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Supplementary methods 

 

Text S1. Model fitting algorithm 
 

To avoid fit instability caused by the correlation of parameters d and p [1], [2], an initial fit was done 

using the ‘differential evolution’ method with randomized initial parameters to approximate the 

globally optimal parameters. The best set of parameters served as starting point for the ‘Nelder-Mead’ 

minimization algorithm. If fitting instability was still observed, the complexity of the model was 

reduced by setting N0 to the average of the measured cfu at time point zero. The fits of equations (2) 

and (3) to the data were ranked based on the AIC corrected for small sample size (AICc), which takes 

into account the goodness of fit and the parsimony of the model [3]. The robustness of the fitting 

method to measurement noise was assessed in-depth (Figure S3, Text S2). The following data points 

were not considered for model fits: zero counts due to unknown uncertainty in those measurements. 

Data points which increased more than 3-fold in comparison to the previous timepoint (6 of 316 non-

zero data points [1.9%]) and data with only a single replicate measurement (2 of 316 non-zero data 

points [0.63%]) where not considered due to high chance of resulting from experimental errors. 

 

Text S2. Derivation of Weibull model for chemical inactivation  
 

Killing kinetics are often interpreted as first-order mortality kinetics, i.e. exponential decay at a fixed 

rate. Alternatively, they can be seen as the cumulative function of the distribution of tolerance times 

of a bacterial population, where the survival of an individual cell is determined by its tolerance 

phenotype, i.e. the time for which it can survive a lethal stress [2], [4], [5]. This interpretation 

appreciates the phenotypic heterogeneity in bacterial populations. It also allows to model killing 

kinetics that are not well fitted by first-order kinetics, without the need to invoke ad-hoc parameters 

to explain frequently observed deviations from log-linearity, such as downward or upward curvatures 

(Figure S2). To model the time-kill kinetics of E. coli exposed to lethal concentrations of chlorhexidine 

(CHX), benzalkonium chloride (BAC), 2-propanol (ISO), didecyldimethylammonium chloride (DDAC), 

hydrogen peroxide (H2O2) and glutaraldehyde (GTA), we considered a model based on the cumulative 

survival function of the sum of two mixed Weibull distributions [2]. The Weibull distribution can fit a 

wide range of kinetics due to its flexibility provided by its shape parameter. The two distributions 

describe the tolerance times of two populations, i.e. the major, susceptible population and a minor, 

more tolerant persister subpopulation. The model describes the number of survivors N consisting of 

the two subpopulations as function of time t as: 
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where N0 is the inoculum size in cfu/mL, a is the logit transformation of the initial fraction f of the 

susceptible population 1 (𝑎 = log
f

1−f
), p is a shape parameter and d1 and d2 are parameters associated 

to the tolerance of the populations. Specifically, they are the treatment times for the first decimal 

reduction of population 1 (susceptible) and 2 (persister), respectively. We use the simplified model by 

Coroller et al. which sets the shape parameter p to be the same for both Weibull distributions [2]. The 

shape parameter p is related to the heterogeneity in the population via the coefficient of variation (CV 

= standard deviation / mean) as follows: if p = 1, CV = 1; if p > 1, CV < 1; and if p < 1, CV > 1. By setting 

p = 1, the model simplifies to the well-known model commonly used in antibiotic persistence research 

[6], which can also be interpreted as the sum of two exponential distributions: 
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where k1 and k2 are the rate parameters at which each subpopulation dies, with 𝑘𝑖 =
ln(10)

di
. When only 

one population is present, i.e. fraction f = 1, the bimodal equations (2) and (3) simplify to unimodal 

equations:  
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and with p = 1: 
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Equation (S1), and its special cases equations (S2) – (S4), can be used to fit a wide range of inactivation 

kinetics, including those that deviate from the idealistic log-linear decrease, as exemplified in Figure 

S2. The tolerance time distributions obtained from time kill kinetics are straightforwardly used to 

sample survival times for statistical modelling approaches [7].  



 

Text S3. Robustness of the fitting algorithm to sample variability and parameter 

dependence 
 

To assess the susceptibility of the fitting algorithm to variation between replicates, synthetic datasets 

with different levels of variability were generated and fitted with the algorithm. The data was 

generated from the uni- or bimodal model (equation (2) and (3)) with errors sampled from a log-normal 

distribution with mean 0 and standard deviation ranging from 0 – 0.6 in steps of 0.05, resulting in 

average coefficients of variation (CV) of the data between 0.12 – 2.24 (Figure S3 A). For each CV, 15 

datasets with each 6 replicates were generated and fitted by the algorithm. The number of successes 

in identifying the correct model were then tested against the null hypothesis that model selection is 

random, i.e. the chance to pick the correct model is 50% or lower, using a binomial test. Under the 

given assumptions, significance to a 95% level (p < 0.05) is achieved when the correct model is chosen 

in at least 12/15 cases. The average CV per condition over all time points in our experimental data 

ranged from 0.22 – 1.05, which is well within the range where the algorithm reliably selects the correct 

model (Figure S3 A). 

An important property of Weibull distributions is the dependence between the parameters p and d1 in 

equations (S1)/(1) and (S3)/(3), which can result in instabilities when determining the correct 

parameter values [1], [2]. For most of our data this was not the case, and the optimal values could be 

determined by the algorithm reliably. We assessed the ability of the algorithm to identify the optimal 

values of p and d1 by fixing one of the parameters while varying the value of the other and comparing 

the goodness of fit via the AIC for the dataset with the highest variation between replicates, CHX 

(Figure 1 C). The algorithm was able to identify the parameter value which resulted in the best fit of 

the model to the data as determined by the minimal χ2 (Figure S3 B, C) with reasonable parameter 

uncertainties (Table S1). 

  



Supplementary figures 
 

 

 

Figure S1. Prolonged time-kill kinetics of chlorhexidine are not caused by exhaustion of disinfectant from the medium. 

Biological activity of chlorhexidine is maintained beyond a 20-minute time-kill assay, showing that the time-kill kinetics are 

not caused by exhaustion of the substance. The vertical dotted line indicates the time when cells from the original culture 

were spiked into the killing assay. Number of biological replicates n = 3. Blue and orange symbols indicate the geometric 

mean, error bars indicate the 95% C.I. obtained by bootstrapping. Small grey symbols are datapoints of individual 

experiments. Black triangles on the x-axis indicate when zero-counts were present. The dashed line and the dash-dotted lines 

are fits of single Weibull distributions to the data. The shaded areas around the fits indicate the 95 % C.I. of the model fit, 

excluding values with zero counts. The grey shaded area at the bottom indicates the detection limit.  

  



 

Figure S2. Schematic depiction of different inactivation kinetics as generated by Weibull distributions. Disinfection kinetics 

can be interpreted as the survival function (left panel) of a Weibull distribution, which can be represented as the probability 

density function (right panel), highlighting the distribution of individual tolerance times within the bacterial population. (A) 

The shape and the spread of the tolerance time distributions depends on the shape parameter p. For the unimodal case p = 

1 corresponds to a coefficient of variation (CV) = 1; p > 1 corresponds to a CV < 1; and p < 1 corresponds to a CV > 1. (B) 

Examples of bimodal distributions indicating the presence of two populations, i.e. the fraction f of susceptible cells is smaller 

than 1. The bimodal distribution (blue line) is the sum of two unimodal distributions (orange and green lines) with fractions f 

and 1-f, according to equation (2). The shape parameter p is the same for the distributions of population 1 and 2, as in [2]. 

CDF, cumulative distribution function; PDF, probability density function. 

 

  



 

 

Figure S3: The fitting algorithm robustly identifies the correct model and the optimal value for correlated parameters d1 

and p. (A) Coefficient of variation (CV) in synthetic data versus the p-value of the algorithm to be better than chance at 

selecting the correct model (see methods for details). The black line indicates a p-value of 0.05. Colored dashed lines indicate 

the average CV per time point for different experiments in Figure 1 in the main text. (B, C) The fitting algorithm is able to 

identify the optimal values for the correlated parameters d1 and p. The parameters (B) d1 and (C) p were fixed to different 

values and the best fit was computed. The goodness of fit (χ2) is plotted versus the value to which the parameter was fixed 

(yellow symbols). The best fit value from Table S1, when both parameters were varied freely, is indicated in red.  

 

 

  



Supplementary tables 
 

Table S1. Parameter values of the best fits of the Weibull distribution to the data. Errors indicate the 
standard error of the estimated parameters. 

 Model parameters  

Substance N0
a

 

[cfu/mL] 

Pb d1c 

[min] 

d2d 

[min] 

ae  Best 

fitf 

AIC 

weightg 

(evidence 

ratioh) 

Application 

concentration 

(from [8]) 

Hydrogen 

peroxide 

(H2O2)  

1.31  

± 0.16 × 109 

3.03 

± 0.24 

2.60  

± 0.09 

n.a. n.a. Single 

Weibull  

0.84 

(5.16) 

7.35 – 10290 mM 

Glutaraldehyde 

(GTA)  

9.21  

± 1.27 × 108 

1.76  

± 0.1 

0.90  

± 0.05 

n.a. n.a. Single 

Weibull  

0.935  

(14. 46) 

0.0025 – 2 % 

Chlorhexidine 

(CHX)  

1.8  

± 1.04 × 109 

0.41  

± 0.06 

0.3  

± 0.17 

n.a. n.a. Single 

Weibull 

0.72 

(2.57) 

500 – 

20000 µg/mL 

Benzalkonium 

chloride (BAC)  

5.16  

± 1.88 × 108 

1.03  

± 0.20 

2.52  

± 0.44 

14.99  

± 3.72 

2.52  

± 0.29 

Double 

Weibull 

0.9998 

(4783.97) 

60 – 20000 µg/mL 

Didecyl-

dimethyl-

ammonium 

chloride 

(DDAC) 

3.02  

± 0.85 × 108 

1.35  

± 0.16 

3.32  

± 0.4 

13.69  

± 4.65 

3.87  

± 0.58 

Double 

Weibull 

0.999 

(65659.64) 

250 – 5000 µg/mL 

Isopropanol 

(ISO) 

1.47  

± 0.51 × 109 

1.33  

± 0.21 

1.68  

± 0.27 

4.45  

± 0.98 

3.12  

± 0.48 

Double 

Weibull 

0.996  

(257.3) 

70 % 

Parameters from equation (2), where aN0 is the initial cell density, bp is the shape parameter, cd1 and dd2 are the duration 

until first decadic reduction of the susceptible and persister population, respectively, and ea is the logit transformation of the 

initial fraction of the susceptible population. n.a., not applicable. f Best fit either by equation (2) with Double Weibull or 

equation (3) with Single Weibull. g The AIC weight gives the probability of a model to be the best out of all tested models. h 

The evidence ratio of the best model over the second best model. The evidence ratio gives the relative likelihood, i.e. how 

much more likely the best model is over the second best model. 
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