primarily selected as "putative hubs".

Sumatom	Strongth	Potwoonnocc	Clasanass	Expected influence	Predicta
Symptom	Strength	Detweenness	Closelless	Expected influence	bility
TAI1	0.937562981	13	0.001108502	0.937562981	0.432
TAI2	0.986388843	16	0.001228951	0.763395403	0.308
TAI3	1.044194229	21	0.001165895	0.801040687	0.377
TAI4	0.679499946	0	0.001008205	-0.420292525	0.165
TAI5	1.201288484	59	0.001363786	1.101028476	0.403
TAI6	0.68870526	0	0.000943941	0.678872028	0.37
TAI7	1.151969109	45	0.001014756	1.151969109	0.469
TAI8	0.984415426	7	0.001133833	0.856794005	0.372
TAI9	0.998801014	11	0.001152646	0.859528342	0.393
TAI10	1.144271233	29	0.001121412	1.120052512	0.493
TAI11	0.974673878	25	0.001252823	0.950455157	0.383
TAI12	1.171929297	78	0.00129668	0.94136073	0.367
TAI13	0.893508516	52	0.001274969	0.893508516	0.321
TAI14	0.755007378	75	0.001279505	0.755007378	0.285
TAI15	0.893305758	2	0.00116903	0.879574214	0.328
TAI16	1.092240938	46	0.001206457	1.092240938	0.443
TAI17	0.990960768	22	0.001193346	0.87167716	0.403
TAI18	1.304579951	52	0.001228719	1.114762302	0.463
TAI19	0.829183126	41	0.001043406	0.773043447	0.341
TAI20	0.675689463	8	0.001077644	0.608987745	0.233
SDS1	1.14924404	23	0.001203528	1.14924404	0.408
SDS2	0.426602591	0	0.000896685	0.349846857	0.125
SDS3	0.961090036	15	0.001167294	0.917601309	0.301
SDS4	0.557508491	2	0.000925933	0.557508491	0.143
SDS5	0.084002454	0	0.00072832	0.058567933	0.007
SDS6	0.478591707	0	0.001064618	0.395056985	0.111
SDS7	0.472718239	1	0.000953768	0.223410417	0.054
SDS8	0.463331457	6	0.000997463	0.339008866	0.058
SDS9	0.785065083	18	0.001063482	0.648059628	0.133
SDS10	0.929368717	73	0.001355738	0.869172919	0.316
SDS11	1.18672751	97	0.001313202	1.18672751	0.438
SDS12	0.993859957	40	0.001252217	0.993859957	0.405

SDS13	1.165321475	40	0.001178713	1.138791854	0.292
SDS14	1.094275069	36	0.001230613	1.061667416	0.468
SDS15	0.997466119	32	0.001170268	0.723828257	0.199
SDS16	0.898452993	36	0.001288421	0.898452993	0.353
SDS17	1.089730839	77	0.001367477	0.979663296	0.462
SDS18	1.331362953	79	0.001331696	1.184528572	0.542
SDS19	0.912402939	66	0.001251597	0.880056529	0.141
SDS20	0.861327842	13	0.001147165	0.767622216	0.254

Tab S8. Topologically nodal centrality of nodes in this depression-anxiety comorbidity network. SDS = The self-reported scale, TAI = trait anxiety inventory. The numbers of these abbreviations indicated corresponding items.

	Dridge	Pridao	Pridao	Bridge.1-step	Bridge.2-step
Node	Strongth	Botweenness	Classmass	Expected	Expected
	Strength	Betweenness	Closeness	influence	influence
TAI1	0.157089968	6	0.038608913	0.157089968	0.425326014
TAI2	0.16431403	2	0.040951227	0.16431403	0.408545344
TAI3	0.24414109	23	0.038452068	0.165498837	0.392992505
TAI4	0.175411327	0	0.026348318	-0.081208883	-0.20751795
TAI5	0.566280634	45	0.05376303	0.566280634	1.060978698
TAI6	0.036789981	0	0.036499329	0.036789981	0.16675198
TAI7	0.186649998	28	0.039289275	0.186649998	0.373902807
TAI8	0.195951057	2	0.039225743	0.195951057	0.509002147
TAI9	0.081102823	0	0.037936361	0.048117424	0.231238084
TAI10	0.209375364	17	0.039162575	0.209375364	0.54603245
TAI11	0.16335734	22	0.045253391	0.16335734	0.502120472
TAI12	0.30270261	46	0.042905157	0.182647428	0.421383768
TAI13	0.159847193	39	0.043342882	0.159847193	0.416845639
TAI14	0.336914115	33	0.045963881	0.336914115	0.53731982
TAI15	0.130971435	2	0.03978008	0.123662038	0.371218545
TAI16	0.244245356	34	0.041912188	0.244245356	0.556354594
TAI17	0.122403844	13	0.04044384	0.090019976	0.293746749
TAI18	0.387780442	31	0.04345569	0.387780442	0.810675254
TAI19	0.131176121	15	0.038857225	0.075036443	0.285075146
TAI20	0.149075302	11	0.040107753	0.149075302	0.339438893
SDS1	0.395138867	15	0.041833977	0.395138867	0.777204967
SDS2	0.166310191	0	0.033136251	0.166310191	0.342305593
SDS3	0.12584244	8	0.040592362	0.082353713	0.402052101
SDS4	0.119944752	0	0.031783685	0.119944752	0.285254541
SDS5	0.017805476	0	0.027168046	-0.007629045	0.009488998
SDS6	0.035700211	0	0.038644693	0.023470945	0.086722898
SDS7	0.094584903	0	0.031267939	-0.014641822	0.011233959
SDS8	0.175400956	4	0.036909053	0.051078365	0.162310932

SDS9	0.055702396	7	0.035605787	0.034813613	0.173781844
SDS10	0.23519793	30	0.046795541	0.203250603	0.456095019
SDS11	0.153363091	46	0.047260697	0.153363091	0.423436329
SDS12	0.138174006	25	0.047129897	0.138174006	0.439337157
SDS13	0.367735008	29	0.040249113	0.367735008	0.706785427
SDS14	0.235167216	18	0.045200087	0.235167216	0.619785451
SDS15	0.263701975	20	0.038633767	0.144907492	0.439154151
SDS16	0.47797695	28	0.052086187	0.47797695	0.795988196
SDS17	0.257703431	47	0.05242785	0.257703431	0.675678775
SDS18	0.304944865	38	0.049606365	0.304944865	0.762947606
SDS19	0.375923974	54	0.046079727	0.343577564	0.651656996
SDS20	0.14926139	10	0.041674577	0.083804235	0.220210018

Tab S9. Topologically bridging centrality in this transdiganostic network. SDS = The self-reported scale, TAI = trait anxiety inventory. The numbers of these abbreviations indicated corresponding items.

2. Bridging symptoms of the depression-anxiety comorbidity network

We determined the hubs of this network by using the normalized Shannon's entropy (SE), with high value for representing nodes that were ranked as "putative hubs" from multiple topological properties. We finally selected 12 nodes with > 0.8 SE values to be hubs of this network **(Tab. S10)**.

Node	Shannon's entropy	Normalized Shannon's entropy
TAI5	3.321928095	1
SDS18	3.321928095	1
TAI18	3.121928095	0.984858662
SDS11	2.846439345	0.948813115
SDS17	2.846439345	0.948813115
TAI14	2.521928095	0.898328913
SDS1	2.521928095	0.898328913
SDS19	2.521928095	0.898328913
TAI12	2.160964047	0.835975008
TAI16	2.160964047	0.835975008
SDS13	2.160964047	0.835975008
SDS16	2.160964047	0.835975008
SDS14	1.770950594	0.762706907
TAI7	1.356779649	0.678389825
TAI10	1.356779649	0.678389825
TAI13	1.356779649	0.678389825
SDS10	1.356779649	0.678389825
TAI11	0.921928095	0.581671866
TAI1	0.468995594	0.468995594
SDS12	0.468995594	0.468995594
SDS15	0.468995594	0.468995594

TAI2	0	-	
TAI3	0	-	
TAI4	0	-	
TAI6	0	-	
TAI8	0	-	
TAI9	0	-	
TAI15	0	-	
TAI17	0	-	
TAI19	0	-	
TAI20	0	-	
SDS2	0	-	
SDS3	0	-	
SDS4	0	-	
SDS5	0	-	
SDS6	0	-	
SDS7	0	-	
SDS8	0	-	
SDS9	0	-	
SDS20	0	-	

Tab S10. The Shannon's entropy (SE) for each node across 10 topological properties. SDS = The self-reported scale, TAI = trait anxiety inventory. The numbers of these abbreviations indicated corresponding items. All the nodes were reordered by descending scale based on SE values. "-" = "Not applicable".

3. Network Stability

The network stability (CS) was estimated by the correlations of these topological properties between original sample and pseudo-sample (s) that were randomly dropped. As indicated by didactic guidelines, the network could be determined stable if CS > 0.25 (preferably to > 0.5) ^{18,19}. Results showed that almost all the topological properties that the present used possessed high network stability. Some examples are given in the **Fig. S7-10**.

Fig S7. Results of stability estimates for expected influence (EI). The point in this plot indicated the averaged correlation coefficient of EI between original sample and pseudo-samples dropped cases, with 95% Confidence Interval (CI, colored by red shadow) from the Bootstrapping method (n = 5,000). No inferential statistics are conducted here. Source data are provided as a Source Data file.

Fig S8. Results of stability estimates for closeness. The point in this plot indicated the averaged

correlation coefficient of EI between original sample and pseudo-samples dropped cases, with 95% Confidence Interval (CI, colored by red shadow) from the Bootstrapping method (n = 5,000). No inferential statistics are conducted here. Source data are provided as a Source Data file.

Fig S9. Results of stability estimates for betweenness. The point in this plot indicated the averaged correlation coefficient of EI between original sample and pseudo-samples dropped cases, with 95% Confidence Interval (CI, colored by red shadow) from the Bootstrapping method (n = 5,000). No inferential statistics are conducted here. Source data are provided as a Source Data file.

Fig S10. Results of stability estimates for these edges. The point in this plot indicated the averaged correlation coefficient of EI between original sample and pseudo-samples dropped cases, with 95% Confidence Interval (CI, colored by red shadow) from the Bootstrapping method (n = 5,000). No inferential statistics are conducted here. Source data are provided as a Source Data file.

4. Linegraph of edge-centric functional connectome

By using these node pairs as "edge node", the correlations between "edge time series" for all the pairs of these "edge nodes" have been calculated to define eFC, with maximum 12,248,775 eFC for each edge-centric connectome. To examine whether these eFCs represented brain intrinsic patterns, we estimated the topological properties of the representative connectome, and visualized it by using Fruchterman-Reingold algorithm. The layout and topological properties of this connectome was found to show the brain intrinsic architectures as previous studies^{11,20-22}, showing high degree in isual network (VIS), sensorimotor network (SMN) and attention networks (VAN/DAN). To estimate the statistical significance of degree centrality in these networks, we simulated 1,000 equivalent pseudo-connectomes by permuting edges from original connectome. By doing so, we constructed null distributions of degree centrality of these "edge nodes" in these network. Finally, the statistical significance to degree centrality of these "edge node" had been estimated by comparing true values in original connectome to ones in the null distribution, with Benjamini-Hochberg correction. Details of these topological properties have been sorted into the **Tab. S11**. These analyses have been implemented by the Gephi 0.9.2.

	Averaged degree	Weighted averaged	Eigenvector averaged	Page Rank	Graphic diameter	Averaged path	Averaged clustering
		degree	degree			length	
Values	81.1	48.9	0.3	0.9	7.0	3.3	0.5

Tab S11. Topological properties of linegraph of representative edge-centric connectome.

5. Contributive features of eFCs in the eCPM

To capture contributive features in the eCPM, we integrated these eFCs in the thresholding masks for positive and negative feature into the Yeo-7 brain systems, respectively. Averaged r value of each system and the ratio of eFCs on the maximum possible connections of each system were estimated to quantify relative importance of these systems in this eCPM. Full results of both r values and ratios have been documented into the **Tab. S12-15** and **Fig. S11**. The permutation test at n = 5,000 was used to estimated the statistical significance of these metrics by building the random thresholding masks.

	VAN	SMN	DAN	VAN	LIM	FPN	DMN
R values	0.1897	0.1920	0.1867	0.1887	0.1918	0.1956	0.1894
Ratio, ‰	1.7	3.8	2.5	2.6	1.7	6.1	3.4

Tab S12. Contributive positive eFC features of this eCPM in the left hemisphere.

	VAN	SMN	DAN	VAN	LIM	FPN	DMN
R values	0.1906	0.1938	0.1948	0.1917	0.1903	0.1947	0.1905
Ratio, ‰	2.0	7.3	7.5	6.1	9.8	6.0	3.4

Tab S13. Contributive positive eFC features of this eCPM in the right hemisphere.

	VAN	SMN	DAN	VAN	LIM	FPN	DMN
R values	-0.1919	-0.1902	-0.1888	-0.1881	-0.1924	-0.1879	-0.1926
Ratio, ‰	7.1	2.1	4.5	4.3	7.0	7.3	16

Tab S14. Contributive negative eFC features of this eCPM in the left hemisphere.

	VAN	SMN	DAN	VAN	LIM	FPN	DMN
R values	-0.1900	-0.1908	-0.1932	-0.1908	-0.1891	-0.1918	-0.1909
Ratio, ‰	6.9	7.5	5.3	3.3	4.0	6.7	4.2

Tab S15. Contributive negative eFC features of this eCPM in the right hemisphere.

Rather the intra-connection, we estimated the normalized Shannon's entropy (SE) to estimate the extent which regional eFCs were involved into multiple between-system communications. Results of these SEs for all the regions have been tabulated into the **Tab. S16**.

Nodes	Positive eFCs	Negative eFCs
7Networks_LH_Vis_1	0.008278937	0.023526979

7Networks LH Vis 2 7Networks LH Vis 3 7Networks_LH_Vis_4 7Networks LH Vis 5 7Networks LH Vis 6 7Networks_LH_Vis_7 7Networks LH Vis 8 7Networks_LH_Vis_9 7Networks LH SomMot 1 7Networks LH SomMot 2 7Networks LH SomMot 3 7Networks_LH_SomMot_4 7Networks_LH_SomMot_5 7Networks LH SomMot 6 7Networks_LH_DorsAttn_Post_1 7Networks LH DorsAttn Post 2 7Networks LH DorsAttn Post 3 7Networks_LH_DorsAttn_Post_4 7Networks LH DorsAttn Post 5 7Networks LH DorsAttn Post 6 7Networks LH DorsAttn PrCv 1 7Networks LH DorsAttn FEF 1 7Networks LH SalVentAttn ParOper 1 7Networks_LH_SalVentAttn_FrOperIns_1 7Networks LH SalVentAttn FrOperIns 2 7Networks LH SalVentAttn PFCl 1 7Networks_LH_SalVentAttn_Med_1 7Networks LH SalVentAttn Med 2 7Networks_LH_SalVentAttn_Med_3 7Networks LH Limbic OFC 1 7Networks_LH_Limbic_TempPole_1 7Networks LH Limbic TempPole 2 7Networks_LH_Cont_Par_1 7Networks_LH_Cont_PFCl_1 7Networks LH Cont pCun 1 7Networks_LH_Cont_Cing_1 7Networks LH Default Temp 1 7Networks_LH_Default_Temp_2 7Networks_LH_Default_Par_1 7Networks_LH_Default_Par_2 7Networks LH Default PFC 1 7Networks LH Default PFC 2 7Networks LH Default PFC 3 7Networks_LH_Default_PFC_4

0.019487785	0.022246584
0.02380469	0.017912525
0.018838337	0.02236405
0.02039961	0.017499251
0.0155083	0.025102951
0.018032115	0.018994557
0.021013274	0.015499801
0.021911527	0.018935179
0.022128493	0.022562357
0.022129083	0.024978453
0.019675782	0.023960133
0.01016405	0.022969775
0.025035377	0.022527313
0.013626217	0.027426521
0.016998582	0.014668867
0.021192783	0.019039743
0.017937633	0.024877649
0.018100963	0.016905552
0.021130776	0.024463099
0.021734886	0.021232519
0.017751238	0.020664434
0.013458621	0.020979695
0.021252696	0.027522416
0.0229091	0.024456613
0.016021388	0.022360573
0.016323215	0.020147613
0.02215668	0.025162543
0.019793116	0.019579804
0.022048044	0.024358117
0.018198883	0.017027528
0.019218087	0.017626891
0.023669048	0.021099217
0.019855301	0.018348581
0.020259024	0.0189664
0.017013575	0.020902718
0.017065814	0.024823754
0.019887545	0.017537814
0.018944678	0.016227949
0.01736764	0.013727303
0.016242775	0.024454985
0.015809831	0.023679125
0.023257058	0.018450973
0.026233517	0.018471415
0.02358047	0.024935262

7Networks LH Default PFC 5 7Networks LH Default PFC 6 7Networks_LH_Default_PFC_7 7Networks LH Default pCunPCC 1 7Networks LH Default pCunPCC 2 7Networks_RH_Vis_1 7Networks RH Vis 2 7Networks_RH_Vis_3 7Networks RH Vis 4 7Networks RH Vis 5 7Networks_RH_Vis_6 7Networks_RH_Vis_7 7Networks_RH_Vis_8 7Networks RH SomMot 1 7Networks_RH_SomMot_2 7Networks RH SomMot 3 7Networks RH SomMot 4 7Networks RH SomMot 5 7Networks RH SomMot 6 7Networks_RH_SomMot_7 7Networks RH SomMot 8 7Networks RH DorsAttn Post 1 7Networks RH DorsAttn Post 2 7Networks_RH_DorsAttn_Post_3 7Networks RH DorsAttn Post 4 7Networks RH DorsAttn Post 5 7Networks RH DorsAttn PrCv 1 7Networks_RH_DorsAttn_FEF_1 7Networks_RH_SalVentAttn_TempOccPar_1 7Networks RH SalVentAttn TempOccPar 2 7Networks RH SalVentAttn FrOperIns 1 7Networks RH SalVentAttn Med 1 7Networks_RH_SalVentAttn_Med_2 7Networks_RH_Limbic_OFC_1 7Networks RH Limbic TempPole 1 7Networks_RH_Cont_Par_1 7Networks RH Cont Par 2 7Networks_RH_Cont_PFCl_1 7Networks_RH_Cont_PFCl_2 7Networks_RH_Cont_PFCl_3 7Networks RH Cont PFCl 4 7Networks RH Cont Cing 1 7Networks RH Cont PFCmp 1 7Networks_RH_Cont_pCun_1

0.017079449 0.022399189 0.0224692 0.026447381 0.020496163 0.017414943 0.016413597 0.023934753 0.01779326 0.022313743 0.023964375 0.02761168 0.017198928 0.01935161 0.01873479 0.021181596 0.021579222 0.021586925 0.018019178 0.023120973 0.020415661 0.019975746 0.018246993 0.018351656 0.022423469 0.025990061 0.016515224 0.018004288 0.018335375 0.019761095 0.014976475 0.019543248 0.018845749 0.018513575 0.021122496 0.025471746 0.015840708 0.027941031 0.017955936 0.01889151 0.021908978 0.023768056 0.014141607 0.021139603 0.019699219 0.016567982 0.021130742 0.028532883 0.021400399 0.021045058 0.021622328 0.024123249 0.023735019 0.019413349 0.016565146 0.028360028 0.015780506 0.027328418 0.02097935 0.019272967 0.018368976 0.019756137 0.021137547 0.024681622 0.014936564 0.022604729 0.019593935 0.01986848 0.022570099 0.015814518 0.020800723 0.021162437 0.019444301 0.019743863 0.023200261 0.026805019 0.018293919 0.022012015 0.018916883 0.021465878 0.017324789 0.026285869 0.014307327 0.017383884 0.016401365 0.019418006 0.013195505 0.015620564

7Networks_RH_Default_Par_1	0.014130344	0.01638393
7Networks_RH_Default_Temp_1	0.018599677	0.01747309
7Networks_RH_Default_Temp_2	0.016450303	0.012786685
7Networks_RH_Default_Temp_3	0.018249402	0.024108366
7Networks_RH_Default_PFCv_1	0.020288539	0.013553518
7Networks_RH_Default_PFCv_2	0.017288716	0.025635102
7Networks_RH_Default_PFCdPFCm_1	0.018256936	0.018583207
7Networks_RH_Default_PFCdPFCm_2	0.015697744	0.023668185
7Networks_RH_Default_PFCdPFCm_3	0.018011648	0.014822151
7Networks_RH_Default_pCunPCC_1	0.013730984	0.021188886
7Networks_RH_Default_pCunPCC_2	0.018189496	0.027784596

Tab S16. The Shannon's entropy for all the regions that derived from positive and negative eFCs.

Fig S11. Contributive eFC Features of trained eCPM. a, It showed the "edge time series" for each edge-centric "node" by estimating co-fluctuations. The blocks in the left side of matrix indicated

corresponding brain system that parceled by Yeo-7 atlas. **b-c**, We have drawn matrix to show "contributive edges" in the eCPM, which were determined by the inter-subject positive (b) and negative (c) correlations between eFCs and the *cb* factor scores (p < .05, uncorrected). **d**, By estimating averaged correlation within each brain system, we showed the mean (95% confidence interval) correlation coefficient for each one (two-sided *r* tests, q < .001 Benjamini-Hochberg FDR correction), with descending order. The point size in these plots indicated the proportion of the number of included "contributive edges" on the possible maximum number within each brain system. **e-f**, We illustrated normalized entropy from "contributive edges" with positive correlations to the *cb* factor scores (e) and negative correlations to the *cb* factor scores (f) into Schaefer-100 atlas, and showed these results by using Yeo 7 brain system, respectively. Source data are provided as a Source Data file.

To verify the specificity of the predictive roles of eFC features in this trained eCPM, it has been tested for predicting single-disorder symptoms. Results showed that this trained eCPM did not surpass to predict single-disorder symptoms than the *cb* factor (Fig. S12).

Fig S12. Model performance for the trained eCPM on single-disorder symptoms. By testing this trained eCPM for the single-disorder symptoms (raw total scores), we found the decreased predictability of this model for these single symptoms, irrespective of training from positive (positive eFC-pattern model), negative (negative eFC-pattern model) or the combined eFCs (full model). Source data are provided as a Source Data file.

6. Representation similarity of eFC to the cb factor

We capitalized on the representation similarity analysis to decode the multivariate eFC-the-*cb*-factor markers. As we mentioned above, these edge-centric node was vectored to be the eFC-sepcific patterns ($n \ge 4,949$, n = the number of participants), and the inter-subject correlations were estimated to generate 4,949 neural RDMs with $n \ge n$ scale. By iterating each one to correlate with behavioral RDM, we obtained representation similarity (RS, positive r values) and representation dissimilarity (RDS, negative r values), with statistical significance at p < .05, with Benjamini-Hochberg correction (Fig. S13). Results showed that 1,158 edge-centric nodes with eFC-the-*cb*-factor RS and 1,180 edge-centric nodes with eFC-the-*cb*-factor RDS have been captured. Given no prominently biological interpretations in RDS, we integrated these RS eFCs into the Scheafer-100 atlas, with averaged RS values for each parcel (Tab. S17).

Nodes	RS
7Networks_LH_Vis_1	0.0271719200000000
7Networks_LH_Vis_2	0.0148789990000000
7Networks_LH_Vis_3	0.0233085890000000
7Networks_LH_Vis_4	0.0244879620000000
7Networks_LH_Vis_5	0.0188743130000000
7Networks_LH_Vis_6	0.0266775690000000
7Networks_LH_Vis_7	0.0196614270000000
7Networks_LH_Vis_8	0.0236687430000000
7Networks_LH_Vis_9	0.0214331770000000
7Networks_LH_SomMot_1	0.0223908970000000
7Networks_LH_SomMot_2	0.0257552910000000
7Networks_LH_SomMot_3	0.0206479630000000
7Networks_LH_SomMot_4	0.0238521530000000
7Networks_LH_SomMot_5	0.0231481340000000
7Networks_LH_SomMot_6	0.0166694610000000
7Networks_LH_DorsAttn_Post_1	0.0277598010000000
7Networks_LH_DorsAttn_Post_2	0.0288457620000000
7Networks_LH_DorsAttn_Post_3	0.0291154290000000
7Networks_LH_DorsAttn_Post_4	0.0187413390000000
7Networks_LH_DorsAttn_Post_5	0.0242693850000000
7Networks_LH_DorsAttn_Post_6	0.0246016900000000
7Networks_LH_DorsAttn_PrCv_1	0.0287685250000000
7Networks_LH_DorsAttn_FEF_1	0.0222069170000000
7Networks_LH_SalVentAttn_ParOper_1	0.0220004930000000
7Networks_LH_SalVentAttn_FrOperIns_1	0.0217618710000000
7Networks_LH_SalVentAttn_FrOperIns_2	0.0227569430000000
7Networks_LH_SalVentAttn_PFCl_1	0.0261246620000000
7Networks_LH_SalVentAttn_Med_1	0.0269020550000000
7Networks_LH_SalVentAttn_Med_2	0.0165035340000000
7Networks_LH_SalVentAttn_Med_3	0.0213884080000000
7Networks_LH_Limbic_OFC_1	0.0211717250000000
7Networks_LH_Limbic_TempPole_1	0.0257965370000000
7Networks_LH_Limbic_TempPole_2	0.0220041540000000
7Networks_LH_Cont_Par_1	0.0221143430000000
7Networks_LH_Cont_PFCI_1	0.0208807620000000
7Networks_LH_Cont_pCun_1	0.0242338300000000
7Networks_LH_Cont_Cing_1	0.0176615300000000
7Networks_LH_Default_Temp_1	0.0205227720000000
7Networks_LH_Default_Temp_2	0.0175799240000000
7Networks_LH_Default_Par_1	0.0213613730000000
7Networks_LH_Default_Par_2	0.0191704550000000
7Networks_LH_Default_PFC_1	0.0214162450000000

7Networks LH Default PFC 2 7Networks LH Default PFC 3 7Networks LH Default PFC 4 7Networks LH Default PFC 5 7Networks LH Default PFC 6 7Networks LH Default PFC 7 7Networks LH Default pCunPCC 1 7Networks_LH_Default_pCunPCC_2 7Networks RH Vis 1 7Networks RH Vis 2 7Networks RH Vis 3 7Networks_RH_Vis_4 7Networks_RH_Vis_5 7Networks RH Vis 6 7Networks RH Vis 7 7Networks RH Vis 8 7Networks RH SomMot 1 7Networks RH SomMot 2 7Networks RH SomMot 3 7Networks RH SomMot 4 7Networks RH SomMot 5 7Networks RH SomMot 6 7Networks RH SomMot 7 7Networks_RH_SomMot_8 7Networks RH DorsAttn Post 1 7Networks RH DorsAttn Post 2 7Networks RH DorsAttn Post 3 7Networks RH DorsAttn Post 4 7Networks_RH_DorsAttn_Post_5 7Networks RH DorsAttn PrCv 1 7Networks RH DorsAttn FEF 1 7Networks RH SalVentAttn TempOccPar 1 7Networks_RH_SalVentAttn_TempOccPar_2 7Networks RH SalVentAttn FrOperIns 1 7Networks RH SalVentAttn Med 1 7Networks_RH_SalVentAttn_Med_2 7Networks RH Limbic OFC 1 7Networks_RH_Limbic_TempPole_1 7Networks_RH_Cont_Par_1 7Networks_RH_Cont_Par_2 7Networks RH Cont PFCl 1 7Networks RH Cont PFCl 2 7Networks RH Cont PFCl 3 7Networks RH Cont PFCl 4

0.024481031000000 0.0204378900000000 0.0203324190000000 0.0258590910000000 0.0243977550000000 0.0247106510000000 0.023282410000000 0.0316195030000000 0.024380505000000 0.0264672770000000 0.0273907120000000 0.0166355800000000 0.0296444110000000 0.0246015190000000 0.0229151490000000 0.0295023160000000 0.0290477390000000 0.0226799350000000 0.0272502390000000 0.0243843170000000 0.020511021000000 0.0261751260000000 0.022108370000000 0.0245935790000000 0.0246325540000000 0.021339161000000 0.0158658220000000 0.0144952260000000 0.0218211460000000 0.0205770480000000 0.0286898370000000 0.022694750000000 0.0236837590000000 0.0263105190000000 0.028661076000000 0.0216829630000000 0.0391947670000000 0.0331263840000000 0.028653748000000 0.0271849530000000 0.0233408720000000 0.0221979880000000 0.014929610000000 0.0201350490000000
7Networks_RH_Cont_Cing_1	0.0271008620000000
7Networks_RH_Cont_PFCmp_1	0.0179178250000000
7Networks_RH_Cont_pCun_1	0.0220030370000000
7Networks_RH_Default_Par_1	0.0182638760000000
7Networks_RH_Default_Temp_1	0.0210696310000000
7Networks_RH_Default_Temp_2	0.0241553650000000
7Networks_RH_Default_Temp_3	0.0233022450000000
7Networks_RH_Default_PFCv_1	0.0262566630000000
7Networks_RH_Default_PFCv_2	0.0210338760000000
7Networks_RH_Default_PFCdPFCm_1	0.0161017480000000
7Networks_RH_Default_PFCdPFCm_2	0.0188686240000000
7Networks_RH_Default_PFCdPFCm_3	0.0241650740000000
7Networks_RH_Default_pCunPCC_1	0.0259240790000000
7Networks_RH_Default_pCunPCC_2	0.0259240790000000

Tab S17. Regional eFC-the-cb-factor representation similarity.

Fig S13. The eFCs with representation similarity (RS). a, The eFC-specific neural patterns for each "eFC" node have been illustrated by this 4,950 x 4,949 neural representation dissimilarity matrix (RDM). **b,** We drew the behavioral RDM by showing the Euclidean distance between each pair of the *cb* factor scores. **c,** We rearranged RS *r* values into each parcel from the Schaefer-100 atlas, showing RS of the eFC-specific neural patterns to the *cb* factor. The *r* values were calculated by

the Spearman correlation test (Two-sided r tests, Benjamini-Hochberg correction). **d**, We calculated and illustrated RS values into seven brain system that parceled by the Yeo-7 atlas. Source data are provided as a Source Data file.

We also integrated these edge-centric nodes into brain systems that defined by the Yeo-7 atlas. Full results have been tabulated into **Tab S18-21**.

	VAN	SMN	DAN	VAN	LIM	FPN	DMN
RS	0.0232	0.0225	0.0284	0.0241	0.0224	0.0216	0.0241

Tab S18. Representation similarity (RS) of each brain system that defined by Yeo-7 atlas in the left hemisphere.

	VAN	SMN	DAN	VAN	LIM	FPN	DMN
RS	0.0261	0.0253	0.0216	0.0289	0.0304	0.0225	0.0227

Tab S19. Representation similarity (RS) of each brain system that defined by Yeo-7 atlas in the right hemisphere.

	VAN	SMN	DAN	VAN	LIM	FPN	DMN
RDS	-0.0237	-0.0243	-0.0186	-0.0219	-0.0262	-0.0221	-0.0235

Tab S20. Representation dissimilarity (RDS) of each brain system that defined by Yeo-7 atlas in the left hemisphere.

	VAN	SMN	DAN	VAN	LIM	FPN	DMN
RDS	-0.0214	-0.0225	-0.0223	-0.0235	-0.0190	-0.0180	-0.0226

Tab S21. Representation dissimilarity (RDS) of each brain system that defined by Yeo-7 atlas in the right hemisphere.

7. Heritability of representation similarity between the eFC and the cb factor

By adjusting the potential artifacts of sex and age, the full ACE model was constructed for examining the heritability of eFC patterns that represented by normalized entropy. A total of 17 brain parcels were found heritable by showing > 10% a² values, especially in the regions of attention network (e.g., RH_DorsAttnB_FEF_1, 22.9%, 95% CI: 7.4 - 37.2). Full list for these results have been sorted into the **Tab S22 and Fig S14**. For the model modifications and statistical estimations, these nested submodels (AE, E, AC submodels) were built to be compared for full ACE models. Results showed the best-fitting model into the AE model, with minimum AIC, BIC and non-significant X² changes in these comparisons **(Tab S23).**

Region	211	Lower bound	Upper bound	a²	

RH_VisCent_ExStr_3	1353.7676	0.087060077	0.400910361	0.2506
RH_DorsAttnB_FEF_1	1313.4688	0.074458165	0.372331138	0.2288
RH_VisPeri_ExStrSup_1	1308.8460	0.030737871	0.349047154	0.1941
LH_LimbicA_TempPole_2	1346.8072	0.044243501	0.329464911	0.191
RH_SomMotB_Cent_1	1383.6913	0.037003465	0.335071856	0.1909
LH_SomMotB_Cent_1	1383.4985	0.039113013	0.328467245	0.1886
RH_DorsAttnB_PostC_2	1358.1517	0.022999333	0.32053699	0.1766
LH_DefaultC_Rsp_1	1384.7959	0.017723052	0.316756791	0.1718
LH_SalVentAttnA_Ins_2	1385.3267	0.007583115	0.301869848	0.1585
LH_DefaultB_PFCv_2	1364.0519	4.48E-27	0.302336386	0.1514
LH_DorsAttnB_FEF_1	1325.9469	5.74E-26	0.287485866	0.1426
LH_SalVentAttnB_PFCl_1	1355.6974	2.76E-33	0.27597075	0.132
RH_SalVentAttnA_ParOper_1	1344.3772	3.93E-32	0.28680721	0.1319
LH_SalVentAttnA_ParOper_1	1358.2814	7.24E-30	0.278551304	0.1227
RH_VisPeri_StriCal_1	1334.9884	4.01E-31	0.2699054	0.1171
RH_DorsAttnB_PostC_1	1362.6313	5.63E-38	0.270900757	0.116
RH_SomMotA_3	1332.0386	3.22E-28	0.266000182	0.1102
_LH_VisPeri_ExStrInf_1	1388.1227	NA	0.271016587	0.1054

Tab S22. Model estimates for heritability (a²). 2II = twofold log likelihood; lower bound and upper bound illustrated 95% confidence interval (CI) of the a².

Fig S14. Brain maps for the l	neritability of eFC patterns	. Source	data are	provided	as a	Source	Data
file.							

Model	AIC	BIC	p of ΔX^2	a² (95% CI)	c² (95% CI)	e² (95% CI)
ACE	343.46	-1354.64		0.22 (.0737)	-	0.77 (.6292)
AE*	341.46	-1360.14	1.0	0.22 (.0737)	-	0.77 (.6292)
CE	343.19	-1357.67	0.11	-	-	-
E	347.78	-1357.32	0.015	-	-	-

Tab S23. Model comparisons of ACE to nested submodels. *, best-fitting model with minimum AIC, BIC and non-significant ΔX^2 . *P* values are estimated by two-sided *z* tests to ΔX^2 , without multiple comparison correction.

8. Transcriptomic signatures for RS of the *cb* factor

By using the PLS model, we reveled that the PLS1 and PLS2 component cumulatively explained 32.4% variances. Further, we used Bootstrapping method (n = 10,000) to estimate the weights (z scores) for each gene in these PLS loading. To prevent from over-fitting, we added the 10-fold cross-validation method in this PLS model. Results showed the acceptable mean-square error (MES) in each submodel (averaged MSE = 1.43, IQR: 0.87-1.62), which demonstrated no significant over-fitting issue in establishing this PLS model. For screening associated genes, we re-ranked these genes by descending order, and calculated the p value for each weight with statistical threshold at Z >3.0 or Z < -3.0). By using these criterion, a total of 258 genes (27 genes with positive weight, PLS1+; 231 genes with negative weight, PLS1-) in PLS1 component, and 156 genes (44 genes with positive weight, PLS2+; 112 genes with negative weight, PLS2-) have been revealed. We have provided unfolded tables underneaths for reporting both gene lists **(Tab S24-27)**.

Gene Symbol	Entrez Gene ID	Z scores	P values
MORC4	7370	3.74098	0.000183304
EIF4EBP1	808	3.466012	0.00052824
СМТМЗ	8621	3.450845	0.000558834
TMC8	8922	3.444022	0.000573129
ZNF438	9326	3.416663	0.000633937
RARRES3	2345	3.342505	0.000830259
RGS9	3356	3.297965	0.000973883
MSN	1706	3.280022	0.00103799
SLC44A2	6666	3.275871	0.001053367
FAM181A	8154	3.258772	0.001118956
VAMP8	3315	3.257163	0.001125318
ZFAND3	6968	3.251099	0.001149598
DNAJC12	6546	3.236752	0.001208984
SERPINA1	2028	3.228923	0.001242573
RHOC	170	3.219445	0.00128439
PLEKHA4	6838	3.155858	0.001600267
WDFY4	6857	3.151061	0.001626785
NPC2	4226	3.148884	0.001638952
ZFP36L2	299	3.139448	0.001692665
NPFF	3284	3.121731	0.001797911
TCF3	2774	3.070935	0.002133896
TMPRSS5	7626	3.03011	0.002444647
LEPROT	5995	3.026626	0.002472997
PRAM1	7816	3.01776	0.002546505
FYN	982	3.014155	0.002576961
CASTOR1	9963	3.011769	0.002597302
SCUBE2	6870	3.003439	0.002669471

Gene Symbol	Entrez Gene ID	Z scores	P values
UGCG	2949	-4.374419	1.22E-05
LDHB	1530	-4.342102	1.41E-05
PPM1A	2126	-4.258463	2.06E-05
JKAMP	5769	-4.193562	2.75E-05
CORO2A	2994	-4.06925	4.72E-05
PIP4P2	6314	-4.060411	4.90E-05
GLRX2	5563	-4.007282	6.14E-05
WDR37	4614	-4.005691	6.18E-05
RNF111	6002	-3.998406	6.38E-05
CTXN2	9818	-3.973974	7.07E-05
EIF2B2	3405	-3.971699	7.14E-05
KCTD1	9516	-3.925714	8.65E-05
VWC2	9732	-3.910422	9.21E-05
ENPP5	6918	-3.872204	0.000107856
IDH3B	1333	-3.86638	0.000110463
USO1	3282	-3.843314	0.000121384
ATP5MC3	222	-3.830336	0.000127968
MDH1	1636	-3.826888	0.000129774
SORL1	2653	-3.818574	0.000134225
FBXO9	5204	-3.816334	0.000135449
UGP2	2951	-3.801465	0.000143843
MTRF1L	5945	-3.786548	0.000152755
TM9SF2	3605	-3.784463	0.000154041
GABRA1	993	-3.776621	0.00015897
PAIP2	5663	-3.770757	0.000162753
QPCT	5031	-3.768445	0.000164268
ARL8B	6209	-3.761164	0.000169124
ΙΤΡΑ	1424	-3.75428	0.00017384
PITPNA	2047	-3.744261	0.000180926
CCDC184	9761	-3.736524	0.000186582
RRP12	4774	-3.723743	0.000196291
PSMD14	4040	-3.716981	0.000201618
GGH	3380	-3.705714	0.000210796
BDH1	269	-3.696279	0.000218783
CDH18	446	-3.694002	0.000220752
ZNF425	9057	-3.691184	0.000223213
NQO2	1843	-3.685399	0.000228345
RNF8	3455	-3.68408	0.00022953
ANAPC7	5743	-3.681812	0.000231582
DPP8	6044	-3.676331	0.000236612

Tab S24. Gene list for statistically significant association with RS changes in the PLS1+ component. *P* values were estimated by using two-sided *Z* sampling distribution test without corrections.

PTGES2	7513	-3.67603	0.000236892
ATP5F1B	220	-3.674286	0.000238515
KCNC3	1449	-3.661997	0.000250257
CLTC	532	-3.634122	0.000278929
NDUFV2	1795	-3.627964	0.000285665
EPHX4	9385	-3.620014	0.000294587
KCNS3	1482	-3.610481	0.00030563
CCNDBP1	4952	-3.600073	0.000318128
SLC25A3	2022	-3.580662	0.000342725
VDAC2	2972	-3.575839	0.000349106
ATP5F1A	218	-3.572323	0.000353829
NAE1	3402	-3.561756	0.000368383
COX5A	3606	-3.55904	0.000372213
RND2	3139	-3.551454	0.000383109
CLCN4	517	-3.539623	0.000400699
PPP2R2D	6463	-3.53412	0.000409135
GAD2	1007	-3.524979	0.000423516
DHRS7	5799	-3.522751	0.000427092
NABP2	7228	-3.522699	0.000427176
PTPRM	2284	-3.519611	0.00043218
COPA	565	-3.51932	0.000432655
KCNC2	1448	-3.517161	0.000436189
CUL3	3210	-3.517129	0.000436242
EXOC8	8964	-3.516806	0.000436773
ADAT1	4933	-3.515314	0.000439234
UFSP2	6270	-3.507692	0.000452012
CEND1	5680	-3.505916	0.000455039
TNPO3	4932	-3.498935	0.00046712
COQ3	5849	-3.493409	0.000476895
ISCU	4908	-3.493012	0.000477605
ZBTB8OS	9624	-3.49202	0.000479382
EXTL2	876	-3.490667	0.000481816
GHITM	5268	-3.486169	0.000489991
G3BP2	3881	-3.479451	0.000502442
ARL4C	3989	-3.476412	0.000508171
GYG1	1189	-3.47009	0.000520284
WAC	5700	-3.466306	0.000527662
GNB5	4281	-3.459579	0.000541021
TIGAR	6647	-3.456482	0.000547276
GOT1	1095	-3.452368	0.000555689
STEAP2	9459	-3.440563	0.000580505
COX7B	574	-3.434043	0.00059465
SCRN1	3826	-3.430369	0.000602761
UBXN10	8688	-3.428181	0.00060764

SLU7	4220	-3.4251	0.000614573
THOC5	3264	-3.422172	0.00062123
SAE1	3952	-3.421328	0.000623161
IGBP1	1347	-3.42106	0.000623776
HSPA12A	9451	-3.418073	0.000630662
GCHFR	1033	-3.411299	0.000646542
ТТС9	4920	-3.405027	0.000661575
AMIGO1	6731	-3.396939	0.000681442
RIMS3	3817	-3.39468	0.000687089
YIPF5	7644	-3.387794	0.000704572
RMND1	6104	-3.38356	0.000715526
USPL1	4036	-3.378511	0.000728795
GAD1	1006	-3.376563	0.000733976
NDUFB2	1785	-3.374694	0.000738978
CHML	491	-3.373817	0.000741336
BLVRA	280	-3.367157	0.000759474
BNIP3	290	-3.364274	0.000767453
CACNG8	6923	-3.361289	0.000775796
GSTO1	3633	-3.360573	0.00077781
MRPS23	5805	-3.353398	0.000798258
MMADHC	5321	-3.352155	0.000801851
COA1	6409	-3.350881	0.000805549
ZNF385D	7388	-3.34691	0.000817177
CAPRIN2	7186	-3.346117	0.000819518
ZNF57	8656	-3.34474	0.000823597
ZFYVE9	3604	-3.340504	0.000836265
NDUFA8	1780	-3.338334	0.000842824
PNMA2	4284	-3.33781	0.000844415
UCHL5	5722	-3.33756	0.000845175
PGD	2015	-3.335482	0.000851517
MED21	3621	-3.324862	0.000884623
MAP9	7443	-3.324627	0.000885369
CLASP2	4722	-3.321618	0.000894971
DNAJA2	4080	-3.314763	0.000917209
CCDC34	8220	-3.313936	0.000919926
DPH3	9558	-3.312769	0.000923772
AKAP12	3715	-3.301518	0.000961632
GSK3B	1163	-3.298814	0.000970942
MRPL15	5409	-3.294563	0.000985748
CACNG2	4112	-3.290395	0.001000468
AHSA1	4237	-3.289018	0.001005376
POLR2E	2099	-3.287842	0.001009585
C12orf10	6939	-3.286984	0.001012666
KPNA5	1500	-3.28102	0.001034324

ZNF654	6248	-3.275865	0.001053389
PITPNM1	3717	-3.2752	0.001055872
NAP1L5	9463	-3.272079	0.001067597
COPS5	4412	-3.266612	0.001088427
KRT222	8645	-3.266607	0.001088447
NR1H2	2954	-3.266601	0.00108847
NOMO1	4882	-3.262516	0.001104279
UQCRH	2960	-3.261757	0.00110724
TGFBRAP1	3613	-3.259993	0.00111415
MRPL4	5580	-3.258331	0.001120696
ADPRHL1	8410	-3.24349	0.00118075
ACSL3	897	-3.235863	0.001212756
ATP5PO	235	-3.235137	0.001215844
СКАР2	5236	-3.234646	0.001217936
TCEAL3	8082	-3.231485	0.001231488
AP1S2	3412	-3.223024	0.001268449
ZNF641	8586	-3.215079	0.001304086
SIK2	4779	-3.213516	0.001311205
AARS	4	-3.208954	0.001332188
PIP5K1B	3186	-3.208585	0.001333899
KLC2	7120	-3.202699	0.001361462
HECA	5822	-3.201944	0.001365035
CERK	7107	-3.201615	0.001366595
TMCC1	4677	-3.200408	0.001372332
BCAT1	257	-3.194837	0.001399098
SCN2B	2516	-3.19474	0.001399569
MAFB	3895	-3.194385	0.001401291
LEPROTL1	4910	-3.187697	0.001434107
ANO5	9280	-3.187385	0.001435655
SSX2IP	8545	-3.185191	0.001446585
TRNP1	9780	-3.183847	0.001453318
TCEAL6	9088	-3.183429	0.001455418
PAQR3	9027	-3.178519	0.001480295
RRP15	5561	-3.176427	0.001491013
TSPAN5	3978	-3.174519	0.001500851
MKKS	3146	-3.171126	0.001518493
САМКК2	4266	-3.168958	0.001529865
NDUFA9	1782	-3.168218	0.001533765
TRMU	6379	-3.167578	0.001537145
TAGLN3	5422	-3.165231	0.001549599
FH	934	-3.155735	0.001600942
TIMM10B	5226	-3.152865	0.001616766
KCNA2	1442	-3.152573	0.001618384
PRIM1	2158	-3.144782	0.001662106

NXPH2	4525	-3.143476	0.001669541
SLC25A4	126	-3.13969	0.001691267
SNX21	8166	-3.136862	0.001707665
ZBTB16	3046	-3.133367	0.001728132
STAG3L4	7144	-3.132307	0.001734384
CHCHD7	7269	-3.130334	0.001746077
PSMD12	2248	-3.124739	0.001779629
MYADML2	9415	-3.124253	0.001782571
NDUFA12	6499	-3.105597	0.001898953
NDUFAB1	1784	-3.101164	0.001927615
RPS6KB1	2458	-3.10006	0.001934814
KIF9	7026	-3.095515	0.001964714
AKT3	3923	-3.09504	0.001967864
SELENOH	9464	-3.092667	0.001983666
INIP	6902	-3.0884	0.002012374
GLS	1065	-3.086772	0.002023427
SUPV3L1	2724	-3.085675	0.002030907
WDR7	4835	-3.077325	0.002088674
PRPF4	3500	-3.07268	0.002121458
CDKL3	5670	-3.072586	0.002122127
BAG5	3682	-3.070274	0.002138625
H2AFZ	1196	-3.069739	0.002142459
CHAC1	7255	-3.069368	0.002145122
MTO1	5044	-3.068922	0.002148327
NDUFV1	1792	-3.065465	0.002173318
FGF12	925	-3.065231	0.002175019
AGGF1	6155	-3.064725	0.002178702
DNM3	5152	-3.063043	0.002190986
SESN2	7739	-3.058259	0.002226271
ZNF124	3039	-3.054932	0.002251116
SLC25A32	7630	-3.054059	0.002257677
TRAP1	3995	-3.053783	0.002259755
ТТСЗ9В	9074	-3.047908	0.002304405
LIN28B	9800	-3.044394	0.002331496
RIMKLA	9538	-3.043426	0.00233901
ENTPD3	416	-3.041348	0.002355214
MOCS3	5337	-3.040958	0.002358267
BECN1	3317	-3.040122	0.002364823
PRDX2	2790	-3.035516	0.002401245
C16orf72	5396	-3.03546	0.002401691
CLSTN3	3797	-3.031986	0.002429505
SRPRB	6894	-3.028063	0.002461268
TUBE1	5639	-3.026681	0.002472547
CYC1	647	-3.025209	0.002484614

PEX52301-3.0239960.002494597MAPK14604-3.0224770.002507151HTR5A1317-3.0202190.00252592ABCF23957-3.0194180.002532608CEP977310-3.0182670.002542248TIMM444170-3.0162830.002558943AQP119465-3.0148890.002570733DLD704-3.0124680.002591328FLT3956-3.0106690.002606728PSMD112247-3.0042630.002662251PBX11941-3.0038460.002665902AES81-3.0033920.002669883CLEC2L9052-3.0025890.002676937GNPDA28771-3.0009780.00269114	C12orf49	7407	-3.024809	0.002487902	
MAPK14604-3.0224770.002507151HTR5A1317-3.0202190.00252592ABCF23957-3.0194180.002532608CEP977310-3.0182670.002542248TIMM444170-3.0162830.002558943AQP119465-3.0148890.002570733DLD704-3.0124680.002591328FLT3956-3.0106690.002606728PSMD112247-3.0042630.002662251PBX11941-3.0038460.002665902AES81-3.0025890.002676937GNPDA28771-3.0009780.00269114	PEX5	2301	-3.023996	0.002494597	
HTR5A1317-3.0202190.00252592ABCF23957-3.0194180.002532608CEP977310-3.0182670.002542248TIMM444170-3.0162830.002558943AQP119465-3.0148890.002570733DLD704-3.0124680.002591328FLT3956-3.0106690.002606728PSMD112247-3.0042630.002662251PBX11941-3.0038460.002665902AES81-3.0033920.002669883CLEC2L9052-3.0025890.002676937GNPDA28771-3.009780.00269114	MAPK14	604	-3.022477	0.002507151	
ABCF23957-3.0194180.002532608CEP977310-3.0182670.002542248TIMM444170-3.0162830.002558943AQP119465-3.0148890.002570733DLD704-3.0124680.002591328FLT3956-3.0106690.002606728PSMD112247-3.0042630.002665251PBX11941-3.0038460.002665902AES81-3.0033920.002669883CLEC2L9052-3.0025890.002676937GNPDA28771-3.0009780.00269114	HTR5A	1317	-3.020219	0.00252592	
CEP977310-3.0182670.002542248TIMM444170-3.0162830.002558943AQP119465-3.0148890.002570733DLD704-3.0124680.002591328FLT3956-3.0106690.002606728PSMD112247-3.0042630.002662251PBX11941-3.0038460.002665902AES81-3.0033920.002669883CLEC2L9052-3.0025890.002676937GNPDA28771-3.009780.00269114	ABCF2	3957	-3.019418	0.002532608	
TIMM444170-3.0162830.002558943AQP119465-3.0148890.002570733DLD704-3.0124680.002591328FLT3956-3.0106690.002606728PSMD112247-3.0042630.002662251PBX11941-3.0038460.002665902AES81-3.0033920.002669883CLEC2L9052-3.0025890.002676937GNPDA28771-3.009780.00269114	CEP97	7310	-3.018267	0.002542248	
AQP119465-3.0148890.002570733DLD704-3.0124680.002591328FLT3956-3.0106690.002606728PSMD112247-3.0042630.002662251PBX11941-3.0038460.002665902AES81-3.0033920.002669883CLEC2L9052-3.0025890.002676937GNPDA28771-3.009780.00269114	TIMM44	4170	-3.016283	0.002558943	
DLD704-3.0124680.002591328FLT3956-3.0106690.002606728PSMD112247-3.0042630.002662251PBX11941-3.0038460.002665902AES81-3.0033920.002669883CLEC2L9052-3.0025890.002676937GNPDA28771-3.009780.00269114	AQP11	9465	-3.014889	0.002570733	
FLT3956-3.0106690.002606728PSMD112247-3.0042630.002662251PBX11941-3.0038460.002665902AES81-3.0033920.002669883CLEC2L9052-3.0025890.002676937GNPDA28771-3.0009780.00269114	DLD	704	-3.012468	0.002591328	
PSMD11 2247 -3.004263 0.002662251 PBX1 1941 -3.003846 0.002665902 AES 81 -3.003392 0.002669883 CLEC2L 9052 -3.002589 0.002676937 GNPDA2 8771 -3.000978 0.00269114	FLT3	956	-3.010669	0.002606728	
PBX1 1941 -3.003846 0.002665902 AES 81 -3.003392 0.002669883 CLEC2L 9052 -3.002589 0.002676937 GNPDA2 8771 -3.000978 0.00269114	PSMD11	2247	-3.004263	0.002662251	
AES 81 -3.003392 0.002669883 CLEC2L 9052 -3.002589 0.002676937 GNPDA2 8771 -3.000978 0.00269114	PBX1	1941	-3.003846	0.002665902	
CLEC2L 9052 -3.002589 0.002676937 GNPDA2 8771 -3.000978 0.00269114	AES	81	-3.003392	0.002669883	
GNPDA2 8771 -3.000978 0.00269114	CLEC2L	9052	-3.002589	0.002676937	
	GNPDA2	8771	-3.000978	0.00269114	

Tab S25. Gene list for statistically significant association with RS changes in the PLS1- component.	. P
--	-----

values were estimated by using two-sided Z sampling distribution test without corrections.

Gene Symbol	Entrez Gene ID	Z scores	P values
SCRIB	4922	4.06975	2.35E-05
HDAC7	5780	3.966845	3.64E-05
ANKS3	8628	3.948843	3.93E-05
POLN	9702	3.752042	8.77E-05
CCDC57	9506	3.70669	0.000104993
FTCD	4336	3.663562	0.000124366
EMX1	826	3.56694	0.000180587
NPFF	3284	3.526771	0.00021033
MIS18BP1	6266	3.521834	0.000214286
КСNНЗ	4879	3.517478	0.000217834
ADAMTS13	4450	3.489246	0.000242193
MTG1	8280	3.475323	0.000255119
LINC00999	9820	3.421223	0.000311701
FAM153A	9567	3.418396	0.000314957
ADAM8	45	3.395943	0.000341963
DGKZ	3244	3.382624	0.000358984
SRRT	5788	3.332454	0.000430418
ТҮК2	2924	3.292106	0.000497201
MEG3	6298	3.286214	0.000507719
LAMA3	1513	3.285712	0.000508625
EMILIN3	8164	3.265639	0.000546087
GRIPAP1	6568	3.256408	0.000564157
EBF4	6804	3.254952	0.000567058
GSDMB	6476	3.246112	0.000584964

SPACA6	8930	3.216953	0.000647799
MTMR1	3353	3.189171	0.000713407
PIDD1	6295	3.181672	0.000732138
ELMOD3	7835	3.174372	0.000750806
BCL7A	266	3.162453	0.00078223
SNAPC4	2639	3.158381	0.00079324
POLA1	2095	3.156877	0.000797343
ADAM33	7580	3.145372	0.000829379
PXN	2300	3.124419	0.000890783
ACTN1	35	3.115988	0.000916649
NEIL1	7349	3.083962	0.001021318
NEK9	8265	3.083051	0.00102445
RTEL1	5838	3.077982	0.001042038
COQ10A	8326	3.073677	0.001057191
EEF2K	5458	3.059521	0.001108456
KIFC2	8217	3.052079	0.001136311
DOCK1	731	3.047793	0.001152643
UIMC1	5832	3.017027	0.001276335
WNT2B	3004	3.007014	0.001319138
VIPR1	2981	3.005881	0.001324063

Tab S26. Gene list for statistically significant association with RS changes in the PLS2+ component. *P* values were estimated by using two-sided *Z* sampling distribution test without corrections.

		_	
Gene Symbol	Entrez Gene ID	Z scores	P values
INPP4A	1387	-4.415929	5.03E-06
RMND1	6104	-4.113508	1.95E-05
EIF2B2	3405	-4.07667	2.28E-05
SIK2	4779	-3.98645	3.35E-05
CORO2A	2994	-3.910244	4.61E-05
COQ10B	7541	-3.880977	5.20E-05
NME7	5465	-3.863845	5.58E-05
IDH3B	1333	-3.789534	7.55E-05
RAD18	6570	-3.71529	0.000101485
AP2B1	79	-3.711378	0.000103067
RBMX	5340	-3.681139	0.000116097
ZNF654	6248	-3.664551	0.000123886
RAB39B	8522	-3.637822	0.000137477
HSDL1	7742	-3.621528	0.000146434
TIMM8A	691	-3.619141	0.000147791
TM6SF1	5858	-3.615214	0.00015005
ANAPC7	5743	-3.58293	0.000169881
KRAS	1502	-3.543614	0.000197341
OPRM1	1905	-3.543277	0.000197594

DENND6B	9869	-3.535926	0.000203174
PIGP	5656	-3.525366	0.000211449
RABIF	2318	-3.500896	0.000231848
TM2D2	7775	-3.464677	0.000265434
SCRN1	3826	-3.455056	0.000275089
AHNAK2	8396	-3.439422	0.000291479
CDKL3	5670	-3.436702	0.000294422
CCT4	4224	-3.430182	0.000301588
TOMM20	3825	-3.408291	0.000326856
TRUB2	5251	-3.402544	0.000333808
IGBP1	1347	-3.374541	0.000369695
AGAP3	8539	-3.372698	0.000372178
TMEM182	8748	-3.370629	0.000374984
MBD5	6424	-3.353209	0.000399402
TMEM260	6059	-3.350832	0.000402846
TXNRD3	8420	-3.346089	0.0004098
CLTA	530	-3.343036	0.000414336
DYNLL1	3305	-3.339935	0.00041899
FAM49A	7642	-3.330551	0.000433371
NXPH2	4525	-3.329425	0.000435127
STK17B	3554	-3.319462	0.000450955
LDHB	1530	-3.31711	0.000454769
SLC41A2	7814	-3.315748	0.000456991
CPSF4	4362	-3.2983	0.000486361
TOMM5	9846	-3.288636	0.000503371
NDUFA9	1782	-3.258758	0.000559505
ARHGEF3	5532	-3.258406	0.0005602
NCAM1	1773	-3.251459	0.000574072
NT5DC2	7145	-3.251152	0.000574692
PRKAA2	2160	-3.248411	0.000580258
MMGT1	8338	-3.236998	0.000603971
PTS	2290	-3.231767	0.000615137
DCX	677	-3.227754	0.000623831
CTXN2	9818	-3.222994	0.000634291
TSPAN17	5202	-3.217145	0.000647366
BECN1	3317	-3.216409	0.000649028
NAE1	3402	-3.214989	0.000652248
LSAMP	1570	-3.214294	0.000653829
CC2D2B	9756	-3.213381	0.000655911
SERP1	5312	-3.20879	0.000666474
IRAK4	5619	-3.207856	0.000668642
ZFAND2A	8194	-3.206189	0.000672528
G3BP2	3881	-3.203754	0.000678242
PBX1	1941	-3.19897	0.000689598

SV2B	3876	-3.193078	0.000703825
FBXL2	5048	-3.192423	0.000705423
P4HA2	3437	-3.16829	0.000766692
JKAMP	5769	-3.164349	0.000777151
NABP2	7228	-3.163138	0.000780392
SUV39H1	2728	-3.16088	0.000786466
AKT3	3923	-3.160804	0.000786672
GDPGP1	9813	-3.156932	0.000797193
UFSP2	6270	-3.155518	0.000801067
RNF175	9565	-3.154965	0.000802587
LPIN2	3754	-3.154629	0.000803512
CCDC34	8220	-3.153322	0.000807118
AGMAT	7413	-3.121955	0.000898272
PSMD7	2245	-3.1213	0.000900273
RIMS3	3817	-3.119764	0.00090498
NCOA7	8798	-3.115006	0.000919706
PSMF1	3660	-3.112098	0.000928814
CDH13	445	-3.108095	0.000941488
NXPH1	5502	-3.105903	0.000948495
DHX36	9174	-3.104277	0.000953723
RLIM	5616	-3.100923	0.000964592
CORO1B	6675	-3.09909	0.00097058
KCNS3	1482	-3.095278	0.000983143
POLR2E	2099	-3.090028	0.001000688
DRG1	1796	-3.085784	0.001015081
FGGY	6246	-3.082589	0.001026042
ТРМЗ	2882	-3.077099	0.001045129
COX11	576	-3.071542	0.001064781
CAPNS1	365	-3.070586	0.001068196
NOP10	6306	-3.070476	0.001068589
XYLT1	7022	-3.068092	0.001077151
ENOX1	6134	-3.056434	0.001119934
RFC3	2374	-3.054366	0.001127684
WDR31	8469	-3.038555	0.001188579
USO1	3282	-3.03556	0.001200447
MRPL4	5580	-3.034682	0.001203947
CLPB	7653	-3.034288	0.001205521
GLRX2	5563	-3.034031	0.001206548
CIB2	4192	-3.029335	0.001225464
SH3GLB1	5599	-3.024199	0.001246462
SGCB	2547	-3.023167	0.001250721
MMP16	1683	-3.013723	0.001290317
MOCS3	5337	-3.011181	0.001301168
GGH	3380	-3.010684	0.0013033

RAB15	9739	-3.008356	0.001313326
KCTD1	9516	-3.005994	0.001323571
RBM8A	3898	-3.005741	0.001324673
ΡΑΚ3	1932	-3.000161	0.001349185
RAB3C	8493	-3.000095	0.001349477

Tab S27. Gene list for statistically significant association with RS changes in the PLS2- component. *P* values were estimated by using two-sided *Z* sampling distribution test without corrections.

9. Association of single-gene expression level to RS values

Rather gene lists in PLS components, we estimated the univariate correlation between each gene that survived from Z > 3 or Z < -3) and RS values. Results revealed the statistically significant correlations of single-gene expression levels **(Tab S28-29)**.

Gene Symbol	Entrez Gene ID	Z scores	P values
SCRIB	4922	2.85E-01	0.004104
FTCD	4336	2.73E-01	0.005966
ZNF438	9326	2.65E-01	0.007705
NPFF	3284	2.42E-01	0.015128
EBF4	6804	2.35E-01	0.018532
TMC8	8922	2.31E-01	0.02097
POLN	9702	2.23E-01	0.025571
TLR3	2846	2.20E-01	0.027625
ACTN1	35	2.16E-01	0.030868
ZFAND3	6968	2.16E-01	0.031227
DENND2A	5298	2.15E-01	0.03202
SLC2A5	2584	2.14E-01	0.032205
LIMK2	1544	2.14E-01	0.032557
EIF4EBP1	808	2.11E-01	0.03501
HLA-DOA	1234	2.11E-01	0.035096
TMEM106A	8402	2.09E-01	0.036728
DNAJC12	6546	2.08E-01	0.037381
СМТМЗ	8621	2.08E-01	0.037491
FYN	982	2.07E-01	0.038627
LEPROT	5995	2.06E-01	0.039903
ΤΥΚ2	2924	2.04E-01	0.041698
DOCK1	731	2.03E-01	0.042742
POLA1	2095	2.03E-01	0.043154
HCLS1	1211	2.02E-01	0.043448
SERPINA1	2028	2.01E-01	0.045078
MORC4	7370	2.01E-01	0.045335
TCF3	2774	1.99E-01	0.046997
GRIA3	1132	1.98E-01	0.047798
ITIH4	1423	1.97E-01	0.049393

Tab S28. Associations between single-gene expression level and RS values in the PLS1+ component. The order of these genes have been descended by correlation strength. Results were shown only if this correlation reached statistical significance (Two-sided *r* test, p < .05, uncorrected).

Gene Symbol	Entrez Gene ID	Z scores	P values
RMND1	6104	-3.32E-01	0.000745
CORO2A	2994	-2.99E-01	0.002544
TNPO3	4932	-2.96E-01	0.002792
ANAPC7	5743	-2.96E-01	0.002825
IDH3B	1333	-2.90E-01	0.003456
IGBP1	1347	-2.89E-01	0.003557
CTXN2	9818	-2.84E-01	0.004245
INPP4A	1387	-2.83E-01	0.004272
SIK2	4779	-2.82E-01	0.004423
EIF2B2	3405	-2.74E-01	0.005741
CDKL3	5670	-2.73E-01	0.005901
MRPL4	5580	-2.72E-01	0.006196
SCRN1	3826	-2.69E-01	0.006766
TMEM260	6059	-2.66E-01	0.007538
JKAMP	5769	-2.65E-01	0.007738
MTRF1L	5945	-2.65E-01	0.007761
DCX	677	-2.64E-01	0.007888
LDHB	1530	-2.64E-01	0.008021
USO1	3282	-2.62E-01	0.008435
KCTD1	9516	-2.61E-01	0.008842
PIP4P2	6314	-2.60E-01	0.009087
ZFAND2A	8194	-2.60E-01	0.009122
UFSP2	6270	-2.58E-01	0.009464
GGH	3380	-2.56E-01	0.010105
CLCN4	517	-2.55E-01	0.010366
ARHGEF3	5532	-2.55E-01	0.010461
RIMS3	3817	-2.55E-01	0.010467
NXPH2	4525	-2.55E-01	0.010468
ZNF654	6248	-2.54E-01	0.010627
RRP12	4774	-2.53E-01	0.011106
NQO2	1843	-2.53E-01	0.011229
G3BP2	3881	-2.52E-01	0.011299
NAE1	3402	-2.52E-01	0.011348
TIMM8A	691	-2.52E-01	0.011451
AMIGO1	6731	-2.51E-01	0.011662
GYG1	1189	-2.51E-01	0.011756
CCT4	4224	-2.51E-01	0.011765
KRAS	1502	-2.50E-01	0.01212
VDAC2	2972	-2.50E-01	0.012186

RNF8	3455	-2.49E-01	0.012665
MRPL46	5237	-2.47E-01	0.013317
WDR37	4614	-2.47E-01	0.013343
PPM1A	2126	-2.46E-01	0.013563
PHOSPHO2	9907	-2.46E-01	0.013631
TM9SF2	3605	-2.46E-01	0.013636
SAE1	3952	-2.44E-01	0.014521
PTPRM	2284	-2.44E-01	0.014564
АКТЗ	3923	-2.43E-01	0.014986
NDUFB2	1785	-2.43E-01	0.015043
GLRX2	5563	-2.42E-01	0.015219
CCDC184	9761	-2.42E-01	0.015407
YIPF5	7644	-2.41E-01	0.015499
RBMX	5340	-2.41E-01	0.015662
CLTC	532	-2.41E-01	0.015867
NABP2	7228	-2.40E-01	0.016289
MOCS3	5337	-2.40E-01	0.016292
GHITM	5268	-2.39E-01	0.016429
TXNL1	3594	-2.39E-01	0.01668
NDUFB9	1788	-2.39E-01	0.016729
FAM219B	6681	-2.38E-01	0.016945
PAIP2	5663	-2.38E-01	0.017172
MRPS23	5805	-2.37E-01	0.017468
ZNF425	9057	-2.37E-01	0.017519
SLC25A3	2022	-2.37E-01	0.017836
KCNS3	1482	-2.36E-01	0.017861
TERF2	2799	-2.36E-01	0.01792
ATP5F1B	220	-2.35E-01	0.018642
PSMD14	4040	-2.35E-01	0.018716
CEP97	7310	-2.34E-01	0.019224
ATP5PO	235	-2.33E-01	0.019766
RNASEL	2401	-2.32E-01	0.019979
BECN1	3317	-2.32E-01	0.020006
UBXN10	8688	-2.32E-01	0.020144
NDUFAB1	1784	-2.32E-01	0.020264
VWC2	9732	-2.31E-01	0.020717
NDUFA9	1782	-2.31E-01	0.020732
SLU7	4220	-2.30E-01	0.021415
NME7	5465	-2.30E-01	0.0216
GSTO1	3633	-2.29E-01	0.021658
CCDC34	8220	-2.29E-01	0.021946
PSMF1	3660	-2.29E-01	0.022027
BDH1	269	-2.28E-01	0.022372
COQ10B	7541	-2.28E-01	0.022553

PEX5	2301	-2.27E-01	0.023046
MRPL33	3698	-2.26E-01	0.02384
COX5A	3606	-2.26E-01	0.0239
ΙΤΡΑ	1424	-2.26E-01	0.023989
DHRS7	5799	-2.25E-01	0.024137
UGCG	2949	-2.24E-01	0.024922
UBL4A	3160	-2.24E-01	0.02539
TCEAL3	8082	-2.23E-01	0.025431
NXPH1	5502	-2.23E-01	0.025723
ISCU	4908	-2.22E-01	0.026147
KCNC2	1448	-2.22E-01	0.026149
ATP5MC3	222	-2.22E-01	0.026207
CAPRIN2	7186	-2.22E-01	0.026705
ODF2	1896	-2.21E-01	0.027065
PRKAA2	2160	-2.21E-01	0.027282
UQCRH	2960	-2.21E-01	0.027348
IFIT1	1342	-2.21E-01	0.027355
TCEAL6	9088	-2.20E-01	0.027683
AKAP12	3715	-2.20E-01	0.027823
ТОММ20	3825	-2.19E-01	0.028225
RAD18	6570	-2.19E-01	0.028415
COA1	6409	-2.19E-01	0.028759
СОРА	565	-2.18E-01	0.029062
GFPT1	1042	-2.18E-01	0.029427
ТОММ5	9846	-2.18E-01	0.029444
TM2D2	7775	-2.18E-01	0.02955
NDUFV2	1795	-2.18E-01	0.029572
PBX1	1941	-2.18E-01	0.02961
PMS1	2086	-2.17E-01	0.029916
DNAJA2	4080	-2.17E-01	0.029993
MED21	3621	-2.17E-01	0.030236
NDUFS4	1793	-2.17E-01	0.030323
TRAPPC1	6897	-2.16E-01	0.030549
AHSA1	4237	-2.16E-01	0.030745
WDR7	4835	-2.16E-01	0.030989
RND2	3139	-2.15E-01	0.031318
NFU1	5320	-2.15E-01	0.031393
DRG1	1796	-2.15E-01	0.031412
ARL8B	6209	-2.15E-01	0.031474
TAX1BP1	3404	-2.15E-01	0.03159
FBXO9	5204	-2.15E-01	0.03197
PITPNM1	3717	-2.15E-01	0.032109
GAD2	1007	-2.14E-01	0.032437
ZNF248	6691	-2.14E-01	0.032614

GCHFR	1033	-2.14E-01	0.032634
POLR2E	2099	-2.14E-01	0.032904
RNF111	6002	-2.13E-01	0.033119
PSMD13	2249	-2.13E-01	0.033148
PSMD7	2245	-2.13E-01	0.033176
BAG5	3682	-2.13E-01	0.033223
MAP2K6	2196	-2.13E-01	0.033353
TAGLN3	5422	-2.13E-01	0.033451
DHX36	9174	-2.13E-01	0.033607
TMEM126A	7853	-2.13E-01	0.0337
RPL9	2421	-2.13E-01	0.033758
COX11	576	-2.12E-01	0.034
CLASP2	4722	-2.12E-01	0.034324
GS1-124K5.11	9904	-2.12E-01	0.034503
TIMM44	4170	-2.11E-01	0.034727
COX7B	574	-2.11E-01	0.03478
CEND1	5680	-2.11E-01	0.034787
RAB15	9739	-2.11E-01	0.035009
PPARG	2117	-2.11E-01	0.035084
SUPV3L1	2724	-2.11E-01	0.035348
RAB39B	8522	-2.11E-01	0.035407
MBD5	6424	-2.10E-01	0.035544
PNMA2	4284	-2.10E-01	0.035947
MMADHC	5321	-2.10E-01	0.036004
JOSD1	3892	-2.10E-01	0.036248
USPL1	4036	-2.09E-01	0.036732
IARS2	6386	-2.09E-01	0.036857
ADPRHL1	8410	-2.09E-01	0.03726
AKTIP	7062	-2.08E-01	0.037582
STEAP2	9459	-2.08E-01	0.038117
MDH1	1636	-2.07E-01	0.038529
ZNF385D	7388	-2.07E-01	0.038669
CPSF4	4362	-2.07E-01	0.038748
PRKAB1	2161	-2.07E-01	0.038911
GON7	7937	-2.07E-01	0.039005
SESN2	7739	-2.07E-01	0.039025
WAC	5700	-2.07E-01	0.039219
PITPNA	2047	-2.06E-01	0.039362
CLTA	530	-2.06E-01	0.039558
HSPA12A	9451	-2.06E-01	0.039707
EXOC8	8964	-2.06E-01	0.040102
CCNDBP1	4952	-2.06E-01	0.040138
AKAP11	4509	-2.06E-01	0.040161
SELENOH	9464	-2.05E-01	0.040288

NCOA7	8798	-2.05E-01	0.040709
PSMD2	2242	-2.05E-01	0.040719
ALG14	9221	-2.05E-01	0.040727
NRG1	1220	-2.05E-01	0.040761
PPP2R2D	6463	-2.05E-01	0.040776
PPP2R3C	6110	-2.05E-01	0.0408
ITSN1	2555	-2.05E-01	0.041215
NDUFA12	6499	-2.04E-01	0.04138
TRAF3	2890	-2.04E-01	0.041507
AQP11	9465	-2.04E-01	0.041569
CRNKL1	5710	-2.04E-01	0.041732
CDC37L1	6367	-2.04E-01	0.041978
RRP15	5561	-2.03E-01	0.042399
BLVRA	280	-2.03E-01	0.042466
HDAC8	6475	-2.03E-01	0.042517
TMCC1	4677	-2.02E-01	0.043383
HINT1	1224	-2.02E-01	0.043579
SORL1	2653	-2.02E-01	0.0437
VPS33A	7165	-2.02E-01	0.043877
PTGES2	7513	-2.02E-01	0.044251
NDUFV1	1792	-2.02E-01	0.044351
CGRRF1	4274	-2.01E-01	0.044579
CYC1	647	-2.01E-01	0.044724
NR1H2	2954	-2.01E-01	0.044962
ZFP82	9525	-2.01E-01	0.045033
TM6SF1	5858	-2.01E-01	0.045039
GORAB	8295	-2.01E-01	0.045151
PAQR3	9027	-2.01E-01	0.045168
ZNF76	3036	-2.01E-01	0.045169
ENPP5	6918	-2.01E-01	0.045246
ZNF253	6530	-2.00E-01	0.045538
ATP5F1A	218	-2.00E-01	0.045873
ZFYVE9	3604	-2.00E-01	0.045909
ТТС9	4920	-2.00E-01	0.046194
H2AFZ	1196	-2.00E-01	0.046408
HECA	5822	-2.00E-01	0.046439
TRNP1	9780	-1.99E-01	0.046637
ZNF780A	9519	-1.99E-01	0.046755
AES	81	-1.99E-01	0.046929
TAF11	2750	-1.99E-01	0.04698
LINC01963	8990	-1.99E-01	0.047198
BNIP3	290	-1.99E-01	0.047202
BUD31	3409	-1.99E-01	0.04762
NDUFA8	1780	-1.99E-01	0.047705

MID2	4432	-1.98E-01	0.047747
TRUB2	5251	-1.98E-01	0.047762
KBTBD11	3888	-1.98E-01	0.047769
TUBA1B	4115	-1.98E-01	0.04792
PRPF4	3500	-1.98E-01	0.047966
RLIM	5616	-1.98E-01	0.04819
KIF9	7026	-1.98E-01	0.048453
GABRA1	993	-1.98E-01	0.048495
MANSC1	5987	-1.98E-01	0.048522
КСМСЗ	1449	-1.98E-01	0.04861
GOT1	1095	-1.98E-01	0.048707
AHNAK2	8396	-1.97E-01	0.049121
CHST10	3658	-1.97E-01	0.049356

Tab S29. Associations between single-gene expression level and RS values in the PLS1- component. The order of these genes have been descended by correlation strength. Results were shown only if this correlation reached statistical significance (Two-sided *r* test, p < .05, uncorrected).

10. Enrichment analysis for PLS1 component

To reveal the biological process and enrichment pathways, we used the Metascape tool by meta-analyzing PLS1 gene list. All the annotations and datasets were updated recently, with plus from the ChatGPT resources (30-04-2023). All genes in the genome have been used as the enrichment background. *P* values for all the GO terms and pathways were corrected by Benjamini-Hochberg FDR method. Full results for enrichment analysis for PLS1 have been structured into the **Tab S30** and **Fig S15**. For each given gene list, protein-protein interaction enrichment analysis has been carried out with the following databases: STRING, BioGrid, OmniPath, InWeb_IM. Only physical interactions in STRING (physical score > 0.132) and BioGrid are used). The resultant network (PPI) contains the subset of proteins that form physical interactions with at least one other member in the list. If the network contains between 3 and 500 proteins, the Molecular Complex Detection (MCODE) algorithm10 has been applied to identify densely connected network components. The results of PPI have been sorted into the **Tab S31** and **Fig S16**. No table was provided to show MCODE results in the PLS2 because only one module was detected from MCODE.

GO	Category	Description	Count	%	Log10(P)	Log10(q)
GO:0045859	GO Biological Processes	regulation of protein kinase activity	26	11.50	-11.78	-7.43
GO:0001568	GO Biological Processes	blood vessel development	22	9.73	-10.19	-6.32
GO:0006066	GO Biological Processes	alcohol metabolic	15	6.64	-7.59	-4.28

process GO Biological sex GO:0007548 14 6.19 -7.47 -4.20 Processes differentiation Reactome R-HSA-109582 20 8.85 -4.04 Hemostasis -7.27 Gene Sets Pathways in hsa05200 **KEGG Pathway** 18 7.96 -3.80 -6.92 cancer GO Biological response to GO:0009725 21 9.29 -6.25 -3.28 Processes hormone GO Biological regulation of GO:1903522 12 5.31 -6.22 -3.27 blood circulation Processes VEGFA-VEGFR2 WP3888 WikiPathways 15 6.64 -5.98 -3.08 signaling GO Biological GO:1902074 response to salt 14 6.19 -5.91 -3.03 Processes Cytokine Reactome R-HSA-1280215 Signaling in 19 8.41 -5.55 -2.73 Gene Sets Immune system regulation of GO Biological GO:0050730 peptidyl-tyrosine 11 4.87 -5.48 -2.69 Processes phosphorylation positive GO Biological GO:0010942 regulation of cell 17 7.52 -5.42 -2.64 Processes death Tyrosine hsa00350 **KEGG Pathway** 5 2.21 -5.16 -2.43 metabolism GO Biological sensory organ GO:0007423 16 7.08 -5.12 -2.41 Processes development GO Biological brain GO:0007420 19 8.41 -5.08 -2.38 Processes development

GO:0060977	GO Biological Processes	coronary vasculature morphogenesis	4	1.77	-4.97	-2.27
GO:0032147	GO Biological Processes	activation of protein kinase activity	7	3.10	-4.95	-2.27
GO:0007169	GO Biological Processes	transmembrane receptor protein tyrosine kinase signaling pathway	13	5.75	-4.75	-2.15
GO:0030855	GO Biological Processes	epithelial cell differentiation	16	7.08	-4.71	-2.12

Tab S30 Top 20 clusters with their representative enriched terms (one per cluster) for PLS1 component. "Count" is the number of genes in the user-provided lists with membership in the given ontology term. "%" is the percentage of all of the user-provided genes that are found in the given ontology term (only input genes with at least one ontology term annotation are included in the calculation). *P* values are estimated by two-sided cumulative hypergeometric distribution test, with Benjamini-Hochberg FDR correction. "Log10(P)" is the p-value in log base 10. "Log10(q)" is the multi-test adjusted p-value in log base 10.

Fig S15. Network of enriched terms that colored by p **values.** The network is visualized using Cytoscape. P values are estimated by two-sided cumulative hypergeometric distribution test, with Benjamini-Hochberg FDR correction. This colorbar indicated corrected p values. Source data are provided as a Source Data file.

MCODE	GO	Description	Log10(P)
MCODE_1	hsa00010	Glycolysis / Gluconeogenesis	-7.3
MCODE_1	hsa00982	Drug metabolism - cytochrome P450	-7.2
	hea00080	Metabolism of xenobiotics by	7.0
WCODE_1	12900380	cytochrome P450	-7.0
MCODE_2	GO:0019934	cGMP-mediated signaling	-7.1
MCODE_2	GO:0019935	cyclic-nucleotide-mediated signaling	-6.2
MCODE_2	hsa05012	Parkinson disease	-5.9
	D UCA 1700220	SRP-dependent cotranslational	7.2
WCODE_4	к-пзА-1/99339	protein targeting to membrane	-7.3
MCODE_4	R-HSA-72766	Translation	-6.1
		regulation of cyclin-dependent	
MCODE_5	GO:000079	protein serine/threonine kinase	-7.3
		activity	
	CO.1004030	regulation of cyclin-dependent	7 0
IVICODE_5	60.1904029	protein kinase activity	-7.5
MCODE_5	GO:0044772	mitotic cell cycle phase transition	-6.8

Tab S31. Protein-Protein Interaction (PPI) networks based on the Molecular Complex Detection (MCODE) algorithm. *P* values are estimated by two-sided cumulative hypergeometric distribution test, with Benjamini-Hochberg FDR correction. "Log10(P)" is the p-value in log base 10. "Log10(q)" is the multi-test adjusted p-value in log base 10.

Fig S16. Protein-Protein Interaction (PPI) networks colored by independent modules that identified by Molecular Complex Detection (MCODE) algorithm. The network is visualized using Cytoscape. Source data are provided as a Source Data file.

11. Enrichment analysis for PLS2 component

To enrich our understanding of the functional processes of these gene sets, we replicated these enrichment-related analyses by inputting PLS2 gene set. Full results have been documented into the **Tab. S32** and **Fig. S17-18**.

GO	Category	Description	Count	%	Log10(P)	Log10(q)
GO:0009725	GO Biological Processes	response to hormone	18	13.53	-7.91	-3.57
GO:0071396	GO Biological Processes	cellular response to lipid	14	10.53	-6.94	-2.89
GO:1904035	GO Biological Processes	regulation of epithelial cell apoptotic process	7	5.26	-6.20	-2.45
GO:0009991	GO Biological Processes	response to extracellular stimulus	12	9.02	-5.63	-1.98
GO:0050727	GO Biological Processes	regulation of inflammatory response	11	8.27	-5.48	-1.91
GO:0007494	GO Biological Processes	midgut development	3	2.26	-4.87	-1.51

hsa04380	KEGG Pathway	Osteoclast differentiation	6	4.51	-4.65	-1.38
GO:0070166	GO Biological Processes	enamel mineralization	3	2.26	-4.53	-1.30
GO:1900180	GO Biological Processes	regulation of protein localization to nucleus	6	4.51	-4.41	-1.24
GO:0002673	GO Biological Processes	regulation of acute inflammatory response	4	3.01	-4.22	-1.15
GO:0071383	GO Biological Processes	cellular response to steroid hormone stimulus	6	4.51	-4.20	-1.15
GO:0008283	GO Biological Processes	cell population proliferation	12	9.02	-4.16	-1.15
WP272	WikiPathways	Blood clotting cascade	3	2.26	-3.92	-1.03
hsa00310	KEGG Pathway	Lysine degradation	4	3.01	-3.76	-0.97
M10	Canonical Pathways	PID BCR 5PATHWAY	4	3.01	-3.76	-0.97
GO:0032355	GO Biological Processes	response to estradiol	5	3.76	-3.71	-0.95
R-HSA-2262752	Reactome Gene Sets	Cellular responses to stress	12	9.02	-3.71	-0.95
WP4754	WikiPathways	IL-18 signaling pathway	7	5.26	-3.67	-0.95
GO:0019934	GO Biological Processes	cGMP-mediated signaling	3	2.26	-3.65	-0.95
R-HSA-8963743	Reactome Gene Sets	Digestion and absorption	3	2.26	-3.65	-0.95

Tab S32. Top 20 clusters with their representative enriched terms (one per cluster) for PLS2 component. "Count" is the number of genes in the user-provided lists with membership in the given ontology term. "%" is the percentage of all of the user-provided genes that are found in the given ontology term (only input genes with at least one ontology term annotation are included in the calculation). *P* values are estimated by two-sided cumulative hypergeometric distribution test, with Benjamini-Hochberg FDR correction. "Log10(P)" is the p-value in log base 10. "Log10(q)" is the multi-test adjusted p-value in log base 10.

Fig S17. Network of enriched terms that colored by cluster ID in the PLS2. The network is visualized using Cytoscape. Source data are provided as a Source Data file.

Fig S18. Protein-Protein Interaction (PPI) networks colored by independent modules that identified by Molecular Complex Detection (MCODE) algorithm. The network is visualized using Cytoscape.

Source data are provided as a Source Data file.

12. Tissue-specific, cell type-specific and disease-specific enrichment in the PLS1

We have analyzed PLS1 gene-set enrichment by capitalizing on both Metascape and Specific Expression Analysis (SEA). Statistical threshold was set to be p < .05 with Benjamini-Hochberg FDR corrections. All genes in the genome have been used as the enrichment background. Terms with a p-value < 0.01, a minimum count of 3, and an enrichment factor > 1.5 (the enrichment factor is the ratio between the observed counts and the counts expected by chance) are collected and grouped into clusters based on their membership similarities. Full results could be found in the **Tab S33-35**.

GO	Description	Count	%	Log10(P)
PGB:00004	Tissue-specific: kidney	14	6.20	-4.70
PGB:00014	Cell-specific: DRG	13	5.80	-4.40
PGB:00022	Tissue-specific: adrenal gland	8	3.50	-3.80
PGB:00048	Tissue-specific: bone marrow	8	3.50	-3.50
PGB:00020	Tissue-specific: retina	5	2.20	-2.50
PGB:00045	Tissue-specific: placenta	7	3.10	-2.10

Tab S33. Tissue-specific enrichment in the PLS1 gene set. *P* values are estimated by two-sided cumulative hypergeometric distribution test, with Benjamini-Hochberg FDR correction. "Log10(P)" is the p-value in log base 10.

GO	Description	Count	%	Log10(P)
M41746	RUBENSTEIN SKELETAL MUSCLE SMOOTH MUSCLE CELLS	14	6.20	-5.10
M39070	MANNO MIDBRAIN NEUROTYPES HNBGABA	17	7.50	-4.60
M40010	BUSSLINGER GASTRIC ISTHMUS CELLS	13	5.80	-4.30
M39055	MANNO MIDBRAIN NEUROTYPES HRGL2A	15	6.60	-4.30
M39125	AIZARANI LIVER C24 EPCAM POS BILE DUCT CELLS 3	8	3.50	-4.10
M39122	AIZARANI LIVER C21 STELLATE CELLS 1	8	3.50	-3.90
M40026	BUSSLINGER DUODENAL TRANSIT AMPLIFYING CELLS	8	3.50	-3.90
M39054	MANNO MIDBRAIN NEUROTYPES HRGL2B	12	5.30	-3.90
M41710	FAN OVARY CL8 MATURE CUMULUS GRANULOSA CELL 2	14	6.20	-3.40
M39174	MURARO PANCREAS ACINAR CELL	15	6.60	-3.40
M40025	BUSSLINGER DUODENAL DIFFERENTIATING STEM CELLS	9	4.00	-3.30
M40261	DESCARTES FETAL PANCREAS ERYTHROBLASTS	6	2.70	-3.30

M39072	MANNO MIDBRAIN NEUROTYPES HSERT	11	4.90	-3.20
M20221	LAKE ADULT KIDNEY C12 THICK	10	4.40	-3.20
10139231	ASCENDING LIMB	10		
M39264	HU FETAL RETINA FIBROBLAST	10	4.40	-3.20
M39209	HAY BONE MARROW STROMAL	15	6.60	-3.20
N4416E0	TRAVAGLINI LUNG ALVEOLAR EPITHELIAL	10	4.40	-3.10
10141059	TYPE 1 CELL	10		
	LAKE ADULT KIDNEY C19 COLLECTING			
M39238	DUCT INTERCALATED CELLS TYPE A	9	4.00	-3.10
	MEDULLA			
M39050	MANNO MIDBRAIN NEUROTYPES HPERIC	15	6.60	-3.00
M39034	FAN EMBRYONIC CTX ASTROCYTE 2	6	2.70	-3.00

Tab S34. Cell type-specific enrichment in the PLS1 gene set. *P* values are estimated by two-sided cumulative hypergeometric distribution test, with Benjamini-Hochberg FDR correction. "Log10(P)" is the p-value in log base 10.

GO	Description	Count	%	Log10(P)
C0013080	Down Syndrome	28	12.00	-11.00
C0001339	Acute pancreatitis	21	9.30	-11.00
C0008626	Congenital chromosomal disease	27	12.00	-11.00
C4521042	Complete Trisomy 21 Syndrome	25	11.00	-10.00
C0740391	Middle Cerebral Artery Occlusion	24	11.00	-10.00
C0520679	Sleep Apnea, Obstructive	21	9.30	-10.00
C0015672	Fatigue	26	12.00	-9.90
C0003872	Arthritis, Psoriatic	20	8.80	-9.60
C0085605	Liver Failure Cardiomyopathy,	16	7.10	-9.10
C1449563	Familial Idiopathic	25	11.00	-9.00
C0002726	Amyloidosis	23	10.00	-8.50
C0011884	Diabetic Retinopathy	22	9.70	-8.40
C0856169	Endothelial dysfunction	23	10.00	-8.30
C0007787	Transient	16	7.10	-8.10

	Ischemic Attack				
C0038525	Subarachnoid	19	8.40	-8.00	
	Cardiac				
C0003811		20	8.80	-8.00	
	Arrhythmia				
C4529962	Fatty Liver	23	10.00	-8.00	
0.010001	Disease				
	B-CELL				
C1868683	MALIGNANCY,	16	7.10	-8.00	
	LOW-GRADE				
C0024530	Malaria	22	9.70	-7.90	
C0007705	Cerebral	22	0.70	7.00	
0007765	Infarction	22	5.70	-7.90	

Tab S35. Disease-specific enrichment in the PLS1 gene set. *P* values are estimated by two-sided cumulative hypergeometric distribution test, with Benjamini-Hochberg FDR correction. "Log10(P)" is the p-value in log base 10.

13. Decoding the macroscale brain network associations with PLS gene sets

On the basis of GAMBA tool, we decoded PLS gene sets for eFC-the-*cb*-factor RS values into brain networks that defined by Yeo-7 atlas, including visual network (VIS), sensory/motor network (SMN), dorsal attention network (DAN), ventral attention network (VAN), limbic network (LIB), frontoparital network (FPN) and default model network (DMN). The general linear regression models were used to fit the PLS gene sets to brain network properties, respectively. To control the inflation of false-positive error, the Bonferroni-Holm FDR corrections have been performed. The standardized beta values indicated the slope of corresponding models. Full results have been sorted into **Tab S36-37**.

Components	Network	Standardized Beta	Significance
PLS1+	Visual	-0.348970433	*
PLS1+	Somatomotor	-0.068245765	-
PLS1+	Dorsal_attention	-0.193886534	-
PLS1+	Ventral_attention	0.183763953	-
PLS1+	Limbic	0.462173532	*
PLS1+	Frontal_parietal	-0.104238378	-
PLS1+	Default_mode	0.099242359	-
PLS1-	Visual	0.220736296	-
PLS1-	Somatomotor	0.273855053	-
PLS1-	Dorsal_attention	0.28601827	-
PLS1-	Ventral_attention	-0.141005989	-
PLS1-	Limbic	-0.492881165	*
PLS1-	Frontal_parietal	-0.050425016	-
PLS1-	Default_mode	-0.165696456	-

Tab S36. Association of gene set in the PLS1 component for brain network properties in healthy brain. Statistical significance was set as two-sided p < .05 with Bonferroni-Holm FDR correction from z test to linear regression model. * p < .05 after correction; - not reach significant level after correction.

Components	Network	Standardized Beta	Significance
PLS2+	Visual	0.592813035	*
PLS2+	Somatomotor	0.06800721	-
PLS2+	Dorsal_attention	0.0335436	-
PLS2+	Ventral_attention	-0.2516267	-
PLS2+	Limbic	-0.197339257	-
PLS2+	Frontal_parietal	-0.342684233	-
PLS2+	Default_mode	-0.245343157	-
PLS2-	Visual	-0.522499534	*
PLS2-	Somatomotor	-0.103394804	-
PLS2-	Dorsal_attention	-0.206554892	-
PLS2-	Ventral_attention	0.341218657	-
PLS2-	Limbic	0.111579815	-
PLS2-	Frontal_parietal	0.262378052	-
PLS2-	Default_mode	0.367425603	-

Tab S37. Association of gene set in the PLS2 component for brain network properties in healthy brain. Statistical significance was set as two-sided p < .05 with Bonferroni-Holm FDR correction from z test to linear regression model. * p < .05 after correction; - not reach significant level after correction.

14. Decoding the brain cognitive ontology associations with PLS gene sets

Yeo et al. (2015)²³ have provided an ontology system to annotate brain cognitive functions into 12 components. We labeled the ontology for corresponding cognitive component by using most probability of corresponding task. More details can be found in the original paper. Ontology in the current study included as followed: Component 1, Vibrotactile Mon/Discrim; Component 2, Recitation/Repetition; Component 3, Pitch Mon/Discrim; Component 4, Visual Pursuit/Tracking; Component 5, Naming; Component 6, Saccades; Component 7, Micturition; Component 8, Flanker; Component 9, WCST; Component 10, Theory of Mind; Component 11, Face Mon/Discrim; Component 12, Reward Task. Full results have been tabulated into **Tab S38-39** for both PLS1 and PLS2 gene sets.

PLS	Components	Standardized Beta	Significance
PLS1+	Comp01	-0.112157066	-
PLS1+	Comp02	-0.012928104	-
PLS1+	Comp03	-0.105038412	-
PLS1+	Comp04	-0.269337787	-
PLS1+	Comp05	-0.219292511	-
PLS1+	Comp06	-0.33533867	-
PLS1+	Comp07	0.238815117	-

PLS1+	Comp08	0.145543505	-
PLS1+	Comp09	-0.253079794	-
PLS1+	Comp10	-0.054714602	-
PLS1+	Comp11	0.375323252	-
PLS1+	Comp12	0.162080235	-
PLS1-	Comp01	0.411721924	*
PLS1-	Comp02	0.161070745	-
PLS1-	Comp03	-0.107058522	-
PLS1-	Comp04	0.300926413	-
PLS1-	Comp05	0.175759571	-
PLS1-	Comp06	0.50229855	*
PLS1-	Comp07	-0.244003981	-
PLS1-	Comp08	-0.155763237	-
PLS1-	Comp09	0.272553053	-
PLS1-	Comp10	-0.086197421	-
PLS1-	Comp11	-0.456965337	*
PLS1-	Comp12	-0.373807075	*

Tab S38 Association of gene set in the PLS1 set for brain cognitive ontology (component). Statistical significance was set as two-sided p < .05 with Bonferroni-Holm FDR correction from z test to linear regression model. * p < .05 after correction; - not reach significant level after correction.

PLS	Components	Standardized Beta	Significance
PLS2+	Comp01	-0.02879248	-
PLS2+	Comp02	0.005807242	-
PLS2+	Comp03	-0.003672292	-
PLS2+	Comp04	0.512062777	*
PLS2+	Comp05	-0.164728478	-
PLS2+	Comp06	0.070092962	-
PLS2+	Comp07	-0.123980789	-
PLS2+	Comp08	-0.390845432	*
PLS2+	Comp09	-0.151376057	-
PLS2+	Comp10	0.313807963	-
PLS2+	Comp11	-0.185341371	-
PLS2+	Comp12	-0.297846314	-
PLS2-	Comp01	0.079659003	-
PLS2-	Comp02	0.135710957	-
PLS2-	Comp03	-0.089923852	-
PLS2-	Comp04	-0.192065611	-
PLS2-	Comp05	0.226577557	-
PLS2-	Comp06	0.114419489	-
PLS2-	Comp07	-0.00075858	-
PLS2-	Comp08	0.286413492	-
PLS2-	Comp09	0.202929483	-

PLS2-	Comp10	-0.115680798	-
PLS2-	Comp11	0.196093112	-
PLS2-	Comp12	0.058543554	-

Tab S39. Association of gene set in the PLS2 set for brain cognitive ontology (component). Statistical significance was set as two-sided p < .05 with Bonferroni-Holm FDR correction from z test to linear regression model. * p < .05 after correction; - not reach significant level after correction.

15. Decoding the cognitive terms of these gene sets

By using the online meta-analytic decoding at the NeuroSynth, we found these gene sets have been implicated to cognitive functions relating to fears, emotions, and visual processing. Full lists to these cognitive terms have been provided in the **Tab S40-41**.

Cognitive towns	Standardized Beta	Standardized Beta
Cognitive terms	(PLS1+)	(PLS1-)
Acoustic	0.00865019	-0.115795294
Action_observation	-0.240959353	0.255430384
Action	-0.217749428	0.333017476
Actions	-0.20713669	0.30176066
Affect	0.408356251	-0.111509974
Age_controls	0.006564886	0.149449687
Alzheimer_disease	0.368735698	-0.33541442
Alzheimer	0.367867813	-0.351768271
Anger	0.062139167	-0.244588462
Angry	0.243667845	-0.079955934
Anticipation	0.401834118	-0.276402692
Anxiety	0.516775044	-0.3225892
Aphasia	-0.0354192	0.111247623
Arithmetic	-0.132607497	0.258909455
Attention_network	-0.144056109	0.303661185
Attention_task	-0.198811919	0.233377535
Attentional	-0.204685017	0.323456281
Audio	-0.141411355	-0.068527364
Audiovisual	-0.086727644	-0.081955197
Auditory	-0.022138665	-0.117801105
Auditory_stimuli	0.028156831	-0.132406854
Auditory_visual	-0.126781638	-0.068674607
Autism	0.146664722	-0.123580846
Autism_spectrum	0.172250455	-0.210726775
Autobiographical_memory	0.140803725	-0.206243688
Autobiographical	0.180108113	-0.2661731
Behavioral_responses	0.119328281	-0.23726965
Belief	0.055502921	0.076691001
Beliefs	0.057710565	-0.012206258

Bilinguals	-0.106015625	0.133580895
Brainstem	0.454128456	-0.293650681
Broca	-0.139636339	0.102206019
Calculation	-0.20504795	0.290322012
Chronic_pain	0.381255038	-0.30205703
Comprehension	-0.085853603	0.085765602
Comprehensive	-0.068936576	0.108410595
Concepts	0.150392711	-0.214479525
Conceptual	0.070060899	-0.075240541
Consciousness	-0.225143684	-0.017716885
Contexts	0.079666947	-0.168120585
Contextual	-0.101041098	0.084374601
Control_network	-0.064147706	0.243475973
Control_processes	-0.122580589	-0.051311303
Craving	0.140962415	-0.256845032
Decision_making	0.223421493	-0.300994507
Decision	0.141859752	-0.239328245
Decision_task	0.009364216	-0.017306161
Default_mode	0.065107855	0.00247743
Default_network	0.155110591	-0.075614753
Default	0.102954862	-0.039484177
Demand	-0.015564642	0.190185767
Demands	-0.220354694	0.10962497
Dementia	0.310476433	-0.322070124
Deprivation	-0.064043085	0.148669072
Detection_task	-0.333212925	0.304969142
Diagnosed	0.330890242	-0.300155658
Diagnostic	0.393448102	-0.149395032
Discriminating	-0.015518292	0.009564913
Discriminative	0.191032265	-0.124612767
Disease_ad	0.198274039	-0.266391304
Disease_pd	-0.010279998	0.329283404
Disorder_mdd	0.216737377	-0.268571007
Dmn	0.069748625	0.039266623
Dopaminergic	0.309687608	-0.289657652
Dyslexia	0.173251659	-0.039925701
Early_visual	-0.330166793	0.236480514
Emotion_regulation	0.019734722	0.009653893
Emotional_faces	0.153435781	-0.141525978
Emotional_information	0.23196515	-0.298379322
Emotional_neutral	0.240375692	-0.345659572
Emotional	0.337979995	-0.395352553
Emotional_responses	-0.038898826	-0.171325772
Emotional_stimuli	0.372087134	-0.103194809

Emotional_valence	0.273415446	-0.221321427
Emotionally	0.469591904	-0.217090003
Emotions	0.49023263	-0.261389454
Empathic	0.304252215	-0.375060725
Empathy	0.222711343	-0.249668781
Encoding_retrieval	0.253379274	-0.202178712
Epilepsy	0.267057337	-0.218235757
Episodic_memory	0.243299607	-0.233294901
Expectancy	-0.117033361	0.022514944
Experiences	0.194989415	-0.362436128
Experiencing	0.289291039	-0.170258463
Extrastriate	-0.122773627	0.19767137
Extrastriate_visual	-0.394629782	0.302620819
Eye_field	-0.186982704	0.336117837
Eye_movement	-0.136895985	0.287774678
Eye_movements	-0.296486473	0.425888147
Eyes	-0.270563518	0.230832466
Face_ffa	0.003994765	0.090600987
Face	0.05073677	0.05811669
Face_stimuli	0.091241999	-0.007096303
Faces	0.11213202	0.020293341
Facial_expressions	0.396071748	-0.107943265
Facial	0.423698748	-0.140422335
Familiar	0.098578626	-0.052769835
Familiarity	0.036399566	-0.067586224
Fear	0.581635974	-0.294038209
Fearful_faces	0.341309222	-0.251854131
Fearful	0.426909068	-0.28031828
Female	0.591243791	-0.325756939
Finger_movements	-0.149991759	0.432985159
Finger	-0.109016322	0.392756908
Finger_tapping	-0.085051863	0.368813215
Food	0.08746096	-0.320993976
Gain	0.233893216	-0.269460763
Gains	0.098271076	-0.251683279
Globus	0.323055334	-0.172900668
Goal_directed	-0.091428709	0.257537014
Hand_movements	-0.121765405	0.436449327
Hand	-0.160821451	0.408398908
Handed	-0.092920649	0.387887541
Happy_faces	0.236724858	-0.327583717
Нарру	0.369906078	-0.457741675
Hearing	0.068142555	-0.133854922
Heschl	0.062966526	-0.128418616

Hyperactivation	-0.16571859	0.219453719
Hypoactivation	0.180455466	-0.042097817
Index_finger	-0.063262635	0.380010158
Injury	-0.089042252	-0.025116109
Integrate	-0.241986124	-0.028858843
Integration	-0.099839332	-0.026899004
Integrative	0.119382443	-0.021645523
Interoceptive	0.20605653	-0.174504321
Interpersonal	0.072945112	-0.17602119
Judgment	-0.164134774	0.106097203
Judgment_task	-0.090245216	0.100212189
Judgments	-0.087631115	0.021939868
Knowledge	0.009936466	0.13948825
Language_comprehension	-0.109063907	0.087009364
Language_network	-0.127161194	0.098829101
Language	-0.132961658	0.09422713
Languages	-0.148193696	0.115598574
Lateralization	0.021982495	-0.047739845
Lexical_decision	-0.044587795	-0.044279255
Lexical	-0.140531202	0.061724186
Limbic	0.456019472	-0.345977207
Lingual	-0.265210198	0.175567306
Linguistic	-0.094961965	0.086584581
Major_depression	0.177127345	-0.368486577
Matching	-0.11803044	0.103225644
Matching_task	-0.049525951	0.099133255
Mci	0.231399992	-0.416220469
Memories	0.241558711	-0.234336178
Memory_encoding	0.2323167	-0.273554019
Memory_load	-0.168338624	0.176911259
Memory	0.078597203	-0.13743443
Memory_performance	0.094010464	-0.135020285
Memory_processes	0.242672823	-0.06514846
Memory_retrieval	0.062089693	-0.101179342
Memory_tasks	-0.196087376	-0.001478976
Memory_wm	-0.215488799	0.097599768
Men_women	-0.115548962	0.001428367
Mental_imagery	-0.305485825	0.254603136
Mental_states	0.111395332	0.038498458
Mentalizing	0.083871736	-0.025479643
Mesolimbic	0.146234279	-0.217086692
Metabolism	0.23885356	-0.282458255
Mirror_neuron	-0.159613467	0.154995704
Moral	-0.006468679	0.062104834

Motion	-0.174228791	0.225590962
Motivation	0.048327029	-0.328957793
Motivational	0.426512962	-0.432469185
Motor_control	-0.110609865	0.319289717
Motor_imagery	-0.22410041	0.36900965
Motor_network	-0.124547052	0.343201655
Motor	-0.161960825	0.420404632
Motor_performance	-0.13928884	0.413962666
Motor_premotor	-0.096695399	0.386829239
Motor_sma	-0.156532096	0.319867953
Motor_task	-0.09391717	0.39690499
Movement	-0.159120767	0.426671961
Movements	-0.195514757	0.453158964
Moving	-0.189684559	0.306442583
Multisensory	-0.121804824	-0.079737703
Music	0.067570338	-0.127246738
Musical	0.030050307	-0.130700114
Musicians	0.067120677	0.075843424
Naturalistic	0.016154231	-0.048252757
Navigation	0.054202946	-0.064026036
Negative_affect	0.528856773	-0.247304088
Negative_neutral	0.096312607	-0.149299711
Negative_positive	0.25592263	-0.337687381
Network_dmn	0.085087422	0.018051877
Neurodegenerative	0.198172496	-0.296091388
Neurodevelopmental	0.050358554	-0.162089273
Neutral_faces	0.379150731	-0.162942262
Neutral_pictures	0.258616601	-0.208635169
Neutral_stimuli	0.089156664	-0.339798248
Noun	-0.173814359	0.061636235
Nouns	-0.11836165	-0.028305854
Object	-0.057203399	0.121952003
Pain	0.35790643	-0.258326643
Painful	0.322424408	-0.252456879
Paralimbic	0.383571973	-0.300891053
Parieto	-0.178415993	0.294927688
Parkinson_disease	-0.036120434	0.393536538
Parkinson	-0.040798753	0.39620689
Pathophysiological	0.247152321	-0.282196236
Personal	0.139913276	-0.204708057
Personality	0.136992071	-0.15221235
Personality_traits	0.129756851	-0.137473764
Pleasant	0.313890909	-0.337142908
Pre_sma	-0.091182838	0.213388075
Pre_supplementary	-0.100008121	0.146711486
-------------------------	--------------	--------------
Premotor	-0.175796795	0.403588599
Preparation	-0.183471686	0.411618458
Preparatory	-0.183562676	0.293230925
Primary_auditory	0.024160616	-0.136165694
Primary_motor	-0.131835644	0.432321507
Primary	-0.077758196	0.322174632
Primary_secondary	0.157403267	-0.05220327
Primary_sensorimotor	-0.101284624	0.389257036
Primary_sensory	-0.159889504	0.088859412
Primary_somatosensory	-0.074845527	0.21934533
Primary_visual	-0.332237374	0.180087302
Retrosplenial	0.102563655	-0.183466809
Reward_anticipation	0.054268269	-0.307053497
Reward	0.217999633	-0.305104113
Rewarding	-0.027580036	-0.308666956
Rewards	0.277346693	-0.287310243
Rhythm	-0.136747569	0.348314666
Rotation	-0.30518247	0.273404894
Salience_network	0.005433702	0.011939582
Secondary_somatosensory	0.06333394	-0.039291272
Selective_attention	-0.197179306	0.294643484
Self_referential	0.123245348	-0.148967168
Self_reported	-0.069237898	-0.110994572
Semantic_information	-0.116871248	0.039115761
Semantic_knowledge	0.081434993	-0.242870155
Semantic_memory	0.244000728	-0.323834266
Sensorimotor	-0.117788574	0.392570583
Sensory_modalities	-0.241402243	0.089971281
Sensory_motor	-0.130773525	0.284161307
Sensory	-0.039717729	-0.043735162
Sentence_comprehension	-0.122079823	0.088904136
Sentence	-0.10503101	0.087884311
Social_interactions	0.206568505	-0.135887844
Socially	0.125408208	-0.1780352
Somatosensory	0.006218428	0.182000749
Spatial_attention	-0.25557747	0.309609389
Spatial_information	-0.17398885	0.229986526
Strategic	-0.082253911	0.165167466
Strategy	-0.094208255	0.269299491
Striatal	0.120315855	-0.228837896
Subsequent_memory	0.321980365	-0.249398408
Supplementary_motor	-0.108475798	0.393505098
Switch	-0.188193917	0.017340966

Switching	-0.123052388	0.253818116
Syntactic	-0.123131213	0.075181285
Tactile	-0.077961114	0.085136703
Thought	0.121759036	-0.178786514
Thoughts	-0.035399073	0.019212068
Ventrolateral	-0.224385578	-0.033478975
Verb	-0.15732941	0.096014043
Verbal_fluency	-0.068084071	0.080920847
Verbal	-0.169445198	0.13560718
Verbal_working	-0.150889807	0.10285777
Verbs	-0.15674101	0.099759977
Video	-0.173030895	0.190390007
Videos	-0.228038519	0.240740096
Viewed	-0.094613442	0.15524636
Viewing	-0.018067332	0.120458078
Vision	-0.209412203	0.318188461
Visual_attention	-0.266697607	0.35793797
Visual_auditory	-0.082690356	-0.083332894
Visual_field	-0.167402896	0.198134947
Visual_motion	-0.211330654	0.239763509
Visual	-0.300803099	0.322394792
Visual_perception	-0.108153061	0.150318309
Visual_spatial	-0.178448781	0.257820891
Visual_stimulus	-0.365994578	0.151358259
Visual_stream	-0.039064267	0.067776498
Visual_word	-0.021525709	0.044076225
Visually	-0.208280611	0.477796325
Visually_presented	-0.163882747	0.170634435
Visuo	-0.278374557	0.41505569
Visuomotor	-0.173426756	0.426021639
Visuospatial	-0.223784201	0.306828537
Watched	-0.23109372	0.157791059
Wm_task	-0.212477635	0.021072054
Women	0.148512659	-0.290157036
Word_form	-0.01540145	0.037876346
Word	-0.164376243	0.103716442
Word_pairs	-0.182267962	0.120582615
Words	-0.152064196	0.096139402
Working_memory	-0.250169257	0.183107097
Young_adults	0.212285437	-0.272762489
Young_healthy	0.276774099	-0.391788022
Younger_adults	0.071899717	-0.199307408
Younger	-0.199873665	0.015112206

Tab S40. Association of gene set in the PLS1 set for brain cognitive term. Statistical significance was set as two-sided p < .05 with Bonferroni-Holm FDR correction from *z* test to linear regression model. * p < .05 after correction; - not reach significant level after correction.

Constitute terms	Standardized Beta	Standardized
Cognitive terms	(PLS1+)	Beta (PLS1-)
Acoustic	0.11330114	-0.100229185
Action_observation	-0.059711189	-0.004900673
Action	-0.135341034	0.093909685
Actions	-0.131032324	0.073189047
Affect	0.040890742	0.254815815
Age_controls	-0.026156608	0.138674083
Alzheimer_disease	0.055122084	0.078139031
Alzheimer	0.038054248	0.070602706
Anger	-0.177806839	-0.014520607
Angry	0.067852293	0.000787847
Anticipation	-0.13088269	0.136172865
Anxiety	0.168324651	0.112679394
Aphasia	0.020681428	0.077387298
Arithmetic	0.035720784	0.207836573
Attention_network	0.183886729	0.145103921
Attention_task	0.295915375	-0.002013182
Attentional	0.050069709	0.125731998
Audio	0.029613402	-0.109635313
Audiovisual	0.10255777	-0.130717198
Auditory	0.100383656	-0.125840099
Auditory_stimuli	0.10906764	-0.093774345
Auditory_visual	0.064740965	-0.131420091
Autism	0.152241649	-0.001393325
Autism_spectrum	0.002031322	-0.036048062
Autobiographical_memory	0.034795015	0.018636724
Autobiographical	-0.015951051	-0.002826667
Behavioral_responses	-0.242749083	-0.157748245
Belief	0.117227483	0.206672225
Beliefs	-0.046932875	0.124376247
Bilinguals	-0.082618705	0.162477736
Brainstem	0.150929939	0.015430673
Broca	-0.15072168	0.130201544
Calculation	0.004022781	0.189718703
Chronic_pain	-0.014019706	0.005449545
Comprehension	-0.062364325	0.17358494
Comprehensive	-0.082215968	0.186291875
Concepts	-0.017842059	0.135214587
Conceptual	0.023858869	0.16562061

Consciousness	0.155626437	-0.396630202
Contexts	-0.197995194	0.135768278
Contextual	-0.185057056	0.233440897
Control_network	0.110716468	0.213315405
Control_processes	-0.353713685	0.01571676
Craving	-0.053453882	-0.014693863
Decision_making	-0.246557067	0.104704533
Decision	-0.232368381	0.129508142
Decision_task	0.053027637	0.05513904
Default_mode	0.160647072	0.12051618
Default_network	0.075663097	0.150043075
Default	0.13096999	0.129313341
Demand	0.089476686	0.20426214
Demands	-0.346490342	0.199193304
Dementia	-0.054369515	0.10290625
Deprivation	0.414765672	-0.074053763
Detection_task	0.289408078	-0.280787427
Diagnosed	-0.062416997	0.115257734
Diagnostic	0.036352208	0.246712096
Discriminating	-0.126300156	0.092077012
Discriminative	0.16603408	-0.117899907
Disease_ad	0.045535868	0.02019023
Disease_pd	-0.058552701	0.092315214
Disorder_mdd	-0.119909119	0.077379637
Dmn	0.19583645	0.124632063
Dopaminergic	-0.151455678	0.103844026
Dyslexia	0.160110725	0.135886076
Early_visual	0.501838944	-0.378206915
Emotion_regulation	-0.259373999	0.199831733
Emotional_faces	-0.15204592	0.064780652
Emotional_information	-0.17185086	0.152483071
Emotional_neutral	-0.173535492	-0.057166557
Emotional	-0.163378117	0.131299778
Emotional_responses	-0.23538132	0.041939619
Emotional_stimuli	0.053627633	0.330075433
Emotional_valence	-0.121080874	0.1071507
Emotionally	0.055622269	0.225926178
Emotions	0.066516073	0.226985207
Empathic	-0.282967376	-0.153231129
Empathy	-0.03231548	-0.05226949
Encoding_retrieval	0.128732549	0.028347751
Epilepsy	-0.093760573	0.045092143
Episodic_memory	0.0410954	0.059694312
Expectancy	-0.11381445	-0.036281568

Experiences	-0.093380262	0.051715551
Experiencing	-0.108621441	0.136432227
Extrastriate	0.385211201	-0.095052537
Extrastriate_visual	0.516982012	-0.387757489
Eye_field	-0.045170826	0.166755636
Eye_movement	0.13578021	0.008383947
Eye_movements	0.156824308	0.022228649
Eyes	0.376116082	-0.285287048
Face_ffa	0.289949063	-0.009921545
Face	0.276766785	0.010791886
Face_stimuli	0.216960035	0.027077022
Faces	0.25743796	0.03512569
Facial_expressions	0.126751063	0.207822902
Facial	0.131987208	0.192580348
Familiar	0.193072469	0.000413401
Familiarity	0.141745103	0.045293541
Fear	-0.015348284	0.237837664
Fearful_faces	-0.002553291	0.145090536
Fearful	-0.071198841	0.098010977
Female	-0.059666434	0.165262568
Finger_movements	-0.063759795	0.116974459
Finger	-0.03810469	0.070225045
Finger_tapping	-0.061986428	0.103717384
Food	-0.173771744	-0.118356923
Gain	0.055544727	-0.045397152
Gains	-0.235623264	0.053259738
Globus	0.021845592	0.086098317
Goal_directed	0.156960409	0.180207338
Hand_movements	-0.010823018	0.051318148
Hand	-0.059379709	0.011960317
Handed	-0.058814613	0.093803053
Happy_faces	-0.213911893	-0.148211754
Нарру	-0.286908886	-0.004606491
Hearing	0.125877029	-0.095152814
Heschl	0.130407993	-0.095527954
Hyperactivation	0.013782386	-0.010641213
Hypoactivation	-0.051663959	0.214127587
Index_finger	0.030659067	0.044189837
Injury	-0.083129951	-0.323908328
Integrate	0.232466999	-0.484384439
Integration	0.042736718	-0.085652277
Integrative	0.127438741	0.022041329
Interoceptive	0.016675671	-0.104788574
Interpersonal	-0.061516181	0.03893715

Judgment	-0.093674823	0.103855261
Judgment_task	0.075631181	0.084443102
Judgments	-0.215603651	0.292268313
Knowledge	-0.028250705	0.267074871
Language_comprehension	-0.092791913	0.181964502
Language_network	-0.021693443	0.102810709
Language	-0.094746962	0.159354672
Languages	-0.03150099	0.102681586
Lateralization	0.084508792	-0.008489992
Lexical_decision	-0.039432689	0.045305297
Lexical	-0.08682291	0.108870011
Limbic	-0.114500263	0.169963966
Lingual	0.463782451	-0.317175527
Linguistic	-0.039842836	0.140020231
Major_depression	-0.306786378	-0.089118231
Matching	0.242646287	-0.092927849
Matching_task	0.217423369	-0.01726842
Mci	-0.174689745	-0.140083506
Memories	0.002530592	0.109896055
Memory_encoding	-0.048672996	0.014899539
Memory_load	-0.208031315	0.184749954
Memory	-0.097814902	0.100590002
Memory_performance	0.143994418	-0.04347802
Memory_processes	0.203166393	0.174664022
Memory_retrieval	-0.000684883	0.077450419
Memory_tasks	-0.185370096	0.009537602
Memory_wm	-0.359485435	0.136422427
Men_women	-0.180511287	-0.001888263
Mental_imagery	0.360653469	-0.230675339
Mental_states	0.053249302	0.25158325
Mentalizing	-0.046271795	0.273555701
Mesolimbic	-0.119178271	0.07398341
Metabolism	-0.158990011	-0.176045192
Mirror_neuron	-0.099924117	0.066501645
Moral	-0.00352891	0.218711776
Motion	0.250841328	-0.045401312
Motivation	-0.294069239	-0.019062668
Motivational	-0.235706545	-0.037195236
Motor_control	-0.151746771	0.102313291
Motor_imagery	-0.20521922	0.062033536
Motor_network	-0.131613323	0.018284027
Motor	-0.111924154	0.064537077
Motor_performance	-0.072450031	0.100051716
Motor_premotor	-0.054237922	0.011805236

Motor_sma	-0.179903334	0.138926192
Motor_task	-0.020356365	0.0876134
Movement	-0.094437883	0.054694067
Movements	-0.087644642	0.078632335
Moving	0.186221084	0.011669327
Multisensory	0.121496872	-0.243821851
Music	0.121013988	-0.076498305
Musical	0.103987717	-0.107179286
Musicians	0.129872145	0.031740893
Naturalistic	0.228271256	-0.098893196
Navigation	0.277607544	-0.145804566
Negative_affect	0.007885432	0.18446317
Negative_neutral	-0.108204149	0.086784246
Negative_positive	-0.203391565	-0.126412008
Network_dmn	0.193487373	0.111679432
Neurodegenerative	-0.15914644	0.061711391
Neurodevelopmental	-0.041306666	-0.104358291
Neutral_faces	0.017509185	0.202460906
Neutral_pictures	-0.051272449	0.181040281
Neutral_stimuli	-0.174859381	-0.079105496
Noun	-0.145915167	0.133916412
Nouns	-0.152791276	0.105025512
Object	0.283238263	-0.007887737
Pain	-0.076787921	-0.009733862
Painful	-0.096698236	-0.002393202
Paralimbic	-0.139677019	0.095737952
Parieto	0.143240809	-0.013671587
Parkinson_disease	-0.007115613	0.096376531
Parkinson	-0.004636206	0.077301383
Pathophysiological	-0.065060303	0.06834271
Personal	-0.057918327	0.153272583
Personality	-0.129161867	0.115708692
Personality_traits	-0.174116749	0.15796618
Pleasant	-0.060013963	0.047944214
Pre_sma	-0.135617971	0.258491753
Pre_supplementary	-0.116285931	0.216688227
Premotor	-0.143324632	0.107130281
Preparation	-0.169710962	0.221110176
Preparatory	0.025341866	0.079698864
Primary_auditory	0.108940786	-0.119086328
Primary_motor	-0.072059637	0.056986327
Primary	0.007278581	-0.041519714
Primary_secondary	0.036892092	-0.096194154
Primary_sensorimotor	-0.03488664	0.093288043

Primary_sensory	0.027505453	-0.266279535
Primary_somatosensory	0.016066433	-0.107237926
Primary_visual	0.405085941	-0.403757633
Retrosplenial	0.161010692	-0.117546228
Reward_anticipation	-0.290160136	-0.022476586
Reward	-0.155138844	0.042604297
Rewarding	-0.274577566	-0.044916989
Rewards	-0.163379992	0.092405692
Rhythm	-0.065802364	-0.027622724
Rotation	0.081507476	-0.111816008
Salience_network	0.025938244	0.196460248
Secondary_somatosensory	-0.042078345	-0.171737196
Selective_attention	0.195127565	0.082260295
Self_referential	-0.051410636	0.177322431
Self_reported	-0.129292284	-0.013240082
Semantic_information	-0.12507032	0.093500063
Semantic_knowledge	-0.170992943	0.009337269
Semantic_memory	-0.02347425	0.050775469
Sensorimotor	-0.069829216	0.02828558
Sensory_modalities	0.228450839	-0.167902186
Sensory_motor	-0.098108486	-0.025193962
Sensory	0.045793203	-0.223461017
Sentence_comprehension	-0.063493307	0.09352173
Sentence	-0.060349112	0.132802851
Social_interactions	-0.032629915	0.180757397
Socially	-0.093883094	0.074587768
Somatosensory	-0.005856813	-0.10341692
Spatial_attention	-0.016927195	0.034793152
Spatial_information	0.278062265	-0.036905393
Strategic	0.03413716	0.197494863
Strategy	0.059976888	0.297096138
Striatal	-0.154580097	0.087942111
Subsequent_memory	0.018943511	0.092573164
Supplementary_motor	-0.147293609	0.170525315
Switch	-0.177495727	-0.087136728
Switching	0.077076339	0.145370151
Syntactic	-0.064465504	0.079198836
Tactile	-0.015167138	-0.166820364
Thought	-0.051292428	0.046616876
Thoughts	0.154631359	0.019343746
Ventrolateral	-0.40693592	0.101633276
Verb	-0.159625285	0.145452101
Verbal_fluency	-0.098929724	0.10624954
Verbal	-0.223034206	0.213622251

Verbal_working	-0.325207509	0.1974232
Verbs	-0.093429526	0.137565141
Video	0.132866717	-0.06615857
Videos	0.243509529	-0.118473321
Viewed	0.232135515	-0.009598321
Viewing	0.312068458	-0.015912914
Vision	0.237234915	-0.006299766
Visual_attention	0.268135065	0.012174036
Visual_auditory	0.176741713	-0.203266832
Visual_field	0.414391992	-0.186862688
Visual_motion	0.260615332	-0.074304927
Visual	0.526824307	-0.229759522
Visual_perception	0.205745201	-0.05744981
Visual_spatial	0.191441409	0.053300484
Visual_stimulus	0.391359185	-0.458832965
Visual_stream	0.375469145	-0.12122967
Visual_word	0.175074035	0.022771056
Visually	0.143914959	0.080523467
Visually_presented	0.2094235	0.011205236
Visuo	0.188420777	0.017489634
Visuomotor	-0.070834167	0.030348169
Visuospatial	0.125387064	0.057355427
Watched	0.178810959	-0.179427926
Wm_task	-0.255596165	-0.06628936
Women	-0.229209886	0.037715821
Word_form	0.176019424	0.021904996
Word	-0.069798801	0.13178351
Word_pairs	-0.010785033	0.033386581
Words	-0.044185262	0.151925131
Working_memory	-0.284189184	0.162159841
Young_adults	-0.015232571	-0.05234766
Young_healthy	-0.272856044	0.012139533
Younger_adults	-0.1749336	-0.10399904
Younger	-0.036627134	-0.215155201

Tab S41. Association of gene set in the PLS2 set for brain cognitive term. Statistical significance was set as two-sided p < .05 with Bonferroni-Holm FDR correction from z test to linear regression model. * p < .05 after correction; - not reach significant level after correction.

16. Decoding the cortical metabolisms of PLS gene sets

Vaishnavi and colleagues (2010) have revealed the regional aerobic glycolysis in the cortical areas and provided an atlas to quantify cortical metabolisms, including glycolytic index (GI), oxygen-glucose index (OGI), cerebral metabolic rate of oxygen/glucose (CMRO₂/GMR_{Glu}) and cerebral blood flow (CBF). Thus, to uncover whether these gene sets in PLS1 and PLS2 were

PLS	Cortical metabolism	Standardized Beta	Significance
PLS1	GI	0.117650644	-
PLS1	OGI	-0.106936359	-
PLS1	CMRO ₂	0.362871759	*
PLS1	CMR _{Glu}	0.300024051	-
PLS1	CBF	0.117884575	-
PLS2	GI	0.163868527	-
PLS2	OGI	-0.15633465	-
PLS2	CMRO ₂	0.227157674	-
PLS2	CMR _{Glu}	0.235166918	-
PLS2	CBF	0.094561213	-

associated with cortical metabolisms, the general linear models were built as well. Full results have been sorted into **Tab S42** as underneath.

Tab S42 Association of gene sets (PLS1 and PLS2) for cortical metabolism. Statistical significance was set as two-sided p < .05 with Bonferroni-Holm FDR correction from *z* test to linear regression model. * p < .05 after correction; - not reach significant level; - not reach significant level after correction.

17. Decoding neurological and neuropsychiatric diseases from gene sets at BrainMap

We decoded gene sets with PLS1 and PLS2 components at BrainMap to reveal the associations between gene expression patterns and structural/functional abnormalities of 19 diseases in BrainMap dataset. BrainMap provided a outlet to do an online meta-analytic decoding in both VBM and functional MRI dataset. Full results have been documented into following **Tab S43-44**.

Modality	Diseases	Standardized Beta	Significance
VBM	ADHD	0.06960949	-
VBM	ALS	0.000902659	***
VBM	ASD	0.052397551	***
VBM	FTD	-0.428989653	-
VBM	MCI	-0.411329722	-
VBM	MS	-0.043255713	-
VBM	OCD	-0.284539855	-
VBM	PTSD	-0.239418873	-
VBM	Alzheimers	-0.324579979	-
VBM	Anxiety	-0.265799678	-
VBM	Asperger	0.042849784	***
VBM	Bipolar	-0.247791271	-
VBM	Dementia	-0.292036869	-
VBM	Depression	-0.016085068	-
VBM	Dyslexia	-0.183235928	-
VBM	Huntington	-0.019801802	-
VBM	Obesity	-0.163868376	-

VBM	Parkinson	-0.260021271	-
VBM	Psychosis	-0.140236316	-
VBM	Schizophrenia	-0.478664946	-
VBM	SementicDementia	-0.353671241	-
VBM	Stroke	-0.216975952	-
fMRI	ADHD	0.041031435	***
fMRI	ASD	0.194530377	***
fMRI	MCI	-0.062487733	-
fMRI	MDD	-0.038271047	-
fMRI	OCD	-0.172346708	-
fMRI	PTSD	-0.358653313	-
fMRI	Alzheimers	0.154703485	***
fMRI	Anxiety	-0.274582402	-
fMRI	Asperger	0.338388834	-
fMRI	Bipolar	-0.078530937	-
fMRI	Depression	-0.180505782	-
fMRI	Dyslexia	0.184685165	***
fMRI	Obesity	-0.006207422	-
fMRI	Parkinson	0.358561064	-
fMRI	Schizophrenia	0.181453636	-
fMRI	Stroke	0.291994311	***

Tab S43 Association of gene set in the PLS1 set for neurological and psychiatric diseases.Statistical significance was set as two-sided p < .05 with Bonferroni-Holm FDR correction from z test to linear regression model. Each * represents that this p value reached statistical significance in one test. A total of five tests were used here: linear regression model test, null-spatial permutation, null-random-gene permutation, null-brain-gene permutation and null-coexpressed-gene permutation. *** represents to reach statistical significance at least across three of these permutation tests.

Modality	Diseases	Standardized Beta	Significance
VBM	ADHD	0.081410261	-
VBM	ALS	0.015533783	***
VBM	ASD	0.054700977	***
VBM	FTD	-0.301051176	-
VBM	MCI	-0.332810675	-
VBM	MS	-0.055091427	-
VBM	OCD	-0.189167077	-
VBM	PTSD	-0.191315054	-
VBM	Alzheimers	-0.202126348	-
VBM	Anxiety	-0.229628501	-
VBM	Asperger	0.035532945	***
VBM	Bipolar	-0.103346651	-
VBM	Dementia	-0.148937602	-
VBM	Depression	0.037468338	* * *

VBM	Dyslexia	-0.160893327	-
VBM	Huntington	-0.021683156	-
VBM	Obesity	-0.102402886	-
VBM	Parkinson	-0.185468651	-
VBM	Psychosis	-0.174107843	-
VBM	Schizophrenia	-0.369432397	-
VBM	SementicDementia	-0.25001841	-
VBM	Stroke	-0.20606552	-
fMRI	ADHD	0.100682973	***
fMRI	ASD	0.195939882	***
fMRI	MCI	-0.001519181	-
fMRI	MDD	0.015077912	-
fMRI	OCD	-0.079751648	-
fMRI	PTSD	-0.266138579	-
fMRI	Alzheimers	0.182913877	-
fMRI	Anxiety	-0.199654707	-
fMRI	Asperger	0.296477956	-
fMRI	Bipolar	0.01193622	-
fMRI	Depression	-0.11808725	-
fMRI	Dyslexia	0.200262739	* * *
fMRI	Obesity	0.026653133	-
fMRI	Parkinson	0.288564256	***
fMRI	Schizophrenia	0.219173937	* * *
fMRI	Stroke	0.301984314	-

Tab S44 Association of gene set in the PLS1 set for neurological and psychiatric diseases. Statistical significance was set as two-sided p < .05 with Bonferroni-Holm FDR correction from z test to linear regression model. Each * represents that this p value reached statistical significance in one test. A total of five tests were used here: linear regression model test, null-spatial permutation, null-random-gene permutation, null-brain-gene permutation and null-coexpressed-gene permutation. *** represents to reach statistical significance at least across three of these permutation tests.

18. Disconnectivity patterns of gene sets

By using the diffusion tensor imaging technique, the disconnectivity involvement patterns in the brain structures were found to be the cross-disorder biomarkers²⁴. In this vein, the gene sets were correlated with such biomarkers from the GAMBA toolkit. We found that these genetically transcriptional expression patterns had been implicated into the specific neurological and neuropsychiatric diseases. Full findings were tabulated into the **Fig S19-20**.

Fig S19. Disconnectivity in cross-disorder biomarkers in the PLS1. The bar would be highlighted once this disease was statistically predicted by PLS1 gene set that we captured in the *cb* factor (Two-sided *z* test to linear regression model, Bonferroni-Holm correction). Source data are provided as a Source Data file.

Fig S20. Disconnectivity in cross-disorder biomarkers in the PLS2. The bar would be highlighted once this disease was statistically predicted by PLS2 gene set that we captured in the *cb* factor (Two-sided *z* test to linear regression model, Bonferroni-Holm correction). Source data are provided as a Source Data file.

19. Tissue-specific, cell type-specific and disease-specific enrichment in the PLS2

The enrichment analysis for the gene set that we captured in the PLS2 have been performed as well. We still found statistically significant enrichment into the specific tissues, cell types and diseases. Given the restrictions to the accesses on the SEA (01-11-2023), no further findings were provided for these analyses in the SEA dataset. Thus, the enrichment on neurodevelopmental periods had not yet to be probed for the gene set in the PLS2. Full results for the PLS2 have been tabulated into the **Tab. S45-47**.

GO	Description	Count	%	Log10(P)
PGB:00022	Tissue-specific: adrenal gland	5	3.80	-2.70
PGB:00008	Tissue-specific: small intestine	4	3.00	-2.60
PGB:00020	Tissue-specific: retina	4	3.00	-2.60

Tab	S45.	Tissue-spec	ific e	nrichment	in	the	PLS2	gene	set.	Ρ	values	are	estimated	by	two-side	d
cum	ulativ	ve hypergeor	netric	distributio	on to	est,	with E	Benjan	nini-H	loc	hberg I	DR	correction.	"Lo	g10(P)"	is
the	p-val	ue in log bas	e 10.	"Log10(q)	" is	the	multi	-test a	djust	ted	l p-valu	ie in	log base 1	0.		

GO	Description	Count	%	Log10(P)	
N440074	DESCARTES FETAL PANCREAS	4	2.00	2 70	
10140274	LYMPHATIC ENDOTHELIAL CELLS	4	3.00	-3.70	
M41670	TRAVAGLINI LUNG LYMPHATIC CELL	6	4.50	-3.50	
	LAKE ADULT KIDNEY C5 PROXIMAL				
M39224	TUBULE EPITHELIAL CELLS STRESS	8	6.00	-3.30	
	INFLAM				
N/2017E	MURARO PANCREAS MESENCHYMAL	10	7 50	2 10	
10129172	STROMAL CELL	10	7.50	-3.10	
M40234	DESCARTES FETAL LIVER HEPATOBLASTS	8	6.00	-2.80	
M201E0	GAO LARGE INTESTINE 24W C10	2	2 20	2 70	
10129129	ENTEROCYTE	5	2.50	2.70	
N440001	BUSSLINGER ESOPHAGEAL QUIESCENT	2	2 20	2 20	
10140001	BASAL CELLS	5	2.30	2.50	
M41652	TRAVAGLINI LUNG DIFFERENTIATING	л	2 00	2 20	
10141055	BASAL CELL	4	5.00	-2.30	
M41652	TRAVAGLINI LUNG PROXIMAL BASAL	0	6.00	2 20	
10141032	CELL	0	0.00	-2.20	
M40276	DESCARTES FETAL PLACENTA AFP ALB	Л	2 00	2 20	
10140270	POSITIVE CELLS	4	3.00	-2.20	
M20205	CUI DEVELOPING HEART C8	5	2 20	2 10	
10133303	MACROPHAGE	5	5.80	-2.10	
M39102	ZHONG PFC C3 ASTROCYTE	6	4.50	-2.10	
M39263	HU FETAL RETINA BLOOD	5	3.80	-2.10	
M39050	MANNO MIDBRAIN NEUROTYPES HPERIC	9	6.80	-2.10	
M40301	DESCARTES FETAL STOMACH MUC13	3	2 30	-2 00	
10140301	DMBT1 POSITIVE CELLS	3	2.30	-2.00	

Tab S46. Cell type-specific enrichment in the PLS2 gene set. *P* values are estimated by two-sided cumulative hypergeometric distribution test, with Benjamini-Hochberg FDR correction. "Log10(P)" is the p-value in log base 10. "Log10(q)" is the multi-test adjusted p-value in log base 10.

GO	Description	Count	%	Log10(P)
	Pregnancy			
C0852036	associated	10	7.50	-8.00
	hypertension			
C0162971	Aortic Aneurysm,	15	11.00	-7 30
01028/1	Abdominal	15	11.00	-7.50
C0431369	Dysgenesis of corpus	5	3.80	-7.10

	callosum				
C0149871	Deep Vein	10	7.50	-7.10	
	Thrombosis				
C0432072	Dysmorphic features	12	9.00	-6.20	
C0025286	Meningioma	14	11.00	-6.10	
C4529962	Fatty Liver Disease	15	11.00	-6.00	
C0025500	Mesothelioma	13	9.80	-5.90	
C0027831	Neurofibromatosis 1	10	7.50	-5.90	
C0032019	Pituitary Neoplasms	7	5.30	-5.70	
C0009806	Constipation	11	8.30	-5.50	
C0018800	Cardiomegaly	9	6.80	-5.50	
C0002895	Anemia, Sickle Cell	11	8.30	-5.40	
C0333516	Tumor necrosis	10	7.50	-5.40	
C32/1037	Nonalcoholic	11	8 30	-5 40	
05241957	Steatohepatitis	11	0.50	-5.40	
C0085412	Polycystic Kidney,	0	6 80	E 40	
00003413	Autosomal Dominant	5	0.80	-5.40	
C1525026	Neurodevelopmental	10	0.00	E 20	
C1555920	Disorders	12	9.00	-5.50	
C0221358	Long narrow head	7	5.30	-5.20	
C0085207	Gestational Diabetes	13	9.80	-5.20	
C1527390	Neoplasms, Intracranial	7	5.30	-5.20	

Tab S47. Disease-specific enrichment in the PLS2 gene set. *P* values are estimated by two-sided cumulative hypergeometric distribution test, with Benjamini-Hochberg FDR correction. "Log10(P)" is the p-value in log base 10. "Log10(q)" is the multi-test adjusted p-value in log base 10.

SUPPLEMENTAL REFERENCES

- Chen, I. H., Lin, C. Y., Zheng, X. & Griffiths, M. D. Assessing Mental Health for China's Police: Psychometric Features of the Self-Rating Depression Scale and Symptom Checklist 90-Revised. *Int J Environ Res Public Health* 17 (2020).
- 2 Lu, J. *et al.* Prevalence of depressive disorders and treatment in China: a cross-sectional epidemiological study. *The lancet. Psychiatry* **8**, 981-990 (2021).
- 3 ZUNG, W. W. K., RICHARDS, C. B. & SHORT, M. J. Self-Rating Depression Scale in an Outpatient Clinic: Further Validation of the SDS. *Arch Gen Psychiatry* **13**, 508-515 (1965).
- 4 Sydeman, S. State-Trait Anxiety Inventory. In: Zeigler-Hill, V., Shackelford, T. (eds) Encyclopedia of Personality and Individual Differences. (Springer, Cham, 2018)
- 5 Balsamo, M. *et al.* The State-Trait Anxiety Inventory: Shadows and Lights on its Construct Validity. *J Psychopathol Behav Assess* **35**, 475-486, doi:10.1007/s10862-013-9354-5 (2013).
- 6 Slotta, T., Witthöft, M., Gerlach, A. L. & Pohl, A. The interplay of interoceptive accuracy, facets of interoceptive sensibility, and trait anxiety: A network analysis. *Pers Individ Dif* **183**, 111133 (2021).
- 7 Heeren, A., Bernstein, E. E. & McNally, R. J. Deconstructing trait anxiety: a network perspective. *Anxiety, stress, and coping* **31**, 262-276 (2018).
- 8 Constantin, M. A., Schuurman, N. K. & Vermunt, J. K. A general Monte Carlo method for sample size analysis in the context of network models. *Psychol Methods* (2023).
- 9 Strauss, M. E., & Fritsch, T. Factor structure of the CERAD neuropsychological battery. *Journal of the International Neuropsychological Society : JINS*, **10**, 559–565 (2004).
- 10 Hayton, J. C., Allen, D. G., & Scarpello, V. Factor retention decisions in exploratory factor analysis: A tutorial on parallel analysis. *Organizational research methods*, **7**, 191-205 (2004).
- 11 Faskowitz, J., Esfahlani, F. Z., Jo, Y., Sporns, O. & Betzel, R. F. Edge-centric functional network representations of human cerebral cortex reveal overlapping system-level architecture. *Nat Neurosci* 23, 1644-1654 (2020).
- 12 Wang, Y., Luo, Y. L. L., Wu, M. S. & Zhou, Y. Heritability of Justice Sensitivity. J Individ Differ 43, 124-134 (2022).
- 13 Jiang, N. *et al.* Negative Parenting Affects Adolescent Internalizing Symptoms Through Alterations in Amygdala-Prefrontal Circuitry: A Longitudinal Twin Study. *Biol Psychiatry* 89, 560-569 (2021).
- 14 Arnatkeviciute, A., Markello, R. D., Fulcher, B. D., Misic, B. & Fornito, A. Toward Best Practices for Imaging Transcriptomics of the Human Brain. *Biol Psychiatry* **93**, 391-404 (2023).
- 15 Wei, Y. *et al.* Statistical testing in transcriptomic-neuroimaging studies: A how-to and evaluation of methods assessing spatial and gene specificity. *Hum Brain Mapp* **43**, 885-901 (2022).
- 16 Shen, E. H., Overly, C. C. & Jones, A. R. The Allen Human Brain Atlas: comprehensive gene expression mapping of the human brain. *Trends Neurosci* **35**, 711-714 (2012).
- 17 Dougherty, J. D., Schmidt, E. F., Nakajima, M. & Heintz, N. Analytical approaches to RNA profiling data for the identification of genes enriched in specific cells. *Nucleic Acids Res* **38**, 4218-4230 (2010).
- 18 Bringmann, L. F. et al. Psychopathological networks: Theory, methods and practice. Behav Res

Ther 149, 104011 (2022).

- 19 McNally, R. J. Network Analysis of Psychopathology: Controversies and Challenges. *Annu Rev Clin Psychol* **17**, 31-53 (2021).
- 20 Jo, Y., Faskowitz, J., Esfahlani, F. Z., Sporns, O. & Betzel, R. F. Subject identification using edge-centric functional connectivity. *NeuroImage* **238**, 118204 (2021).
- 21 Rodriguez, R. X., Noble, S., Tejavibulya, L. & Scheinost, D. Leveraging edge-centric networks complements existing network-level inference for functional connectomes. *NeuroImage* **264**, 119742 (2022).
- 22 Wang, W. *et al.* Edge-centric functional network reveals new spatiotemporal biomarkers of early mild cognitive impairment. *Brain-X* **1**, e35 (2023).
- 23 Yeo, B. T. *et al.* Functional Specialization and Flexibility in Human Association Cortex. *Cereb. Cortex* **26**, 465 (2016).
- 24 de Lange, S. C. *et al.* Shared vulnerability for connectome alterations across psychiatric and neurological brain disorders. *Nat Hum Behav* **3**, 988-998 (2019).