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Text S1 Two-stage strategy for optimization of hyperparameter through Testbed

As illustrated in our previous study?®, the weight of each loss component in the total loss function
is a key parameter (a) in the DeepMMF that needs to be determined through optimization. This
involves conducting multiple DeepMMF training sessions and testing the results to calculate both
the loss of emissions and concentrations, ultimately identifying the optimal hyperparameter values.
We introduce the simulation data as a testbed to design the optimization strategy for the selection
of hyperparameters including the weight of each loss component and sensitivity to the prior
emissions.

Dynamic selection of appropriate prior emissions and balancing the discrepancy between the
divergence from prior emissions to posterior emissions and the divergence from observed
concentration to fused concentration are crucial for solving the inversion problem in DeepMMF.
As suggested in our previous study®, using numerical model simulations as a testbed can be highly
beneficial for providing “ground truth” to validate and improve machine-learning models. This
method should be applied in various scenarios, including those established by numerical models,
even though they might not fully reflect reality.

First, in Stage 1 we examine the method of using the same prior emissions for inversion. One
scenario involves using lower prior emissions, where the concentration in a double-emission
scenario (“Hypo-2”) is used to retrieve the emissions, with the baseline emission as priori. The
other scenario involves using higher prior emissions, where the concentration in a baseline
emission scenario (“Baseline”) is used to retrieve the emissions, but with double emissions as
priori. We conducted multiple experiments with different weighting values (ranging from 0.1 to
100) for these two components in the loss function during training. Using the traditional L-curve
method to select the optimal weighting value (a) for DeepMMF, results showed significant

underestimation or overestimation (£20%) if using lower or higher prior emissions, respectively.
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Their differences will also be considerably underestimated (the testbed suggested a change ratio
of only 70%, while the ground truth is 100%).

In Stage 2, based on the optimized weighting value (B) (represented by two red points in Figure
S3a), we conducted multiple experiments with different prior emissions ranging from nearly zero
emissions (0.000001) to 2.4 times baseline emissions. Results indicate that the selection of prior
emissions significantly impacts the performance in predicting concentrations. Interestingly,
selecting double emissions as priori in Case 1 and selecting 0.9 times emissions as priori in Case
2 (green points in Figure S3b) exhibited considerably lower biases in predicting concentrations
compared to the original cases (red points in Figure S3b). Both scenarios also achieved results
closer to the ground truth, with the change ratio significantly reduced (estimated at 111%, closer
to the ground-truth of 100%). Therefore, dynamically selecting prior emissions for estimating
changes is crucial, particularly for this study when substantial changes are expected from 2019 to

2020 due to the COVID-19.
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Text S2 Two-stage strategy for optimization of hyperparameter in 2019 and 2020

Following Stage 1, which involved optimizing the hyperparameters for weighting the two loss
components, we conducted multiple experiments with different weighting values ranging from 0.1
to 100. The results indicate that all experiments lie on the L-curve, showing a decrease in the
divergence from observed concentration to fused concentration as the divergence from prior
emissions to posterior emissions increases. The optimal configuration, identified at the turn-around
point, occurs with a weight of 0.7 (B) of the base prior emission, as indicated by the red points in
Figure S10a. This suggests that further adjustments to the prior emissions provide only marginal
benefits in reducing biases in concentration.

We applied the same weighting value (0.7) but with different prior emissions during VAE training
in Stage 2, using various ratios of the 2019 NEI prior emissions, ranging from 0.7 to 1.4 times.
The divergence from observed concentration to fused concentration in each case is compared in
Figure S10b. For 2019, using the baseline emission as the prior emission results in the smallest
discrepancy from the observation, which is also the optimized prior emission. In contrast, for 2020,
using 0.8 times the baseline emission results in the smallest discrepancy from the observation,
which is lower than the baseline emission, suggesting that a smaller prior emission should be used

for 2020.
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Figure S1. Model structure of DeepCTM, same as Li and Xing (2024), we use convLSTM
model to predict the hourly concentrations with the time-series of meteorological factors
observed over a 24-hour period, as well as time-independent geographical features, and daily
emission data; In adherence to physical laws, we feed the initial condition into the model twice
to account for its role in atmospheric physical and chemical processes and its function as a
modulatable baseline to facilitate the training process. Furthermore, we’ve designed a dual-
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measurements at 24-hour intervals, to constrain the concentration and mitigate the issue of error
accumulation)
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information is used to predict the 24-hour average emissions between these two time points
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m(b) point-to-poriwnt comparison ‘
Figure S4. The performance of DeepCTML1 in estimating surface NO2 concentration with
emission and meteorology in a training example (January 6, 0 — 24 hour)
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Figure S14. Comparison of simulated, observed, and fused ground and column density of NO-
and its ground-to-column ratio (GCr) across major US Cities (5/6)
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Figure S14. Comparison of simulated, observed, and fused ground and column density of NO>

and its ground-to-column ratio (GCr) across major US Cities
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