Palladium-catalyzed oxidation of β-C(sp³)-H bond of primary alkylamines through a rare four-membered palladacycle intermediate

Bo Su^a, Ala Bunescu^{a‡}, Yehao Qiu^{a‡}, Stephan J. Zuend^b, Martin Ernst^c, and John F. Hartwig^a*

a. Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States

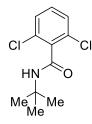
b. BASF Corp., 46820 Fremont Boulevard, Fremont, California 94538, United States

c. BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany

[‡] contributed equally

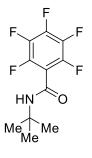
jhartwig@berkeley.edu

Supporting Information


Table of Contents

1.	Methods and Materials	2
2.	Synthesis of tert-Butyl Alkylamine Derivatives	3
<i>3</i> .	H/D Exchange Experiments	7
4.	Investigation of Effect of the Ligand	7
5.	Synthesis of Salicyladehyde Imines	8
6.	Acetoxylation of the β-C-H Bond:	15
7.	Removal and Recovery of the Directing Group	22
8.	Mechanistic Investigation	23
9.	Crystallographic Information	26
10.	Computational Details	30
<i>11</i> .	NMR Spectrum	49
<i>12</i> .	References	97

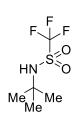
1. Methods and Materials


All air-sensitive manipulations were conducted in an N₂-filled glove-box. All solvents and reagents were used as received unless otherwise noted. Reaction temperatures refer to temperatures of an aluminum heating block, which were controlled by an electronic temperature modulator. All catalytic reactions were set up in an N₂-filled dry box with ovendried glassware and were stirred with Teflon-coated magnetic stirring bars. Purification by column chromatography was performed using a Teledyne Isco CombiFlash[®] R_f system with Redi*Sep* R_f GoldTM columns or manually loaded columns. ¹H and ¹³C NMR spectra were recorded on Bruker AVQ-400, AV-500, and AV-600 spectrometers with ¹³C operating frequencies of 100 MHz, 125 MHz, and 150 MHz, respectively. ¹⁹F NMR spectra were recorded on a Bruker AVQ-400 spectrometer with a ¹⁹F operating frequency of 376 MHz. Chemical shifts (δ) are reported in ppm relative to the residual solvent signal (CDCl₃: 7.26 ppm for ¹H NMR and 77.2 ppm for ¹³C NMR). High-resolution mass spectral data were obtained from the QB3/Chemistry Mass Spectrometry Facility at the University of California Berkeley and the Lawrence-Berkeley National Laboratory Catalysis Center.

2. Synthesis of tert-Butyl Alkylamine Derivatives

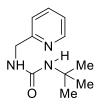
N-(tert-butyl)-2,6-dichlorobenzamide (1a-4)

To a solution of *tert*-butyl amine (0.73 g, 10 mmol) and Et₃N (1.3 g, 13 mmol) in DCM (10 mL) was added 2,6-dichlorobenzoyl chloride (2.4 g, 12 mmol) dropwise at 0 °C. The reaction mixture was warmed to room temperature and stirred for 8-12 h. The mixture was diluted with DCM (50 mL), washed with an aqueous solution of HCl (2.0 M, 10 mL), water (20 mL), and then brine (10 mL). The organic layer was dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 80:20) to give compound **1a-4** as a white solid (1.9 g, 78%). ¹H NMR (600 MHz, CDCl₃) δ 7.29 (d, *J* = 8.2 Hz, 2H), 7.21 (t, *J* = 8.2 Hz, 1H), 5.50 (s, 1H), 1.48 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.3, 136.7, 132.1, 130.2, 127.9, 52.5, 28.6; **HRMS** (ESI+) calcd for C₁₁H₁₄Cl₂NO [M+H]⁺ 246.0447, found 246.0449.

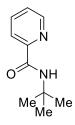

N-(tert-butyl)-2,3,4,5,6-pentafluorobenzamide (1a-5)

To a solution of *tert*-butyl amine (0.88 g, 12 mmol) and Et₃N (1.2 g, 12 mmol) in DCM (10 mL) was added pentafluorobenzoyl chloride (2.3 g, 10 mmol) dropwise at 0 °C. The reaction mixture was warmed to room temperature and stirred for 8-12 h. The mixture was diluted with DCM (50 mL), washed with an aqueous solution of HCl (2.0 M, 10 mL), water (20 mL), and then brine (10 mL). The organic layer was dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 80:20) to give compound **1a-5** as a white solid (1.5 g, 57%). ¹H NMR (500 MHz, CDCl₃) δ 5.69 (brs, 1H), 1.46 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 156.3, 143.8 (d br, *J* = 251.5 Hz), 141.9 (d br, *J* = 259.4 Hz), 137.5 (d br, *J* = 256.0 Hz), 112.7 (s, br), 53.2, 28.6; ¹⁹F NMR (565 MHz, CDCl₃) δ -141.6 (dd, *J* = 21.6, 6.6 Hz,

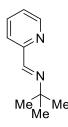
2H), -152.09 (t, J = 20.7 Hz, 1H), -160.3–160.6 (m, 2H); **HRMS** (ESI+) calcd for C₁₁H₁₁F₅NO [M+H]⁺ 268.0755, found 268.0758.


N-(tert-butyl)-2-methylpropane-2-sulfinamide (1a-7)

To a solution of *tert*-butyl amine (0.88 g, 12 mmol), Et₃N (1.2 g, 12 mmol), and catalytic amount of DMAP in DCM (10 mL) was added *tert*-butylsulfinyl chloride (1.4 g, 10 mmol) dropwise at room temperate. The reaction mixture was warmed to room temperature and stirred for 8-12 h. The mixture was diluted with DCM (50 mL), washed with aqueous solution of HCl (2.0 M, 10 mL), water (20 mL), and then brine (10 mL). The organic layer was dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 70:30) to give compound **1a-7** as a white solid (0.82 g, 46%). ¹H NMR (500 MHz, CDCl₃) δ 2.98 (brs, 1H), 1.28 (s, 9H), 1.17 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 55.2, 53.2, 31.1, 22.5; **HRMS** (ESI+) calcd for C₈H₂₀NOS [M+H]⁺ 178.1260, found 178.1260.


N-(tert-butyl)-1,1,1-trifluoromethanesulfinamide (1a-8)

To a solution of *tert*-butyl amine (0.88 g, 12 mmol) and Et₃N (1.2 g, 12 mmol) in DCM (10 mL) was added trifluoromethanesulfonic anhydride (2.8 g, 10 mmol) dropwise at -78 °C. The reaction mixture was warmed to room temperature and stirred for 8-12 h. The mixture was diluted with DCM (50 mL), washed with an aqueous solution of HCl (2.0 M, 10 mL), water (20 mL), and then brine (10 mL). The organic layer was dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 70:30) to give compound **1a-8** as a white solid (1.7 g, 90%). ¹H NMR (500 MHz, CDCl₃) δ 4.75 (brs, 1H), 1.43 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 119.2 (q, *J* = 320.9 Hz), 58.1, 30.3; ¹⁹F NMR (470 MHz, CDCl₃) δ -77.9; **HRMS** (ESI+) calcd for C₃H₉F₃NO₂S [M-H]⁻ 204.0312, found 204.0314.

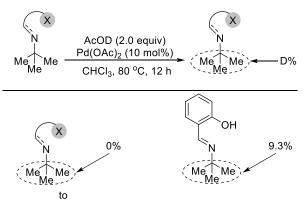

1-(tert-Butyl)-3-(pyridin-2-ylmethyl)urea (1a-12)

To a solution of *tert*-butyl isocyanate (0.99 g, 10 mmol) and 2-picolyl amine (1.1 g, 10 mmol) in DCM (10 mL) was added *N*,*N*-diisopropylethylamine (2.6 g, 20 mmol) dropwise at room temperature. The reaction mixture was stirred at room temperature overnight. The mixture was diluted with DCM (50 mL), washed with water (20 mL), and then brine (10 mL). The organic layer was dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 50:50) to give compound **1a-12** as a white solid (1.2 g, 59%). ¹H NMR (600 MHz, CDCl₃) δ 8.50 (d, *J* = 4.9 Hz, 1H), 7.64 (t, *J* = 7.8 Hz, 1H), 7.27 (d, *J* = 7.8 Hz, 1H), 7.17 (t, *J* = 7.8 Hz, 1H), 5.50 (s, 1H), 4.71 (s, 1H), 4.45 (s, 2H), 1.33 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 158.0, 157.5, 148.7, 136.7, 122.1, 122.0, 50.4, 45.4, 29.5; **HRMS** (ESI+) calcd for C₁₁H₁₈N₃O [M+H]⁺ 208.1444, found 208.1446.

N-(tert-butyl)picolinamide (1a-13)

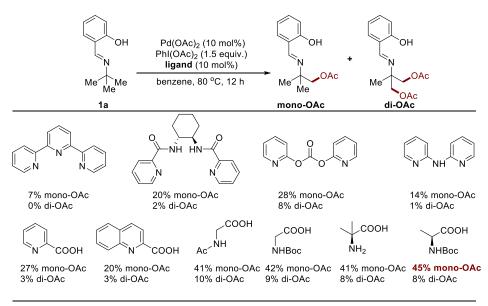
To a solution of *tert*-butyl amine (2.1 g, 30 mmol) and magnesium dibromide (1.8 g, 12 mmol) in MeCN (10 mL) was added methyl pyridine-2-carboxylate (1.4 g, 10 mmol). The reaction mixture was stirred at room temperature overnight. The mixture was diluted with DCM (50 mL), washed with water (20 mL), and then brine (10 mL). The organic layer was dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 50:50) to give compound **1a-13** as a white solid (1.0 g, 58%). ¹H NMR (600 MHz, CDCl₃) δ 8.51 (d, *J* = 4.7 Hz, 1H), 8.17 (d, *J* = 7.8 Hz, 1H), 8.00 (s, 1H), 7.83 (t, *J* = 7.8 Hz, 1H), 7.39 (dd, *J* = 7.6, 4.8 Hz, 1H), 1.49 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.4, 150.8, 147.7, 137.3, 125.8, 121.6, 50.8, 28.7; **HRMS** (ESI+) calcd for C₁₀H₁₅N₂O [M+H]⁺ 179.1179, found 179.1180.

N-tert-butyl-1-(pyridin-2-yl)methanimine (1a-14)

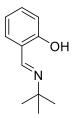

To a 20-mL vial were added 2-pyridinecarboxaldehyde (0.54 g, 5.0 mmol), *tert*-butylamine (0.36 g, 5.0 mmol), and water (1 mL). The reaction mixture was stirred overnight at room temperature, diluted with DCM (20 mL), and washed with brine (10 mL). The organic phase was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to give compound **1a-14** as a yellow oil (0.71 g, 88%). ¹H NMR (600 MHz, CDCl₃) δ 8.63 (d, *J* = 6.9 Hz, 1H), 8.37 (s, 1H), 8.02 (d, *J* = 7.9 Hz, 1H), 7.73 (t, *J* = 6.8 Hz, 1H), 7.38–7.26 (m, 1H), 1.32 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 156.4, 155.5, 149.2, 136.5, 124.4, 120.9, 57.8, 29.6; **HRMS** (ESI+) calcd for C₁₀H₁₅N₂ [M+H]⁺ 163.1230, found 163.1223.

N-tert-butyl-1-(quinolin-8-yl)methanimine (1a-15)

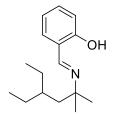
To a 20-mL vial were added 8-quinolinecarboxaldehyde (0.80 g, 5.0 mmol), tert-butylamine (5 mL), and 4Å molecular sieves. The reaction mixture was stirred overnight at room temperature and then filtered through a short pad of Celite, eluting with EA (10 mL). The filtrate was concentrated in *vacuo* to give compound **1a-15** as a yellow oil (0.75 g, 71%). ¹H NMR (600 MHz, CDCl₃) δ 9.65 (s, 1H), 8.97 (dd, J = 4.2, 1.8 Hz, 1H), 8.43 (dd, J = 7.2, 1.5 Hz, 1H), 8.17 (dd, J = 8.3, 1.8 Hz, 1H), 7.87 (dd, J = 8.1, 1.5 Hz, 1H), 7.60 (ddd, J = 8.0, 7.2, 0.6 Hz, 1H), 7.43 (dd, J = 8.3, 4.1 Hz, 1H), 1.40 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 153.4, 149.9, 146.9, 136.2, 134.2, 129.8, 128.2, 127.2, 126.6, 121.1, 58.0, 30.0; **HRMS** (ESI+) calcd for C₁₄H₁₇N₂ [M+H]⁺ 213.1386, found 213.1395.


3. H/D Exchange Experiments

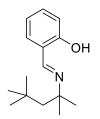
Procedure for the H/D exchange experiment: In a 4-mL screw-top vial, compound **1a-n** (**n=1-16**) (0.10 mmol) was added to a solution of Pd(OAc)₂ (2.2 mg, 10 mmol%) and AcOD (12 mg, 0.20 mmol) in CHCl₃ (1.0 mL). The vial was capped, and the reaction mixture was stirred at 80 °C for 12 h. After cooling to room temperature, the crude reaction mixture was analyzed by ²H NMR spectroscopy using CDCl₃ as internal standard. No deuterium incorporation was observed for compounds **1a-1** to **1a-15**. For compound **1a-16**, 9.3% of the hydrogen atoms in the *tert*-butyl group were deuteriated.


4. Investigation of Effect of the Ligand

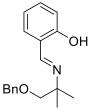
In a 4-mL screw-top vial, compound **1a** (0.10 mmol) was added to a solution of $Pd(OAc)_2$ (2.2 mg, 10 mol%), $PhI(OAc)_2$ (48 mg, 1.5 equiv), and ligand (10 mol%) in benzene (1.0 mL). The vial was capped, and the reaction mixture was stirred at 80 °C for 12 h. After cooling to room temperature, the crude reaction mixture was analyzed by GC using dodecane as internal standard.


Yields refers to GC yields using dodacane as the internal standard

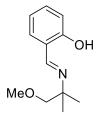
5. Synthesis of Salicyladehyde Imines


2-((tert-butylimino)methyl)phenol (1a) (General Procedure A):

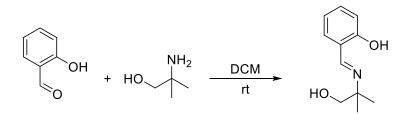
To a solution of salicylaldehyde (1.22 g, 10.0 mmol) in DCM (5 mL) was added *tert*-butyl amine (0.767 g, 10.5 mmol) in one-portion. The reaction mixture was stirred at room temperature for 3 h. The reaction mixture was diluted with DCM (50 mL) and washed with brine. The organic layer was dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* to give compound **1a** as a yellow oil (1.70 g, 96%). ¹H NMR (500 MHz, CDCl₃) δ 14.39 (s, 1H), 8.36 (s, 1H), 7.35–7.25 (m, 2H), 6.97 (dd, J = 8.4, 1.2 Hz, 1H), 6.87 (td, J = 7.5, 1.1 Hz, 1H), 1.37 (s, 9H); ¹³C NMR (176 MHz, CDCl₃) δ 162.1, 159.6, 132.0, 131.3, 118.8, 118.1, 117.3, 56.9, 29.6; **HRMS** (ESI+) calcd for C₁₁H₁₆NO [M+H]⁺ 178.1226, found 178.1220.


(E)-2-(((4-ethyl-2-methylhexan-2-yl)imino)methyl)phenol (1b)

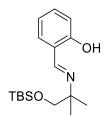
Following General Procedure A, 4-ethyl-2-methylhexan-2-amine (0.28 g, 2.0 mmol) and salicylaldehyde (0.29 g, 2.4 mmol) were allowed to react. The reaction mixture was stirred for 2 h, diluted with DCM (30 mL), and washed with brine (10 mL). The organic layer was dried over Na₂SO₄, filtered, and concentrated in *vacuo*. The crude product was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 90:10) to give compound **1b** as a yellow oil (0.28 g, 56%). ¹H NMR (500 MHz, CDCl₃) δ 14.39 (s, 1H), 8.33 (s, 1H), 7.29 (ddd, J = 10.6, 7.5, 1.5 Hz, 2H), 6.97 (d, J = 8.3 Hz, 1H), 6.87 (td, J = 7.5, 1.1 Hz, 1H), 1.57 (d, J = 4.0 Hz, 2H), 1.33 (s, 6H), 1.41–1.26 (m, 5H), 0.83 (t, J = 7.1 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 162.1, 159.7, 132.0, 131.3, 118.8, 118.0, 117.3, 60.0, 47.1, 36.4, 27.6, 27.2, 10.8; **HRMS** (ESI+) calcd for C₁₆H₂₆NO [M+H]⁺ 248.2009, found 248.2018.


2-(((2,4,4-trimethylpentan-2-yl)imino)methyl)phenol (1c)

Following General Procedure A, salicylaldehyde (0.61 g, 5.0 mmol) and 2,4,4-trimethylpentan-2-amine (0.65 g, 5.0 mmol) were allowed to react. The crude product was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 90:10) to give compound **1c** as a yellow oil (1.0 g, 76%). ¹H NMR (500 MHz, CDCl₃) δ 14.52 (s, 1H), 8.34 (s, 1H), 7.42–7.24 (m, 2H), 6.96 (d, *J* = 8.3 Hz, 1H), 6.87 (td, *J* = 7.4, 1.1 Hz, 1H), 1.75 (s, 2H), 1.40 (s, 6H), 0.98 (s, 9H); ¹³C NMR (176 MHz, CDCl₃) δ 162.2, 159.5, 132.0, 131.3, 118.9, 118.0, 117.4, 60.6, 56.3, 32.0, 31.7, 29.5; **HRMS** (ESI+) calcd for C₁₅H₂₄NO [M+H]⁺ 234.1852, found 234.1855.

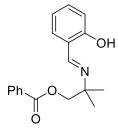

(E)-2-(((1-(benzyloxy)-2-methylpropan-2-yl)imino)methyl)phenol (1d)

To a solution of 1-(benzyloxy)-2-methylpropan-2-amine (0.18 g, 1.0 mmol) and 4Å molecular sieves (0.3 g) in DCM (5 mL) was added salicylaldehyde (0.12 g, 1.0 mmol) in one-portion. The reaction mixture was stirred for 2 h and filtered through a short pad of Celite, rinsing with DCM (10 mL). The filtrate was concentrated in *vacuo* to give compound **1d** as a yellow oil (0.24 g, 86%). ¹H NMR (400 MHz, CDCl₃) δ 14.19 (s, 1H), 8.40 (s, 1H), 7.39–7.21 (m, 7H), 6.95 (d, *J* = 8.4 Hz, 1H), 6.87 (t, *J* = 7.4 Hz, 1H), 4.54 (s, 2H), 3.46 (d, *J* = 1.2 Hz, 2H), 1.35 (s, 6H); ¹³C NMR (176 MHz, CDCl₃) δ 161.9, 161.8, 138.3, 132.1, 131.5, 128.4, 127.6, 127.5, 118.9, 118.2, 117.3, 77.8, 73.4, 60.0, 24.5; **HRMS** (ESI+) calcd for C₁₈H₂₂NO₂ [M+H]⁺ 284.1645, found 284.1654.

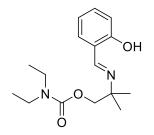

(E)-2-(((1-methoxy-2-methylpropan-2-yl)imino)methyl)phenol (1e)

Following General Procedure A, 1-methoxy-2-methylpropan-2-amine (0.25 g, 2.5 mmol) and salicylaldehyde (0.36 g, 3.0 mmol) were allowed to react. The reaction mixture was stirred for 2 h, diluted with DCM (30 mL), and washed with brine (10 mL). The organic layer was dried over Na₂SO₄, filtered, and concentrated in *vacuo*. The crude product was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 90:10) to give compound **1e** as a yellow oil (0.49 g, 95%). ¹H NMR (500 MHz, CDCl₃) δ 14.20 (s, 1H), 8.40 (s, 1H), 7.35–7.26 (m, 2H), 6.96 (dd, *J* = 8.2, 1.2 Hz, 1H), 6.88 (td, *J* = 7.6, 1.2 Hz, 1H), 3.40 (s, 2H), 3.38 (s, 3H), 1.35 (s, 6H); ¹³C NMR (176 MHz, CDCl₃) δ 161.9, 161.6, 132.1, 131.5, 118.9, 118.2, 117.2, 80.7, 59.9, 59.5, 24.4; **HRMS** (ESI+) calcd for C₁₂H₁₈NO₂ [M+H]⁺ 208.1332, found 208.1339.

2-(((1-hydroxy-2-methylpropan-2-yl)imino)methyl)phenol

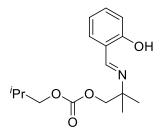

To a solution of 2-methyl-2-amino-1-propanol (1.78 g, 20.0 mmol) in DCM (10 mL) was added salicylaldehyde (2.44 g, 20.0 mmol) in one-portion. The reaction mixture was stirred at room temperature for 2 h. The reaction mixture was diluted with DCM (50 mL) and dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* to give the hydroxyl imine as a yellow solid (3.74 g, 97%). ¹H NMR (500 MHz, CDCl₃) δ 13.87 (brs, 1H), 8.40 (s, 1H), 7.35–7.25 (m, 2H), 6.94 (dd, J = 8.3, 1.1 Hz, 1H), 6.88 (td, J = 7.5, 1.1 Hz, 1H), 3.61 (s, 2H), 1.61 (brs, 1H), 1.33 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 162.3, 161.6, 132.4, 131.6, 118.8, 118.4, 117.2, 71.2, 61.0, 23.6; **HRMS** (ESI+) calcd for C₁₁H₁₆NO₂ [M+H]⁺ 194.1176, found 194.1178.

2-(((1-((tert-butyldimethylsilyl)oxy)-2-methylpropan-2-yl)imino)methyl)phenol (1f)

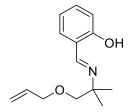

To a solution of 2-(((1-hydroxy-2-methylpropan-2-yl)imino)methyl)phenol (0.58 g, 3.0 mmol) and TBSCl (0.45 g, 3.0 mmol) in DCM (15 mL) was added imidazole (0.25 g, 3.6 mmol). The reaction mixture was stirred at room temperature overnight, diluted with DCM (30 mL), washed with water (20 mL), and then brine (10 mL). The organic layer was dried over Na_2SO_4 and filtered. The filtrate was concentrated in *vacuo*, and the residue was purified by flash column

chromatography on silica gel (hexane : EA 100:0 \rightarrow 90:10) to give compound **1f** as a yellow oil (0.59 g, 64%). ¹H NMR (500 MHz, CDCl₃) δ 14.21 (s, 1H), 8.37 (s, 1H), 7.32–7.26 (m, 1H), 7.24 (dd, *J* = 7.6, 1.7 Hz, 1H), 6.93 (d, *J* = 8.3 Hz, 1H), 6.84 (td, *J* = 7.5, 1.1 Hz, 1H), 3.52 (s, 2H), 1.29 (s, 6H), 0.86 (s, 9H), 0.00 (s, 6H); ¹³C NMR (176 MHz, CDCl₃) δ 162.1, 161.9, 132.0, 131.4, 118.9, 118.1, 117.3, 70.5, 60.7, 25.8, 23.9, 18.2, -5.6; **HRMS** (ESI+) calcd for C₁₇H₃₀NO₂Si [M+H]⁺ 308.2040, found 308.2069.

2-((2-hydroxybenzylidene)amino)-2-methylpropyl benzoate (1g)

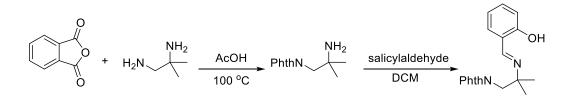

To a solution of 2-(((1-hydroxy-2-methylpropan-2-yl)imino)methyl)phenol (0.38 g, 2.0 mmol) and benzoic ahnydride (0.45 g, 2.0 mmol) in DCM (5 mL) was added DMAP (0.26 g, 2.1 mmol) at room temperature. The reaction mixture was stirred overnight, diluted with DCM (30 mL), washed with water (20 mL) and then brine (10 mL). The organic layer was dried over Na₂SO₄ and filtered. The filtrate was concentrated in *vacuo*, and the residue was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 90:10) to give compound **1g** as a yellow oil (0.48 g, 80%). ¹H NMR (500 MHz, CDCl₃) δ 13.76 (s, 1H), 8.49 (s, 1H), 8.05 (dd, J = 8.4, 1.4 Hz, 2H), 7.76–7.54 (m, 1H), 7.46 (dd, J = 8.4, 7.2 Hz, 2H), 7.41–7.30 (m, 2H), 6.99 (dd, J = 8.4, 1.2 Hz, 1H), 6.91 (td, J = 7.6, 1.2 Hz, 1H), 4.39 (s, 2H), 1.47 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 166.3, 161.9, 161.3, 133.1, 132.3, 131.6, 130.0, 129.6, 128.5, 118.9, 118.5, 117.2, 71.6, 59.4, 24.4; **HRMS** (ESI+) calcd for C₁₈H₂₀NO₃ [M+H]⁺ 298.1438, found 298.1438.

2-((2-hydroxybenzylidene)amino)-2-methylpropyl diethylcarbamate (1h)


To a solution of 2-(((1-hydroxy-2-methylpropan-2-yl)imino)methyl)phenol (0.38 g, 2.0 mmol) and *N*,*N*-diisopropylethylamine (0.29 g, 2.2 mmol) in DCM (5 mL) were added diethylcarbamic chloride (0.30 g, 2.2 mmol) and DMAP (0.26 g, 2.1 mmol). The reaction mixture was stirred at 50 °C overnight. The mixture was diluted with DCM (30 mL), washed with water (20 mL), and then brine (10 mL). The organic layer was dried over Na_2SO_4 and filtered. The filtrate was

concentrated in *vacuo*, and the residue was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 60:40) to give compound **1h** as a yellow oil (0.14 g, 24%). ¹H NMR (500 MHz, CDCl₃) δ 13.82 (s, 1H), 8.41 (s, 1H), 7.40–7.21 (m, 2H), 6.97 (dd, *J* = 8.2, 1.1 Hz, 1H), 6.89 (td, *J* = 7.4, 1.1 Hz, 1H), 4.13 (s, 2H), 3.33-3.27 (m, 4H), 1.39 (s, 6H), 1.15-1.08 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 161.5, 161.4, 155.6, 132.2, 131.4, 118.9, 118.4, 117.2, 71.8, 59.4, 41.9, 41.3, 24.4, 14.1, 13.5; **HRMS** (ESI+) calcd for C₁₆H₂₅N₂O₃ [M+H]⁺ 293.1860, found 293.1866.

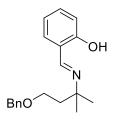
2-((2-hydroxybenzylidene)amino)-2-methylpropyl isobutyl carbonate (11)


To a solution of 2-(((1-hydroxy-2-methylpropan-2-yl)imino)methyl)phenol (0.38 g, 2.0 mmol) in THF (5 mL) was added NaH (0.16 g, 60%, 4.4 mmol) in portions under N₂ at 0 °C. The reaction mixture was stirred for 1 h, followed by addition of isobutyl chloroformate (0.22 g, 1.6 mmol). The reaction was allowed to react at room temperature for 8 h and quenched with water (5 mL). The mixture was extracted with EA (10 mL*3). The combined organic layers were washed with water (10 mL) and then brine (10 mL), dried over Na₂SO₄, and filtered. The filtrate was concentrated in *vacuo*, and the residue was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 80:20) to give compound **11** (0.31 g, 66%). ¹H NMR (500 MHz, CDCl₃) δ 13.59 (s, 1H), 8.42 (s, 1H), 7.56–7.24 (m, 2H), 6.97 (dd, *J* = 8.3, 1.1 Hz, 1H), 6.90 (td, *J* = 7.5, 1.1 Hz, 1H), 4.19 (s, 2H), 3.92 (d, *J* = 6.8 Hz, 2H), 1.98 (dh, *J* = 13.5, 6.7 Hz, 1H), 1.39 (s, 6H), 0.94 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 162.1, 161.2, 155.3, 132.3, 131.6, 118.8, 118.5, 117.1, 74.3, 74.3, 59.3, 27.7, 24.1, 18.9; **HRMS** (ESI+) calcd for C₁₆H₂₄NO₄ [M+H]⁺ 294.1700, found 294.1709.

2-(((1-(allyloxy)-2-methylpropan-2-yl)imino)methyl)phenol (1j)

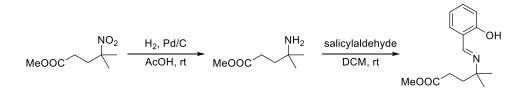
To a solution of 2-(((1-hydroxy-2-methylpropan-2-yl)imino)methyl)phenol (0.38 g, 2.0 mmol) in THF (5 mL) was added NaH (0.16 g, 60%, 4.4 mmol) in portions under N_2 at 0 °C. After the

reaction mixture was stirred for 1 h, allyl bromide (0.24 g, 2.0 mmol) was added. The reaction was stirred at room temperature for 8 h and quenched with water (5 mL). The mixture was extracted with EA (10 mL*3), and the combined organic layers were washed with water (10 mL) and then brine (10 mL), dried over Na₂SO₄, and filtered. The filtrate was concentrated in *vacuo*, and the residue was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 90:10) to give compound **1j** (0.25 g, 54%). ¹H NMR (500 MHz, CDCl₃) δ 14.20 (s, 1H), 8.42 (s, 1H), 7.44–7.20 (m, 2H), 6.96 (dd, *J* = 8.3, 1.2 Hz, 1H), 6.88 (td, *J* = 7.5, 1.1 Hz, 1H), 5.89 (ddt, *J* = 17.3, 10.7, 5.4 Hz, 1H), 5.27 (dq, *J* = 17.2, 1.7 Hz, 1H), 5.18 (dq, *J* = 10.5, 1.5 Hz, 1H), 4.01 (d, *J* = 5.5 Hz, 2H), 3.45 (s, 2H), 1.36 (s, 6H); ¹³C NMR (176 MHz, CDCl₃) δ 161.9, 161.7, 134.7, 132.1, 131.5, 118.9, 118.2, 117.2, 116.8, 77.9, 72.4, 60.0, 24.5; **HRMS** (ESI+) calcd for C₁₄H₂₀NO₂ [M+H]⁺ 234.1489, found 234.1484.


2-(2-((2-hydroxybenzylidene)amino)-2-methylpropyl)isoindoline-1,3-dione (1k)

To a solution of phthalic anhydride (0.45 g, 3.0 mmol) in AcOH (2 mL) was added 2-methyl-1,2-propanediamine (0.26 g, 3.0 mmol). The reaction mixture was stirred at 100 °C for 8 h, and the volatile materials were evaporated in vacuo. The residue was dissolved in DCM (50 mL), followed by addition of salicylaldehyde (0.44 g, 3.6 mmol), and the resulting mixture was allowed to react at room temperature for 8 h. After remove of the solvent, the crude product was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 70:30) to give compound **1k** as a light-yellow solid (0.42 g, 44% over 2 steps). ¹H NMR (500 MHz, CDCl₃) δ 13.35 (s, 1H), 8.39 (s, 1H), 7.88 (dd, *J* = 5.4, 3.2 Hz, 2H), 7.73 (dd, *J* = 5.4, 3.2 Hz, 2H), 7.31 (t, *J* = 7.8 Hz, 1H), 7.26 (d, *J* = 8.2 Hz, 1H), 7.00 (d, *J* = 8.2 Hz, 1H), 6.87 (t, *J* = 7.8 Hz, 1H), 3.91 (s, 2H), 1.41 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 168.6, 161.8, 161.0, 134.0, 132.2, 131.9, 131.6, 123.5, 118.9, 118.4, 117.2, 61.1, 48.6, 25.8; **HRMS** (ESI+) calcd for C₁₉H₁₉N₂O₃ [M+H]⁺ 323.1390, found 323.1399.

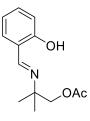
ОН


2-((tert-pentylimino)methyl)phenol (11)

To a solution of 2-methyl-2-butanamine (0.91 g, 11 mmol) in DCM (10 mL) was added salicylaldehyde (1.2 g, 10 mmol) in one-portion. The reaction mixture was stirred at room temperature for 2 h. The reaction mixture was diluted with DCM (50 mL) and dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* to give compound **11** as a yellow oil (1.7 g, 90%). ¹H NMR (500 MHz, CDCl₃) δ 14.49 (s, 1H), 8.33 (s, 1H), 7.37–7.14 (m, 2H), 6.96 (dd, J = 8.2, 1.2 Hz, 1H), 6.87 (td, J = 7.4, 1.2 Hz, 1H), 1.67 (q, J = 7.5 Hz, 2H), 1.32 (s, 6H), 0.92 (t, J = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 162.3, 160.1, 132.0, 131.3, 118.8, 118.0, 117.4, 59.5, 35.9, 26.6, 8.5; **HRMS** (ESI+) calcd for C₁₂H₁₈NO [M+H]⁺ 192.1383, found 192.1387.

2-(((4-(benzyloxy)-2-methylbutan-2-yl)imino)methyl)phenol (1m)

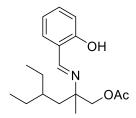
To a solution of 4-(benzyloxy)-2-methylbutan-2-amine (0.19 g, 1.0 mmol) in DCM (5 mL) was added salicylaldehyde (0.15 g, 1.2 mmol) in one-portion. The reaction mixture was stirred at room temperature for 2 h. The reaction mixture was diluted with DCM (20 mL) and dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo*, and the residue was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 90:10) to give compound **1m** as a yellow oil (0.16 g, 54%). ¹H NMR (500 MHz, CDCl₃) δ 14.06 (s, 1H), 8.25 (s, 1H), 7.48–7.13 (m, 7H), 6.87 (dd, *J* = 8.4, 1.2 Hz, 1H), 6.79 (td, *J* = 7.4, 1.2 Hz, 1H), 4.39 (s, 2H), 3.50 (t, *J* = 6.9 Hz, 2H), 1.91 (t, *J* = 6.9 Hz, 2H), 1.27 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 161.8, 160.4, 138.4, 132.1, 131.4, 128.4, 127.6, 127.5, 118.8, 118.2, 117.2, 73.1, 66.9, 58.7, 42.6, 27.6; **HRMS** (ESI+) calcd for C₁₉H₂₄NO₂ [M+H]⁺ 198.1802, found 198.1811.

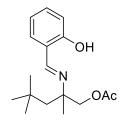


Methyl-4-((2-hydroxybenzylidene)amino)-4-methylpentanoate (1n)

To a solution of methyl 4-methyl-4-nitropentanoate (0.35 g, 2.0 mmol) in AcOH (5 mL) was added Pd/C (0.20 g, 10 wt. %). H₂ was bubbled through the reaction mixture for 20 min. The reaction mixture was stirred under H₂ for 8 h and filtered through a short pad of Celite, rinsing with with EA (10 mL). The filtrate was concentrated in *vacuo*, and the residue was dissolved in DCM (5 mL), followed by addition salicylaldehyde (0.24 g, 2.0 mmol). The reaction mixture

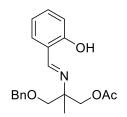
was stirred at room temperature for 2h. The mixture was diluted with DCM (30 mL), washed with brine (10 mL), dried over N₂SO₄, and filtered. The filtrate was concentrated in vacuo, and the residue was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 80:20) to give compound **1n** (0.18 g, 36%). ¹H NMR (500 MHz, CDCl₃) δ 13.90 (s, 1H), 8.32 (s, 1H), 7.42–7.22 (m, 2H), 6.94 (dd, *J* = 8.4, 1.0 Hz, 1H), 6.87 (td, *J* = 7.6, 1.0 Hz, 1H), 3.63 (s, 3H), 2.90–2.22 (m, 2H), 2.28–1.86 (m, 2H), 1.32 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 173.9, 161.5, 160.8, 132.2, 131.5, 118.8, 118.4, 117.1, 58.8, 51.7, 38.1, 29.4, 26.9; **HRMS** (ESI+) calcd for C₁₄H₂₀NO₃ [M+H]⁺ 250.1438, found 250.1437.


6. Palladium-Catalyzed Acetoxylation of β -C-H Bond

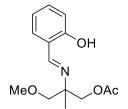

General Procedure B: In an N₂-filled glove-box, Pd(OAc)₂ (2.2 mg, 10 mol%), N-Boc-Ala (1.9 mg, 10 mol%), and PhI(OAc)₂ (48 mg, 1.5 equiv) were weighted into a 4-mL screw-top vial, followed by addition of benzene (1.0 mL) and imine 1a (17.7 mg, 0.100 mmol). The vial was capped with a Teflon-lined screw cap and stirred at 80 °C. The reaction mixture was stirred for 6 hour and cooled to room temperature. The volatile materials were removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 80:20) to give the products (mono-2a: 8.9 mg, 37% and di-2a:3.2 mg, 11%). Product mono-2a: ¹H NMR (500 MHz, CDCl₃) δ 13.71 (s, 1H), 8.40 (s, 1H), 7.39–7.27 (m, 2H), 6.98 (dd, J = 8.4, 1.0 Hz, 1H), 6.91 (td, J = 7.5, 1.1 Hz, 1H), 4.13 (s, 2H), 2.09 (s, 3H), 1.37 (s, 6H); 13 C NMR (126 MHz, CDCl₃) δ 170.9, 161.7, 161.3, 132.3, 131.6, 118.9, 118.5, 117.2, 71.3, 59.1, 24.2, 20.8; **HRMS** (ESI+) calcd for C₁₃H₁₈NO₃ [M+H]⁺ 236.1281, found 236.1280. Product **di-2a**: ¹H NMR (400 MHz, CDCl₃) δ 13.27 (s, 1H), 8.44 (s, 1H), 7.38–7.27 (m, 2H), 7.30 (dd, J = 7.7, 1.4 Hz, 2H), 6.96 (d, J = 8.6 Hz, 1H), 6.91 (t, J = 7.5 Hz, 1H), 4.25 $(d, J = 11.2 \text{ Hz}, 2H), 4.18 (d, J = 11.2 \text{ Hz}, 2H), 2.08 (s, 6H), 1.37 (s, 3H); {}^{13}C \text{ NMR} (150 \text{ MHz}, 120 \text{ MHz})$ CDCl₃) δ 170.6, 163.7, 161.1, 132.8, 131.9, 118.7, 118.7, 117.2, 67.2, 61.2, 20.8, 18.7; HRMS (ESI+) calcd for $C_{15}H_{20}NO_5 [M+H]^+$ 294.1336, found 294.1343.

1.0 mmol-scale reaction: $Pd(OAc)_2$ (22 mg, 10 mol%), N-Boc-Ala (19 mg, 10 mol%), and $PhI(OAc)_2$ (480 mg, 1.5 equiv) were weighted into a 20-mL screw-top vial. To this vial were added benzene (10 mL) and **1a** (177 mg, 1.00 mmol). The reaction mixture was stirred at 80 °C for 6 h. The volatile materials were removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 80:20) to give the

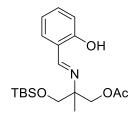
products (mono-2a: 75.1 mg, 32% and di-2a: 22.4 mg, 8%). NMR data matched with those reported above.

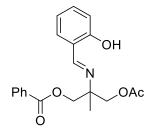


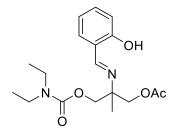
Following General Procedure B, the reaction was allowed to react with Pd(OAc)₂ (2.2 mg, 10 mol%), N-Boc-Ala (1.9 mg, 10 mol%), PhI(OAc)₂ (48 mg, 1.5 equiv), and 1b (24.7 mg, 0.100 mmol). The crude product was purified by flash column chromatography on silica gel (hexane : EA 100:0-80:20) to give the products (mono-2b: 11.0 mg, 36% and di-2b: 5.1 mg, 14%). Product **mono-2b**: ¹H NMR (500 MHz, CDCl₃) δ 13.74 (s, 1H), 8.35 (s, 1H), 7.35–7.26 (m, 2H), 6.95 (d, J = 8.4 Hz, 1H), 6.88 (td, J = 7.4, 1.2 Hz, 1H), 4.13 (d, J = 11.0 Hz, 1H), 4.10 (d, J = 11.0 Hz, 1H), 2.05 (s, 3H), 1.66 (dd, J = 14.4, 3.6 Hz, 1H), 1.60–1.52 (m, 2H), 1.33 (s, 3H), 1.35–1.23 (m, 4H), 0.82 (t, J = 7.2 Hz, 3H), 0.79 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.8, 161.9, 161.4, 132.3, 131.6, 118.8, 118.4, 117.2, 70.5, 62.1, 42.3, 35.7, 27.2, 26.9, 20.9, 20.5, 10.8, 10.6; **HRMS** (ESI+) calcd for C₁₈H₂₈NO₃ [M+H]⁺ 306.2064, found 306.2073. Product di-2b: ¹H NMR (500 MHz, CDCl₃) δ 13.27 (s, 1H), 8.45 (s, 1H), 7.36 (ddd, J = 8.4, 7.4, 1.6 Hz, 1H), 7.30 (dd, J = 7.4, 1.6 Hz, 1H), 6.99 (dd, J = 8.4, 1.2 Hz, 1H), 6.93 (td, J = 7.6, 1.2 Hz, 1H), 4.35 (d, J = 11.4 Hz, 2H), 4.28 (d, J = 11.4 Hz, 2H), 2.10 (s, 6H), 1.70 (d, J = 5.2 Hz, 2H), 1.45–1.36 (m, 1H), 1.36–1.30 (m, 4H), 0.83 (t, J = 7.4 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 170.6, 163.6, 161.1, 132.7, 131.9, 118.7, 118.6, 117.2, 65.1, 63.5, 37.6, 35.2, 26.9, 20.8, 10.5; **HRMS** (ESI+) calcd for $C_{20}H_{30}NO_5 [M+H]^+$ 364.2118, found 364.2117.

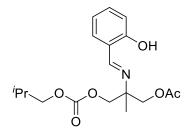


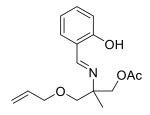
Following General Procedure B, Pd(OAc)₂ (2.2 mg, 10 mol%), *N*-Boc-Ala (1.9 mg, 10 mol%), PhI(OAc)₂ (48 mg, 1.5 equiv), and **1c** (23.3 mg, 0.100 mmol) were allowed to react. The crude product was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 80:20) to give the products (**mono-2c**: 5.8 mg, 20% and **di-2c**: 5.8 mg, 17%). Product **mono-2c** ¹H NMR (500 MHz, CDCl₃) δ 13.92 (s, 1H), 8.40 (s, 1H), 7.41–7.29 (m, 2H), 7.00 (d, *J* = 8.4 Hz, 1H), 6.93 (t, *J* = 7.4 Hz, 1H), 4.14 (s, 2H), 2.10 (s, 3H), 1.88 (d, *J* = 14.6 Hz, 1H), 1.70 (d, *J* = 14.6 Hz, 1H), 1.48 (s, 3H), 1.01 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 170.8, 161.8, 161.4,

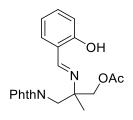

132.3, 131.6, 118.9, 118.4, 117.2, 71.3, 62.7, 51.6, 31.8, 31.8, 21.5, 20.9; **HRMS** (ESI+) calcd for C₁₇H₂₆NO₃ [M+H]⁺ 292.1907, found 292.1908. Product **di-2c**: ¹H NMR (500 MHz, CDCl₃) δ 13.36 (s, 1H), 8.48 (s, 1H), 7.38 (t, *J* = 7.8 Hz, 1H), 7.32 (d, *J* = 8.4 Hz, 1H), 7.01 (d, *J* = 8.4 Hz, 1H), 6.96 (t, *J* = 7.4 Hz, 1H), 4.43 (d, *J* = 11.2 Hz, 2H), 4.33 (d, *J* = 11.2 Hz, 2H), 2.12 (s, 6H), 1.84 (s, 2H), 1.02 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 170.6, 163.6, 161.1, 132.8, 131.9, 118.7, 118.7, 117.2, 65.6, 64.1, 47.2, 31.9, 31.6, 20.8; **HRMS** (ESI+) calcd for C₁₉H₂₈NO₅ [M+H]⁺ 350.1962, found 350.1970.

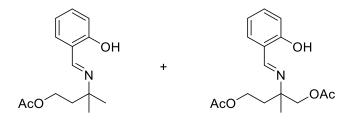

Following General Procedure B, Pd(OAc)₂ (2.2 mg, 10 mol%), N-Boc-Ala (1.9 mg, 10 mol%), PhI(OAc)₂ (48 mg, 1.5 equiv), and **1d** (28.3 mg, 0.100 mmol) were allowed to react. The crude product was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 80:20) to give compound **1d** (5.1 mg, 18%) and product **2d** (12.2 mg, 36%). ¹H NMR (400 MHz, CDCl₃) δ 13.65 (s, 1H), 8.46 (s, 1H), 7.56–7.17 (m, 7H), 6.96 (dd, *J* = 8.4, 1.2 Hz, 1H), 6.89 (td, *J* = 7.4, 1.2 Hz, 1H), 4.54 (s, 2H), 4.27 (d, *J* = 10.8 Hz, 1H), 4.24 (d, *J* = 10.8 Hz, 1H), 3.61 (d, *J* = 9.2 Hz, 1H), 3.49 (d, *J* = 9.2 Hz, 1H), 2.05 (s, 3H), 1.37 (s, 3H); ¹³C NMR (176 MHz, CDCl₃) δ 170.8, 163.5, 161.3, 137.9, 132.5, 131.8, 128.4, 127.7, 127.6, 118.9, 118.5, 117.2, 73.7, 73.5, 67.8, 62.1, 20.8, 19.1; **HRMS** (ESI+) calcd for C₂₀H₂₄NO₄ [M+H]⁺ 342.1700, found 342.1705.

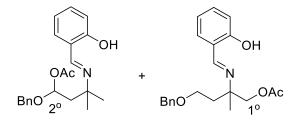

Following General Procedure B, Pd(OAc)₂ (2.2 mg, 10 mol%), N-Boc-Ala (1.9 mg, 10 mol%), PhI(OAc)₂ (48 mg, 1.5 equiv), and **1e** (20.7 mg, 0.100 mmol). The crude product was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 80:20) to give compound **1e** (4.3 mg) and product **2e** (10.3 mg, 39%). ¹H NMR (500 MHz, CDCl₃) δ 13.66 (s, 1H), 8.47 (s, 1H), 7.41–7.29 (m, 2H), 6.97 (d, *J* = 8.0 Hz, 1H), 6.91 (td, *J* = 7.4, 1.2 Hz, 1H), 4.26 (d, *J* = 11.2 Hz, 1H), 4.24 (d, *J* = 11.2 Hz, 1H), 3.54 (d, *J* = 9.4 Hz, 1H), 3.44 (d, *J* = 9.4 Hz, 1H), 3.38 (s, 3H), 2.10 (s, 3H), 1.37 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.8, 163.5, 161.3, 132.4, 131.8, 118.9, 118.5, 117.2, 76.6, 67.8, 62.1, 59.5, 20.8, 18.8; **HRMS** (ESI+) calcd for C₁₄H₂₀NO₄ [M+H]⁺ 266.1387, found 266.1395.


Following General Procedure B, Pd(OAc)₂ (2.2 mg, 10 mol%), *N*-Boc-Ala (1.9 mg, 10 mol%), PhI(OAc)₂ (48 mg, 1.5 equiv), and **1f** (30.7 mg, 0.100 mmol) were allowed to react. The reaction was stirred at 80 °C for 3 h. After cooling to room temperature, the reaction vial was taken into the glove-box, and PhI(OAc)₂ (22 mg, 0.75 mmol) was added. The vial was capped, and the reaction mixture was stirred at 80 °C for 7 h. After volatile materials were removed, the crude product was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 80:20) to give **1f** (5.2 mg) and product **2f** (10.1 mg, 28%). ¹H NMR (600 MHz, CDCl₃) δ 13.65 (s, 1H), 8.47 (s, 1H), 7.39–7.30 (m, 1H), 7.31–7.26 (m, 1H), 6.98 (d, *J* = 8.4 Hz, 1H), 6.90 (td, *J* = 7.4, 1.2 Hz, 1H), 4.26 (d, *J* = 11.2 Hz, 1H), 4.23 (d, *J* = 11.2 Hz, 1H), 3.75 (d, *J* = 9.8 Hz, 1H), 3.60 (d, *J* = 9.8 Hz, 1H), 2.10 (s, 3H), 1.34 (s, 3H), 0.90 (s, 9H), 0.06 (s, 3H), 0.04 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.8, 163.5, 161.4, 132.5, 131.7, 118.8, 118.5, 117.2, 67.4, 66.9, 62.8, 25.8, 20.8, 18.4, 18.2, -5.6; **HRMS** (ESI+) calcd for C₁₉H₃₂NO₄Si [M+H]⁺ 366.2095, found 366.2096.

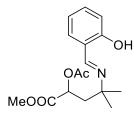

Following General Procedure B, Pd(OAc)₂ (2.2 mg, 10 mol%), N-Boc-Ala (1.9 mg, 10 mol%), PhI(OAc)₂ (48 mg, 1.5 equiv), and **1g** (29.7 mg, 0.100 mmol) were allowed to react. The crude product was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 80:20) to give product **2g** (9.6 mg, 27%). ¹H NMR (600 MHz, C₆D₆) δ 13.58 (s, 1H), 8.17–8.05 (m, 3H), 8.10 (s, 1H), 7.11–6.97 (m, 5H), 6.90 (dd, *J* = 7.7, 1.6 Hz, 1H), 6.66 (td, *J* = 7.4, 1.2 Hz, 1H), 4.26 (s, 2H), 4.14 (d, *J* = 11.2 Hz, 1H), 4.06 (d, *J* = 11.2 Hz, 1H), 1.57 (s, 3H), 0.91 (s, 3H); ¹³C NMR (150 MHz, C₆D₆) δ 169.4, 165.6, 163.6, 161.9, 132.9, 132.8, 131.9, 130.1, 129.6, 128.4, 119.0, 118.4, 117.5, 67.3, 66.9, 61.4, 19.8, 18.2; **HRMS** (ESI+) calcd for C₂₀H₂₂NO₅ [M+H]⁺ 356.1496, found 356.1492.


Following General Procedure B, Pd(OAc)₂ (2.2 mg, 10 mol%), N-Boc-Ala (1.9 mg, 10 mol%), PhI(OAc)₂ (48 mg, 1.5 equiv), and **1h** (29.2 mg, 0.100 mmol) were allowed to react. The crude product was purified by flash column chromatography on silica gel (hexane : EA $100:0 \rightarrow 50:50$) to give compound **1h** (4.4 mg, 15%), product **mono-2h** (12 mg, 35%), and product **di-2h** (2.4 mg, 6%). Product mono-2h: ¹H NMR (500 MHz, CDCl₃) δ 13.31 (s, 1H), 8.45 (s, 1H), 7.32 (ddd, J = 8.2, 7.3, 1.7 Hz, 1H), 7.30-7.24 (m, 1H), 6.95 (dd, J = 8.3, 1.0 Hz, 1H), 6.89 (td, J = 8.3, 1H), 6.89 (td, J = 8.7.5, 1.1 Hz, 1H), 4.26 (d, J = 9.8 Hz, 1H), 4.24 (d, J = 9.8 Hz, 1H), 4.21 (d, J = 6.2 Hz, 1H), 4.19 (d, J = 6.2 Hz, 1H), 3.38–3.14 (m, 4H), 2.08 (s, 3H), 1.38 (s, 3H), 1.14–1.04 (m, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 170.7, 163.6, 161.2, 155.3, 132.7, 131.8, 118.8, 118.6, 117.2, 67.8, 67.5, 61.6, 42.1, 41.4, 20.8, 19.0, 14.1, 13.4; HRMS (ESI+) calcd for C₁₈H₂₇N₂O₅ [M+H]⁺ 351.1914, found 351.1917. Product di-2h: ¹H NMR (600 MHz, CDCl₃) δ 12.96 (s, 1H), 8.51 (s, 1H), 7.35 (ddd, J = 8.3, 7.3, 1.7 Hz, 1H), 7.28 (dd, J = 7.7, 1.7 Hz, 1H), 6.97 (dd, J = 8.4, 1.0 Hz, 1H), 6.91 (td, J = 7.5, 1.1 Hz, 1H), 4.39 (s, 2H), 4.37 (d, J = 3.8 Hz, 4H), 3.36–3.16 (m, 4H), 2.08 (s, 6H), 1.16–0.97 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 170.4, 165.3, 161.1, 154.9, 133.1, 132.1, 118.8, 118.6, 117.3, 64.0, 63.7, 63.5, 42.3, 41.5, 20.8, 14.1, 13.3; **HRMS** (ESI+) calcd for $C_{20}H_{29}N_2O_7$ [M+H]⁺ 409.1969, found 409.1966.

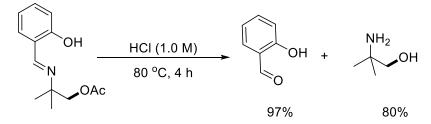

Following General Procedure B, Pd(OAc)₂ (2.2 mg, 10 mol%), N-Boc-Ala (1.9 mg, 10 mol%), PhI(OAc)₂ (48 mg, 1.5 equiv), and **1i** (27.9 mg, 0.100 mmol) were allowed to react. The crude product was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 80:20) to give compound **1i** (5.3 mg, 19%) and product **2i** (14.6 mg, 42%). ¹H NMR (500 MHz, CDCl₃) δ 13.14 (s, 1H), 8.45 (s, 1H), 7.42–7.26 (m, 2H), 6.95 (dd, *J* = 8.2, 1.2 Hz, 1H), 6.89 (td, *J* = 7.4, 1.2 Hz, 1H), 4.32 (d, *J* = 10.8 Hz, 1H), 4.27 (d, *J* = 9.6 Hz, 1H), 4.24 (d, *J* = 9.6 Hz, 1H), 4.20 (d, *J* = 11.2 Hz, 1H), 3.91 (d, *J* = 6.8 Hz, 2H), 2.08 (s, 3H), 1.95 (dp, *J* = 13.4, 6.6 Hz, 1H), 1.39 (s, 3H), 0.92 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 170.6, 164.0, 161.1, 155.1, 132.8, 132.0, 118.7, 118.7, 117.2, 74.4, 70.4, 67.2, 61.4, 27.7, 20.8, 18.9, 18.6; **HRMS** (ESI+) calcd for C₁₆H₂₆NO₆ [M+H]⁺ 352.1755, found 352.1756.


Following General Procedure B, Pd(OAc)₂ (2.2 mg, 10 mol%), N-Boc-Ala (1.9 mg, 10 mol%), PhI(OAc)₂ (48 mg, 1.5 equiv), and **1j** (23.3 mg, 0.100 mmol) were allowed to react. The crude product was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 80:20) to give compound **1j** (2.6 mg, 11%) and product **2j** (14.6 mg, 45%). ¹H NMR (500 MHz, CDCl₃) δ 13.63 (s, 1H), 8.46 (s, 1H), 7.35–7.25 (m, 2H), 6.95 (dd, *J* = 8.4, 1.0 Hz, 1H), 6.88 (td, *J* = 7.4, 1.0 Hz, 1H), 5.85 (ddt, *J* = 17.2, 10.8, 5.6 Hz, 1H), 5.25 (dq, *J* = 17.2, 1.8 Hz, 1H), 5.17 (dq, *J* = 10.4, 1.4 Hz, 1H), 4.25 (d, *J* = 11.2 Hz, 1H), 4.22 (d, *J* = 11.2 Hz, 1H), 3.99 (t, *J* = 1.6 Hz, 1H), 3.98 (t, *J* = 1.6 Hz, 1H), 3.57 (d, *J* = 9.4 Hz, 1H), 3.46 (d, *J* = 9.4 Hz, 1H), 2.07 (s, 3H), 1.36 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.8, 163.5, 161.3, 134.4, 132.4, 131.8, 118.9, 118.5, 117.2, 117.1, 73.9, 72.5, 67.8, 62.1, 20.8, 18.9; **HRMS** (ESI+) calcd for C₁₆H₂₂NO₄ [M+H]⁺ 292.1543, found 292.1545.

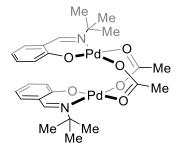
Following General Procedure B, Pd(OAc)₂ (2.2 mg, 10 mol%), N-Boc-Ala (1.9 mg, 10 mol%), PhI(OAc)₂ (48 mg, 1.5 equiv), and **1k** (32.2 mg, 0.100 mmol) were allowed to react. The crude product was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 60:40) to give product **2k** (11.4 mg, 30%). ¹H NMR (600 MHz, CDCl₃) δ 13.02 (s, 1H), 8.48 (s, 1H), 7.88 (dd, *J* = 5.4, 3.2 Hz, 2H), 7.75 (dd, *J* = 5.4, 3.2 Hz, 2H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.29 (d, *J* = 8.8 Hz, 1H), 6.99 (d, *J* = 8.8 Hz, 1H), 6.90 (t, *J* = 7.4 Hz, 1H), 4.27 (d, *J* = 11.4 Hz, 1H), 4.18 (d, *J* = 11.4 Hz, 1H), 4.02 (d, *J* = 13.8 Hz, 1H), 4.01 (d, *J* = 13.8 Hz, 1H), 2.10 (s, 3H), 1.43 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.7, 168.4, 163.9, 161.0, 134.2, 132.7, 132.0, 131.8, 123.6, 118.8, 118.6, 117.3, 68.4, 62.8, 44.9, 20.8, 19.7; **HRMS** (ESI+) calcd for C₂₁H₂₁N₂O₅ [M+H]⁺ 381.1445, found 381.1440.



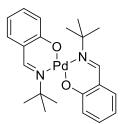
Following General Procedure B, Pd(OAc)₂ (2.2 mg, 10 mol%), N-Boc-Ala (1.9 mg, 10 mol%), PhI(OAc)₂ (71 mg, 2.5 equiv), and **11** (19.1 mg, 0.100 mmol) were allowed to react. The crude product was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 80:20) to give product **mono-2l** (13.9 mg, 56%) and product **di-2l** (4.0 mg, 13%). Product **mono-2l**: ¹H NMR (500 MHz, CDCl₃) δ 13.87 (s, 1H), 8.34 (s, 1H), 7.35–7.24 (m, 2H), 6.94 (dd, *J* = 8.4, 1.2 Hz, 1H), 6.87 (td, *J* = 7.4, 1.1 Hz, 1H), 4.15 (t, *J* = 7.0 Hz, 2H), 1.99 (t, *J* = 7.0 Hz, 2H), 1.99 (s, 3H), 1.35 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 171.1, 161.4, 160.6, 132.2, 131.5, 118.8, 118.4, 117.1, 61.1, 58.5, 41.6, 27.3, 20.9; **HRMS** (ESI+) calcd for C₁₄H₂₀NO₃ [M+H]⁺ 250.1438, found 250.1434. Product **di-2l**: ¹H NMR (500 MHz, CDCl₃) δ 13.39 (s, 1H), 8.39 (s, 1H), 7.32 (ddd, *J* = 8.4, 7.2, 1.6 Hz, 1H), 7.29 (dd, *J* = 7.6, 1.6 Hz, 1H), 6.96 (dd, *J* = 8.4, 1.2 Hz, 1H), 6.90 (td, *J* = 7.6, 1.2 Hz, 1H), 4.28–4.12 (m, 3H), 4.11 (d, *J* = 11.2 Hz, 1H), 2.14–2.05 (m, 1H), 2.07 (s, 3H), 2.05–1.95 (m, 1H), 1.99 (s, 3H), 1.38 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.9, 170.7, 162.8, 161.1, 132.6, 131.8, 118.7, 118.7, 117.2, 70.0, 60.7, 60.2, 37.0, 20.9, 20.8, 20.6; **HRMS** (ESI+) calcd for C₁₆H₂₂NO₅ [M+H]⁺ 308.1492, found 308.1491.


Following General Procedure B, Pd(OAc)₂ (2.2 mg, 10 mol%), N-Boc-Ala (1.9 mg, 10 mol%), PhI(OAc)₂ (71 mg, 2.5 equiv), and **1m** (29.7 mg, 0.100 mmol) were allowed to react. The crude product was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 80:20) to give product **2⁰-2m** (8.5 mg, 24%) and product **1⁰-2m** (8.9 mg, 25%). Product **2⁰-2m**: ¹H NMR (500 MHz, CDCl₃) δ 13.86 (s, 1H), 8.29 (s, 1H), 7.38–7.25 (m, 6H), 7.24 (dd, J = 7.6, 1.6 Hz, 1H), 6.98 (dd, J = 8.4, 1.2 Hz, 1H), 6.88 (td, J = 7.4, 1.2 Hz, 1H), 6.09 (t, J = 5.2 Hz, 1H), 4.67 (d, J = 11.8 Hz, 1H), 4.56 (d, J = 11.8 Hz, 1H), 2.16 (d, J = 5.2 Hz, 2H), 1.98 (s, 3H), 1.37 (s, 3H), 1.34 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.7, 161.4, 160.5, 137.0, 132.1, 131.5, 128.4, 127.9, 127.8, 118.9, 118.3, 117.2, 96.0, 71.1, 58.0, 47.3, 28.5, 27.0, 21.0; **HRMS** (ESI+) calcd for C₂₁H₂₆NO4[M+H]⁺ 356.1856, found 356.1861. Product **1⁰-2m**: ¹H NMR (500 MHz, CDCl₃) δ 13.65 (s, 1H), 8.38 (s, 1H), 7.55–7.17 (m, 7H), 6.98 (dd, J = 8.4, 1.2 Hz, 1H), 6.91 (td, J = 7.6, 1.2 Hz, 1H), 4.49 (d, J = 11.5 Hz, 1H), 4.46 (d, J = 11.5 Hz, 1H), 4.19 (d, J = 11.5 Hz, 1H), 4.49 (d, J = 11.5 Hz, 1H), 4.46 (d, J = 11.5 Hz, 1H), 4.19 (d, J = 11.5 Hz, 1H), 4.49 (d, J = 11.5 Hz, 1H), 4.46 (d, J = 11.5 Hz, 1H), 4.19 (d, J = 11.5 Hz, 1H), 4.49 (d, J = 11.5 Hz, 1H), 4.49

11.5 Hz, 1H), 4.16 (d, J = 11.5 Hz, 1H), 3.63–3.52 (m, 2H), 2.10–1.97 (m, 2H), 2.07 (s, 3H), 1.39 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.8, 162.5, 161.3, 138.1, 132.4, 131.7, 128.4, 127.6, 127.6, 118.8, 118.5, 117.2, 73.2, 70.2, 66.0, 60.9, 38.1, 21.0, 20.8; **HRMS** (ESI+) calcd for C₂₁H₂₆NO₄[M+H]⁺ 356.1856, found 356.1866.

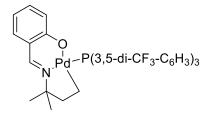

Following General Procedure B, Pd(OAc)₂ (2.2 mg, 10 mol%), N-Boc-Ala (1.9 mg, 10 mol%), PhI(OAc)₂ (71 mg, 2.5 equiv), and **1n** (24.9 mg, 0.100 mmol) were allowed to react. The crude product was purified by flash column chromatography on silica gel (hexane : EA 100:0 \rightarrow 80:20) to give **1n** (5.5 mg, 22%) and product **2n** (12.6 mg, 41%). ¹H NMR (500 MHz, CDCl₃) δ 13.63 (s, 1H), 8.32 (s, 1H), 7.35–7.22 (m, 2H), 6.94 (dd, *J* = 8.4, 1.0 Hz, 1H), 6.87 (td, *J* = 7.4, 1.2 Hz, 1H), 5.13 (dd, *J* = 8.4, 3.4 Hz, 1H), 3.70 (s, 3H), 2.36–2.13 (m, 2H), 2.01 (s, 3H), 1.38 (s, 3H), 1.37 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.8, 170.4, 161.2, 160.9, 132.3, 131.6, 118.8, 118.5, 117.1, 69.7, 58.7, 52.5, 44.0, 27.7, 26.9, 20.5; **HRMS** (ESI+) calcd for C₁₆H₂₂NO₅ [M+H]⁺ 308.1492, found 308.1498.

7. Removal and Recovery of the Directing Group



To an aqueous solution of HCl (1.0 M, 1.0 mL) was added **mono-2a** (47 mg, 0.20 mmol), and the resulting reaction mixture was stirred at 80 °C for 4 h. After cooling to room temperature, the mixture was diluted with water (1.0 mL) and extracted with hexane (5 mL*5). The combined organic layers were dried over Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* to give salicylaldehyde (23.5 mg, 96%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 11.02 (s, 1H), 9.90 (s, 1H), 7.59–7.50 (m, 2H), 7.09–6.97 (m, 2H).¹ To obtain the amino alcohol, the acidic aqueous layer was basified with NaOH (3.0 M) to reach a pH of 14, followed by addition of NaCl (0.6 g). The resulting solution was extracted with DCM (20 mL*5), and the combined organic layers were dried over Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* to give 2-methyl-2-amino propanol (14.1%, 80%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 3.28 (s, 2H), 1.88 (brs, 3H), 1.10 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 71.7, 50.6, 27.3. These NRM data matched with those reported in literature.¹

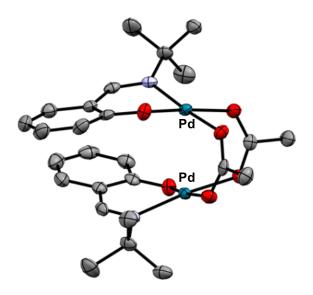
8. Mechanistic Investigation



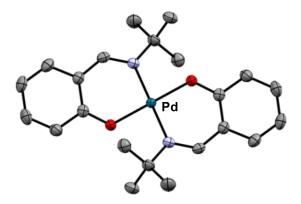
Modifications were made to procedures reported for the synthesis of similar palladium complexes.² In a 20 mL vial were added compound **1a** (177 mg, 1.00 mmol) and Pd(OAc)₂ (224 mmol, 1.0 mmol), followed by CHCl₃ (5 mL). The vial was capped, and the reaction mixture was stirred at 80 °C for 6 h. After cooling to room temperature, the volatile materials were evaporated *in vacuo* to give the crude product as a yellow solid. The crude product was rinsed with hexane. Product **4** was obtained as a pale-yellow solid (269 mg, 39%). Crystals suitable for X-ray crystallography were obtained by recrystallizing the product from pentane at -20 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.14 (ddd, J = 8.5, 6.9, 1.8 Hz, 2H), 6.75 (d, J = 8.5 Hz, 2H), 6.70 (dd, J = 7.8, 1.8 Hz, 2H), 6.48 (ddd, J = 7.9, 6.9, 1.2 Hz, 2H), 6.41 (s, 2H), 2.00 (s, 6H), 1.41 (s, 18H); ¹³C NMR (150 MHz, CDCl₃) δ 184.3 (2H), 162.1 (2H), 157.9 (2H), 135.5 (2H), 134.2 (2H), 122.9 (2H), 118.9 (2H), 114.7 (2H), 64.4 (2H), 30.7 (2H), 24.1 (2H); **HRMS** (ESI+) calcd for C₂₆H₃₄N₂O₆Pd₂ [M]⁺ 684.0485, found 684.0485.

Modifications were made to procedures reported for the synthesis of similar palladium complexes.³ In a 20 mL vial was added compound **1a** (177 mg, 1.00 mmol), Pd(OAc)₂ (224 mmol, 1.0 mmol), and Na₂CO₃ (106 mg, 1.00 mmol), followed by CHCl₃ (3 mL). The vial was capped, and the reaction mixture was stirred at 80 °C for 4 h. After cooling to room temperature, the reaction mixture was filtered through a short pad of silica gel, and the filtrate was concentrated under reduced pressure to give the product **6** as a yellowish red solid (210 mg, 46%). Crystals suitable for X-ray crystallography were obtained by vial-in-vial diffusion of hexane into an acetone solution of the product at -20 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.30 (s, 2H), 7.18–7.08 (m, 4H), 6.78 (dd, J = 8.2, 1.0 Hz, 2H), 6.56 (ddd, J = 7.9, 7.0, 1.1 Hz, 2H),

1.70 (s, 18H); ¹³C NMR (150 MHz, CDCl₃) δ 165.0 (2H), 159.7 (2H), 134.2 (2H), 133.5 (2H), 125.6 (2H), 119.8 (2H), 115.4 (2H), 63.2 (2H), 31.6 (18H); **HRMS** (ESI+) calcd for C₂₂H₂₉N₂O₂Pd [M+H]⁺ 459.1258, found 459.1272.



Modifications were made to procedures reported for the synthesis of similar palladium complexes.^{2,4} To a solution of compound **11** (48 mg, 0.25 mmol) in CHCl₃ (5 mL) was added Pd(OAc)₂ (62 mg, 0.28 mmol) in one-portion. The resulting mixture was stirred under nitrogen at 80 °C for 2 h. After the reaction mixture was cooled to room temperature, tris[3,5bis(trifuluromethyl)phenyl]phosphine (0.20 g, 0.30 mmol) was added. The mixture was heated at 80 °C for 1 h. The reaction mixture was cooled to room temperature, filtered through a short pad of Celite, and rinsed with ethyl acetate (5 mL). The eluent was concentrated under reduced pressure, and the residue was purified by flash column chromatography on silica gel to give compound 7 as a light-yellow solid (0.21 g, 86%). Crystals suitable for X-ray crystallography were obtained by vial-in-vial diffusion of pentane into a methanol solution of the title complex. ¹H NMR (600 MHz, C₆D₆) δ 8.36 (d, J = 10.3 Hz, 6H), 7.79 (d, J = 15.1 Hz, 1H), 7.61 (s, 3H), 7.37 (t, J = 7.7 Hz, 1H), 7.29 (d, J = 8.5 Hz, 1H), 7.04 (d, J = 7.9 Hz, 1H), 6.58 (t, J = 7.3 Hz, 1H), 1.48 (q, J = 6.2 Hz, 2H), 1.38 (t, J = 6.4 Hz, 2H), 0.98 (s, 6H); ¹³C NMR (150 MHz, C₆D₆) δ 166.7, 159.2, 135.8, 135.1, 133.7 (dd, J = 13.3, 3.7 Hz), 133.4 (d, J = 41.4 Hz), 132.6 (qd, J= 33.9, 9.9 Hz), 125.0 (brs, 1H), 122.7, 122.6 (q, J = 273.5 Hz), 119.8, 114.1, 70.1, 48.2, 27.2 (d, J = 6.9 Hz), 25.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.2; ³¹P NMR (162 MHz, CDCl₃) δ 33.4; **HRMS** (ESI+) calcd for $C_{10}H_{22}N [M+H]^+$ 944.0416, found 966.0410.



To a solution of compound **11** (96 mg, 0.50 mmol) in CDCl_3 (5 mL) was added $\text{Pd}(\text{OAc})_2$ (112 mg, 0.500 mmol) in one-portion. The resulting mixture was stirred under nitrogen at 80 °C for 3 h to give complex **6'**. The freshly prepared solution of **6'** (0.5 mL) was added to an NMR tube charged with $\text{PhI}(\text{OAc})_2$ (32 mg, 0.10 mmol). After shaking to ensure that the $\text{PhI}(\text{OAc})_2$

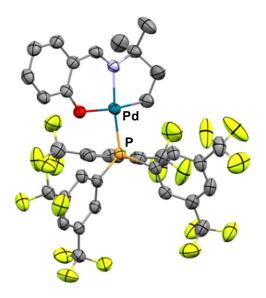

had dissolved completely, ¹H NMR spectroscopy was conducted. Analysis of the ¹H NMR spectrum showed that all of the complex **6'** was consumed, and complex **12'** formed in 46% yield.

Figure S1. Solid-state structure of complex **4** determined by single crystal X-ray diffraction. The thermal ellipsoids were set to 75% probability. All hydrogen atoms were omitted for clarity.

Figure S2. Solid-state structure of complex **6** determined by single crystal X-ray diffraction. The thermal ellipsoids were set to 75% probability. All hydrogen atoms were omitted for clarity.

Figure S3. Solid-state structure of complex 7 determined by single crystal X-ray diffraction. The thermal ellipsoids were set to 75% probability. All hydrogen atoms were omitted for clarity.

9. Crystallographic Information

Complex 4

A yellow block 0.17 x 0.15 x 0.09 mm in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using omega scans. Crystal-to-detector distance was 50 mm and exposure time was 1.00 seconds per frame using a scan width of 0.5°. Data collection was 100% complete to 26.370° in θ . A total of 28226 reflections were collected covering the indices -12<=h<=12, -14<=k<=14, -15<=l<=15.5546 reflections were founded to be symmetry independent, with an R_{int} of 0.0793. Indexing and unit cell refinement indicated a primitive, monoclinic lattice. The space group was found to be P -1 (No. 2). The data were integrated using the CrysAlis^{Pro} 1.171.39.46e software program and scaled using the SCALE3 ABSPACK scaling algorithm. Solution by intrinsic phasing (SHELXT-2015) produced a heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2014). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2014.

	· · · · · · · · · · · ·
Empirical formula	$C_{26}H_{34}N_2O_6Pd_2$
Formula weight	683.35
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P 21/n

Table S1. Crystal data and structure refinement for complex 4

Unit cell dimensions	a = 8.9433(3) Å	$\alpha = 90^{\circ}$.	
	b = 34.4853(9) Å	$\beta = 113.354(4)^{\circ}$.	
	c = 9.5969(3) Å	$\gamma = 90^{\circ}$.	
Volume	2717.31(16) Å ³		
Z	4		
Density (calculated)	1.670 Mg/m ³		
Absorption coefficient	1.365 mm ⁻¹		
F(000)	1376		
Crystal size	0.190 x 0.160 x 0.080 mm ³		
Theta range for data collection	2.889 to 26.371°.		
Index ranges	-11<=h<=10, -43<=k<=43, -11<=l<=11		
Reflections collected	28988		
Independent reflections	5538 [R(int) = 0.0435]		
Completeness to theta = 26.371°	99.9 %		
Absorption correction	Semi-empirical from equivale	nts	
Max. and min. transmission	1.00000 and 0.85298		
Refinement method	Full-matrix least-squares on F	2	
Data / restraints / parameters	5538 / 0 / 333		
Goodness-of-fit on F ²	1.039		
Final R indices [I>2sigma(I)]	R1 = 0.0237, $wR2 = 0.0505$		
R indices (all data)	R1 = 0.0291, $wR2 = 0.0520$		
Extinction coefficient	n/a		
Largest diff. peak and hole0.459 and -0.450 e.Å ⁻³			

Complex 6

An orange block $0.24 \ge 0.18 \ge 0.11$ mm in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using omega scans. Crystal-to-detector distance was 50 mm and exposure time was $0.75 \ge 0.75 \ge 0.75 \le 0$

2014.

Table S2. Crystal data and structure refinement for complex S.				
Empirical formula	$C_{22}H_{28}N_2O_2Pd$			
Formula weight	ormula weight 458.86			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	C 2/c			
Unit cell dimensions	a = 19.1646(4) Å	$\alpha = 90^{\circ}$.		
	b = 7.69380(10) Å	β= 108.664(2)°.		
	c = 14.4178(3) Å	$\gamma = 90^{\circ}$.		
Volume	2014.09(7) Å ³			
Z	4			
Density (calculated)	1.513 Mg/m ³			
Absorption coefficient	0.940 mm ⁻¹			
F(000)	944			
Crystal size	0.240 x 0.180 x 0.110 mm ³			
Theta range for data collection	2.875 to 26.372°.			
Index ranges	-23<=h<=23, -9<=k<=9, -18<=l<=18			
Reflections collected	36629			
Independent reflections	2058 [R(int) = 0.0523]			
Completeness to theta = 26.372°	ness to theta = 26.372° 100.0 %			
Absorption correction	Semi-empirical from equivalent	nts		
Max. and min. transmission	1.00000 and 0.77574			
Refinement method	Full-matrix least-squares on F	2		
Data / restraints / parameters	2058 / 0 / 127			
Goodness-of-fit on F ²	1.067			
Final R indices [I>2sigma(I)]	R1 = 0.0170, $wR2 = 0.0436$			
R indices (all data)	R1 = 0.0181, $wR2 = 0.0442$			
Extinction coefficient	efficient n/a			
Largest diff. peak and hole	Largest diff. peak and hole $0.397 \text{ and } -0.233 \text{ e.Å}^{-3}$			
Complex 7				

Table S2. Crystal data and structure refinement for complex 5.

A yellow block 0.40 x 0.24 x 0.16 mm in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using omega scans. Crystal-to-detector distance was 50 mm and exposure time was 0.50 seconds per frame using a scan width of 0.5° . Data collection was 100% complete to 26.372° in θ . A total of 39516 reflections were collected covering the indices - 12<=h<=12, -15<=k<=15, -19<=l<=19. 7869 reflections were founded to be symmetry independent, with an R_{int} of 0.0510. Indexing and unit cell refinement indicated a primitive, triclinic lattice. The space group was found to be P -1 (No. 2). The data were integrated using the CrysAlis^{Pro} 1.171.39.46e

software program and scaled using the SCALE3 ABSPACK scaling algorithm. Solution by intrinsic phasing (SHELXT-2015) produced a heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2014). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2014.

Table S3. Crystal data and structure refinement for complex 7.				
Empirical formula	birical formula C ₃₇ H ₂₈ F ₁₈ NO ₂ PPd			
Formula weight	Formula weight 997.97			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Triclinic			
Space group	P -1			
Unit cell dimensions	a = 9.9613(3) Å	$\alpha = 89.843(3)^{\circ}.$		
	b = 12.3262(4) Å	$\beta = 88.801(2)^{\circ}.$		
	c = 15.8096(5) Å	$\gamma = 82.682(2)^{\circ}.$		
Volume	1924.95(11) Å ³			
Z	2			
Density (calculated)	1.722 Mg/m ³			
Absorption coefficient	0.647 mm ⁻¹			
F(000)	992			
Crystal size	0.400 x 0.240 x 0.160 mm ³			
Theta range for data collection	2.775 to 26.372°.			
Index ranges	-12<=h<=12, -15<=k<=15, -19<=l<=19			
Reflections collected	39516			
Independent reflections	7869 [R(int) = 0.0510]			
Completeness to theta = 26.372°	99.9 %			
Absorption correction	Semi-empirical from equivale	ents		
Max. and min. transmission	1.00000 and 0.60221			
Refinement method	Full-matrix least-squares on F	2		
Data / restraints / parameters	7869 / 36 / 576			
Goodness-of-fit on F^2	1.058			
Final R indices [I>2sigma(I)]	R1 = 0.0366, wR2 = 0.0967			
R indices (all data) $R1 = 0.0418$, wR2 = 0.0998				
Extinction coefficient n/a				
Largest diff. peak and hole 1.391 and -0.946 e.Å ⁻³				

Table S3. Crystal data and structure refinement for complex 7.

10. Computational Details

Computational Methods

All calculations were performed with the Gaussian 16 program package.⁵

Geometry optimizations for all reported structures were performed with the dispersioncorrected B3LYP-D3 functional with a mixed basis set of LANL2DZ (for Pd and I) and 6-31G(d) (for other atoms).⁶ Frequency calculations were performed on all optimized structures to ensure that each local minimum lacked imaginary frequencies and that each transition state contained exactly one imaginary frequency. Internal reaction coordinate (IRC) calculations were performed to confirm that all calculated transition states can reach the reactants and products. Bulk solvent effects were incorporated for geometry optimizations using the SMD model⁷ with benzene as the solvent.

Single point energies of all reported structures were calculated using the dispersioncorrected M06-D3 functional with a mixed basis set of SDD (for Pd and I) and 6-311+G(d,p) (for other atoms).⁶ Bulk solvent effects were incorporated for all single point calculations using the SMD model⁷ with benzene as the solvent. The reported Gibbs free energies were corrected using the quasi-harmonic model⁸ with a cut-off frequency of 100 cm⁻¹ at T = 353.15 K.

Optimized Structures of Key Intermediates 10/10' and 5/5'

Figure S4. Optimized structures of hydrogen-bonding-stabilized palladacycles 4/4' and unstabilized intermediates 10/10'. Color code: Pd (cyan), O (red), N (blue), C (grey), H (white).

Structure	E (Hartree)	ZPE (Hartree)	H (Hartree)	qh-G (Hartree)	Imaginary frequency (cm ⁻¹)
HOAc	-229.037175	0.062077	-228.969658	-229.009406	-
OAc ⁻	-228.522617	0.048532	-228.4687531	-228.507934	-
PhI(OAc) ₂	-699.698051	0.193468	-699.486604	-699.560274	-
PhI	-242.908794	0.090401	-242.811572	-242.857425	-
4	-1827.474566	0.569452	-1826.865578	-1826.987000	-
4'	-1906.060332	0.627027	-1905.391006	-1905.518919	-
9	-913.708093	0.283486	-913.4049648	-913.481441	-
9'	-953.000964	0.312426	-952.6675623	-952.747042	-
TS(9-10)	-913.667035	0.277314	-913.3706246	-913.445655	-1329.51
TS(9'-10')	-952.968233	0.306895	-952.6412872	-952.718487	-1361.47
10	-913.682589	0.282044	-913.3808394	-913.457429	-
10'	-952.992337	0.311677	-952.6600811	-952.738509	-
5	-913.704023	0.281608	-913.4028054	-913.479418	-
5'	-953.014911	0.311596	-952.6829869	-952.761072	-

Energy Data for All Reported Structures

11	-1370.5279	0.386912	-1370.110988	-1370.212001	-
11'	-1409.84037	0.416871	-1409.392919	-1409.494656	-
12	-1141.461655	0.322508	-1141.114710	-1141.202249	-
12'	-1180.770744	0.352525	-1180.392990	-1180.482400	-
TS(12-8)	-1141.441293	0.321389	-1141.095714	-1141.182765	-272.76
TS(12'-8')	-1180.745252	0.351072	-1180.369147	-1180.457940	-370.89
8	-1141.538386	0.326682	-1141.187712	-1141.274862	-
8'	-1180.835408	0.356493	-1180.454112	-1180.542680	-

Table S4. Electronic energies (E), zero-point energy corrections (ZPE), enthalpies (H), quasiharmonic Gibbs free energies calculated at T = 353.15 K (qh-G), and imaginary frequencies of all reported structures.

Cartesian Coordinates (Å) of Optimized Structures

HOAc

С	-1.39502800	-0.10885100	-0.00000100
С	0.09233200	0.12473200	-0.00000100
Ο	0.64624600	1.20283100	0.00000000
Ο	0.77529200	-1.04630400	0.00000000
Η	-1.91746000	0.84846200	-0.00006400
Η	-1.68144900	-0.69054500	0.88296600
Η	-1.68143500	-0.69066500	-0.88289200
Н	1.72421800	-0.81475100	0.00000600

 OAc^{-} anion

С	-1.35069900	-0.05833900	0.00002500
Н	-1.73089000	-1.08734000	0.00332400
Н	-1.74766300	0.46970600	0.87892300
Η	-1.74750100	0.46386900	-0.88244300
С	0.21434800	0.00144700	0.00002600
0	0.69229400	1.16579100	0.00000000
0	0.81322600	-1.10390100	-0.00001400

PhI(OAc)₂

С	-0.00000300	-1.52583300	0.00000100
С	0.92202800	-2.19237600	0.80043200
С	0.91560100	-3.58972100	0.79078600
С	-0.00000900	-4.28653200	-0.00000100
С	-0.91561600	-3.58971600	-0.79078800
С	-0.92203600	-2.19237000	-0.80043100
Н	1.63910100	-1.64599900	1.40049800
Н	1.62901500	-4.12780300	1.40851400
Н	-0.00001200	-5.37286900	-0.00000200

Н	-1.62903200	-4.12779300	-1.40851700
Н	-1.63910700	-1.64599000	-1.40049700
Ι	0.00000200	0.62914000	0.00000300
0	2.18607900	0.30531400	-0.11538000
С	2.78601900	1.47755400	-0.12803000
С	4.29703900	1.37183800	-0.18652700
0	2.18185500	2.54696200	-0.09498900
0	-2.18607800	0.30532200	0.11538400
С	-2.78601200	1.47756400	0.12803300
С	-4.29703400	1.37185500	0.18650200
0	-2.18184400	2.54697000	0.09499800
Н	4.66394700	0.82684000	0.68986000
Н	4.73828800	2.36978600	-0.21389100
Н	4.59596500	0.80631700	-1.07526100
Н	-4.59598100	0.80618800	1.07513600
Н	-4.66393400	0.82700800	-0.68998300
Н	-4.73827400	2.36980300	0.21401800

PhI

С	3.36375300	-0.00000100	0.00000000
С	2.66362200	1.20788200	0.00000000
С	1.26583600	1.21688800	0.00000000
С	0.58423500	0.00000100	0.00000000
С	1.26583400	-1.21688700	0.00000000
С	2.66362000	-1.20788300	0.00000000
Н	4.45018300	-0.00000200	0.00000000
Н	3.20112200	2.15241000	0.00000000
Н	0.72410900	2.15655400	0.00000000
Н	0.72410400	-2.15655100	0.00000000
Н	3.20111900	-2.15241200	0.00000000
Ι	-1.56871800	0.00000000	0.00000000

4

С	-0.08475300	3.56121100	1.69925000
С	-0.41175000	2.18313900	1.72608500
С	0.43285800	1.27436500	2.43479000
С	1.54787300	1.81770800	3.13171900
С	1.84661800	3.16647400	3.07010300
С	1.03704400	4.05708000	2.33574200
Н	-0.74252900	4.23420000	1.15468400
Н	2.16548300	1.12703800	3.69698900
Н	2.71878900	3.54210800	3.60023000
Н	1.27536200	5.11544900	2.29478300
С	-3.61422500	0.43292300	0.61066700
С	-4.44635000	1.69451000	0.91707500
Н	-4.20243100	2.53654000	0.26029900
Н	-5.50155200	1.45796300	0.74744300
Н	-4.33712900	2.01239300	1.96039200

G		0.10110100	0.000 = 0.000
С	-3.72366000	0.12442400	-0.88973600
Н	-3.12113600	-0.74016900	-1.16166500
Η	-4.76926400	-0.08274200	-1.14665400
Н	-3.38639100	0.98205000	-1.47786300
С	-4.17065700	-0.71802300	1.46935500
Н	-4.02390400	-0.50709900	2.53492700
Н	-5.24604500	-0.82129600	1.28507700
Н	-3.69468700	-1.66862800	1.22792100
Ν	-2.15722500	0.60173700	0.97566100
0	0.23068100	-0.01226900	2.51695000
С	-1.67687100	1.79128600	1.15930100
Н	-2.31484500	2.63425400	0.90469600
Pd	-0.90008200	-1.01736000	1.20936800
0	-0.33705200	-2.65020700	-1.60060000
Õ	-1.95147500	-2.30618600	-0.03783600
Č	-1.44785200	-2.89145300	-1.04841700
C	-2.30245000	-3.96715100	-1.68528700
Н	-2.90426500	-3.50378500	-2.47700100
Н	-1.67280600	-4.73409400	-2.14249700
H	-2.97722200	-4.41158100	-0.95043200
C	0.08483900	3.56127100	-0.93043200
C C	0.08483900	2.18317900	-1.7260930200
C C			
	-0.43292000	1.27442400	-2.43473400
C	-1.54793700	1.81780500	-3.13164000
C	-1.84660600	3.16658800	-3.07006600
C	-1.03695400	4.05717800	-2.33577000
Н	0.74268100	4.23424800	-1.15479800
Н	-2.16559800	1.12714500	-3.69686700
Η	-2.71878000	3.54224900	-3.60016900
Н	-1.27520400	5.11556500	-2.29485700
С	3.61418900	0.43293000	-0.61061500
С	4.44630000	1.69453200	-0.91698200
Н	4.20240800	2.53652000	-0.26014200
Н	5.50150800	1.45796700	-0.74740800
Н	4.33703500	2.01248500	-1.96027400
С	3.72364300	0.12439200	0.88977900
Н	3.12112100	-0.74020400	1.16169500
Н	4.76924600	-0.08278800	1.14668200
Н	3.38638300	0.98200100	1.47793900
С	4.17064000	-0.71798000	-1.46934500
Н	4.02386100	-0.50702500	-2.53490800
Н	5.24603400	-0.82123300	-1.28509200
Н	3.69469400	-1.66859900	-1.22792800
Ν	2.15718700	0.60173500	-0.97559800
0	-0.23077800	-0.01220600	-2.51691200
Č	1.67686800	1.79129100	-1.15929800
H	2.31487200	2.63424800	-0.90472300
Pd	0.90002700	-1.01738200	-1.20942900
0	1.95145600	-2.30620400	0.03770500
0	0.33700800	-2.65026300	1.60042300
C C	1.44792600	-2.89132900	1.00042300
C C	2.30284700	-3.96662100	1.68555200
Н	1.67347500	-3.90002100	2.14436300
H H		-4.73282500	
H H	2.97655900		0.95037500
п	2.90585800	-3.50258000	2.47594800

~	
С	-0.48718000 -3.57336500 -1.63456500
С	-0.82057300 -2.19792000 -1.57658300
С	-0.18856900 -1.28344600 -2.47374700
С	0.71818200 -1.81876100 -3.43036800
С	1.03347600 -3.16518900 -3.44728100
C	0.44253600 -4.06114400 -2.53317800
H	-0.98194000 -4.25083600 -0.94280300
H	1.16758500 -1.12396400 -4.13277100
Н	1.74657200 -3.53471100 -4.18057400
H	0.69192100 -5.11753300 -2.55441600
C	-3.65540700 -0.47598600 0.30935900
С	-4.50559700 -1.76273900 0.26274700
Н	-4.08582200 -2.56179900 0.88369700
Н	-5.49626500 -1.53238100 0.66798000
Н	-4.64049800 -2.14483400 -0.75390500
С	-3.38133200 -0.14057100 1.78376900
Н	-2.76928400 0.75382100 1.88079700
Н	-4.33116300 0.02623000 2.30548100
Н	-2.86267600 -0.97113800 2.26928400
C	-4.43965700 0.67451800 -0.37477800
Н	-5.37963600 0.78865600 0.18114800
H	-3.88711000 1.60608100 -0.23657400
N	-2.33461500 -0.63072300 -0.40754000
0	-0.41559000 0.00151500 -2.50026300
С	-1.90809900 -1.81559200 -0.71231100
Н	-2.45948600 -2.66387700 -0.31437500
Pd	-1.17799700 0.99742300 -0.94212800
Ο	-1.88007200 2.28256700 0.53268300
0	0.08090100 2.63404700 1.62711000
С	-1.13482400 2.87225300 1.37802700
С	-1.80187400 3.94932400 2.20728100
Н	-1.06769600 4.68412700 2.54506900
Н	-2.59876800 4.43468700 1.63913500
H	-2.24660200 3.47586000 3.09148300
C	-4.74777600 0.47079900 -1.86161600
Н	-5.40737200 -0.38689800 -2.03628100
H	-5.24968100 1.35786900 -2.26525400
Н	-3.83184000 0.31779000 -2.44328600
C	0.48748700 -3.57355300 1.63430900
С	0.82073200 -2.19806800 1.57641600
С	0.18861600 -1.28371200 2.47362400
С	-0.71807000 -1.81919700 3.43021800
С	-1.03322100 -3.16565700 3.44704100
С	-0.44218700 -4.06149100 2.53287900
Н	0.98233500 -4.25092500 0.94251200
Н	-1.16753500 -1.12449600 4.13267600
Н	-1.74627400 -3.53530500 4.18031400
Н	-0.69146200 -5.11790600 2.55404700
C	3.65544200 -0.47574500 -0.30934800
C C	4.50573300 -1.76243800 -0.26286500
C	1.30373300 -1.70273000 -0.20200300

H5.49637900-1.53196300-0.66808500H4.64068000-2.144623000.75374700C3.38135500-0.14021900-1.78373100H2.769325000.75419400-1.88068300H4.331183000.02660700-2.30543900H2.86268000-0.97074200-2.26930300C4.439602000.674749000.37490800H5.379599000.78898500-0.18097000H3.887010001.606291000.23675800N2.33465200-0.630644000.40751700O0.415483000.001269002.50022000C1.90825000-1.815573000.71220400)
C3.38135500-0.14021900-1.78373100H2.769325000.75419400-1.88068300H4.331183000.02660700-2.30543900H2.86268000-0.97074200-2.26930300C4.439602000.674749000.37490800H5.379599000.78898500-0.18097000H3.887010001.606291000.23675800N2.33465200-0.630644000.40751700O0.415483000.001269002.50022000C1.90825000-1.815573000.71220400)
H2.769325000.75419400-1.88068300H4.331183000.02660700-2.30543900H2.86268000-0.97074200-2.26930300C4.439602000.674749000.37490800H5.379599000.78898500-0.18097000H3.887010001.606291000.23675800N2.33465200-0.630644000.40751700O0.415483000.001269002.50022000C1.90825000-1.815573000.71220400)
H4.331183000.02660700-2.30543900H2.86268000-0.97074200-2.26930300C4.439602000.674749000.37490800H5.379599000.78898500-0.18097000H3.887010001.606291000.23675800N2.33465200-0.630644000.40751700O0.415483000.001269002.50022000C1.90825000-1.815573000.71220400)
H2.86268000-0.97074200-2.26930300C4.439602000.674749000.374908000H5.379599000.78898500-0.180970000H3.887010001.606291000.236758000N2.33465200-0.630644000.4075170000O0.415483000.001269002.5002200000C1.90825000-1.815573000.71220400000)
C4.439602000.674749000.37490800H5.379599000.78898500-0.18097000H3.887010001.606291000.23675800N2.33465200-0.630644000.40751700O0.415483000.001269002.50022000C1.90825000-1.815573000.71220400)
H5.379599000.78898500-0.18097000H3.887010001.606291000.23675800N2.33465200-0.630644000.40751700O0.415483000.001269002.50022000C1.90825000-1.815573000.71220400)
H3.887010001.606291000.23675800N2.33465200-0.630644000.40751700O0.415483000.001269002.50022000C1.90825000-1.815573000.71220400	1
N2.33465200-0.630644000.40751700O0.415483000.001269002.50022000C1.90825000-1.815573000.71220400)
O0.415483000.001269002.50022000C1.90825000-1.815573000.71220400)
C 1.90825000 -1.81557300 0.71220400)
)
11 2 45074600 2 66279200 0 21425900)
Н 2.45974600 -2.66378300 0.31425800)
Pd 1.17785200 0.99739700 0.94219300)
O -0.08102300 2.63417500 -1.62685200)
O 1.87996300 2.28269800 -0.53242700)
C 1.13472600 2.87232500 -1.37784300)
C 1.80185100 3.94921000 -2.20727100)
Н 2.24595800 3.47562400 -3.09172500)
Н 1.06781900 4.68433200 -2.54468500)
Н 2.59920600 4.43419300 -1.63945700)
C 4.74766300 0.47092800 1.86174500	
Н 5.40729000 -0.38675200 2.03637700)
Н 5.24950800 1.35799000 2.26547700)
Н 3.83170500 0.31783300 2.44335700)

9

С	3.83750400	0.65386500	0.00633400
С	2.47240600	0.26279200	0.00310600
С	2.14668200	-1.12831100	-0.00008200
С	3.21682500	-2.06414600	0.00031700
С	4.53300000	-1.64445400	0.00350300
С	4.85991700	-0.27234900	0.00654700
Н	4.06963700	1.71705300	0.00867800
Н	2.95758300	-3.11817900	-0.00211500
Н	5.32708700	-2.38735700	0.00360800
Н	5.89707700	0.04776400	0.00899100
С	-0.64675100	2.48800100	0.00049800
С	0.18894000	3.78133200	0.00478700
Н	0.82002100	3.87442800	-0.88622000
Н	-0.50100800	4.63071000	0.00460900
Н	0.81572700	3.87123100	0.89915600
С	-1.51017900	2.47309100	-1.27503000
Н	-2.17739700	1.61018600	-1.30454700
Н	-2.12611900	3.37881700	-1.31092100
Н	-0.87198000	2.45544800	-2.16595300
С	-1.51693900	2.46916100	1.27135000
Н	-0.88353300	2.44864300	2.16563300
Н	-2.13298000	3.37482900	1.30681400
Н	-2.18445900	1.60629500	1.29442000
Ν	0.19797700	1.23805400	0.00070100

0	0.93203900	-1.60556300	-0.00346500
С	1.49340000	1.31367500	0.00309400
Н	1.93351600	2.30732300	0.00537600
Pd	-0.75353000	-0.56923700	-0.00479000
0	-2.09402600	-2.22446100	-0.01262100
0	-2.84565000	-0.16857000	-0.00870100
С	-3.08689500	-1.42796000	-0.00888000
С	-4.49749100	-1.93179100	0.02485800
Η	-5.13421500	-1.30755600	-0.60861300
Η	-4.53848400	-2.97386100	-0.30015300
Н	-4.87535200	-1.86594300	1.05255700

9'

С	-3.85427400	0.64387000	0.10970400
Č	-2.50009900	0.21720200	0.09874000
Ċ	-2.21016800	-1.17498600	-0.03708200
Ċ	-3.30330100	-2.07627800	-0.15341000
Ċ	-4.60809600	-1.62253500	-0.13788100
Ċ	-4.89974700	-0.24893800	-0.00567400
Ĥ	-4.05921100	1.70761800	0.21239100
Н	-3.07087100	-3.13162600	-0.25557200
Н	-5.42058000	-2.33938700	-0.22979700
Н	-5.92810400	0.09828500	0.00490500
С	0.67155000	2.34591100	0.37489900
С	-0.13479200	3.65078600	0.51923300
Н	-0.74799700	3.65513100	1.42734000
Н	0.57526600	4.47944700	0.60185800
Н	-0.77934900	3.85885900	-0.34001700
С	1.52181200	2.17684000	1.64898500
Н	2.16616900	1.29772700	1.59596000
Н	2.16064500	3.05699100	1.78391500
Н	0.87406400	2.08451700	2.52830600
С	1.58317000	2.43261500	-0.87932400
Н	2.18986000	3.34093600	-0.76967400
Н	2.28136900	1.59239500	-0.86769000
Ν	-0.20210400	1.12514300	0.24316200
0	-1.00820300	-1.68284100	-0.06322700
С	-1.49483800	1.23541200	0.22436100
Η	-1.90893800	2.23629900	0.31334500
Pd	0.70295900	-0.69920600	0.07223300
0	1.99023400	-2.38777900	-0.07937000
0	2.80900800	-0.37047800	0.14734800
С	3.00882100	-1.62957400	0.01351800
С	4.40209300	-2.17518800	-0.06295900
Н	5.05914100	-1.62550600	0.61682400
Н	4.40822500	-3.24106500	0.17643800
Н	4.78157900	-2.04087800	-1.08345700
С	0.84669700	2.45860200	-2.22163600
Н	0.17889300	3.32236000	-2.31851300
Н	1.56847200	2.51030200	-3.04489700
Н	0.24867100	1.55142900	-2.36336100

С	3.98111000	0.43706700	0.10564500
C C	2.58183100	0.43700700	0.10304300
C C	2.09485500	-1.15889700	-0.00869600
C	3.07427000	-2.19422800	0.01338000
С	4.42552700	-1.92013000	0.07511400
С	4.89849300	-0.59131700	0.12207300
Н	4.32351200	1.46923000	0.14253800
Н	2.70773500	-3.21551900	-0.02227200
Н	5.13452900	-2.74470100	0.08809600
Н	5.96304400	-0.38462700	0.17102600
С	-0.55011000	2.41862000	0.00508800
С	-0.63487200	2.96142600	1.43902100
Н	0.32528300	3.38866600	1.74970600
Н	-1.39644900	3.74669600	1.49861300
Н	-0.90196300	2.16255000	2.13896400
С	-0.20662100	3.52964500	-0.99115900
Н	-0.06939300	3.11841300	-1.99699500
Н	-1.02366100	4.25880600	-1.02337300
Н	0.70826700	4.06137400	-0.70413200
С	-1.86327700	1.66983400	-0.39048300
Н	-2.71400800	2.19430600	0.06388100
Н	-2.01572900	1.67736100	-1.47456900
Ν	0.43725100	1.32026600	-0.03372700
0	0.84614600	-1.53929300	-0.06983200
С	1.72610600	1.35278800	0.03897900
Н	2.20637100	2.33182000	0.10812600
Pd	-0.70092300	-0.24810200	-0.13037300
С	-3.28087200	-1.44636600	0.09308400
С	-4.35587500	-2.50350600	0.16035000
Н	-4.71822400	-2.57689200	1.19206200
Н	-5.20350300	-2.20511300	-0.46470100
Н	-3.97290000	-3.47342500	-0.16102700
0	-3.61899600	-0.24051000	0.32892900
Ĥ	-2.56024500	0.54191100	0.10545900
0	-2.09644000	-1.80911300	-0.18371500
0	2.07011000	1.00711500	0.105/1500

TS(9'-10')

С	-3.96376300	0.01748800	-0.35294600
С	-2.56212500	-0.07892600	-0.13790400
С	-1.97755500	-1.36404400	0.12405800
С	-2.85282200	-2.48915100	0.14900000
С	-4.20893100	-2.35368200	-0.06732600
С	-4.78430800	-1.08966800	-0.32310400
Η	-4.38838400	1.00072500	-0.54614300
Η	-2.40533600	-3.45805700	0.34811100
Η	-4.84277600	-3.23708400	-0.03951000
Η	-5.85229000	-0.99332900	-0.49213100
С	0.04758800	2.70073300	-0.04485500

-0.65508600	3.64436200	-1.03628600
-1.66525000	3.92267400	-0.71855100
-0.07896000	4.57223400	-1.11598100
-0.71312200	3.19119100	-2.03204100
-0.09665300	3.23727000	1.39150000
0.37648800	2.57036100	2.11859700
0.36302400	4.22847600	1.47661700
-1.15553700	3.32489700	1.65968900
1.52607200	2.56784000	-0.44912900
1.57900900	2.38937100	-1.53064500
2.01430900	3.53457500	-0.26479100
-0.53038500	1.31548500	-0.06637800
-0.71589500	-1.58087400	0.35018900
-1.81190900	1.14137000	-0.18334300
-2.41695700	2.03544100	-0.33635700
0.75885800	-0.21025900	0.22386800
2.07083500	-1.83191800	0.44063400
3.45735400	-0.66692100	-0.87307100
3.12801000	-1.72951400	-0.25214100
4.03673900	-2.92873700	-0.35986500
5.07245800	-2.62598100	-0.17914900
3.73978100	-3.70949300	0.34208100
3.98004900	-3.32092200	-1.38199100
2.26645300	1.44677900	0.28064900
2.63427700	0.27164400	-0.40321100
3.34690400	1.57541800	0.11913200
2.16894200	1.49637400	1.37111700
	$\begin{array}{r} -1.66525000\\ -0.07896000\\ -0.07896000\\ -0.71312200\\ -0.09665300\\ 0.37648800\\ 0.36302400\\ -1.15553700\\ 1.52607200\\ 1.57900900\\ 2.01430900\\ -0.53038500\\ -0.71589500\\ -0.71589500\\ -1.81190900\\ -2.41695700\\ 0.75885800\\ 2.07083500\\ 3.45735400\\ 3.12801000\\ 4.03673900\\ 5.07245800\\ 3.73978100\\ 3.98004900\\ 2.26645300\\ 2.63427700\\ 3.34690400\\ \end{array}$	-1.66525000 3.92267400 -0.07896000 4.57223400 -0.71312200 3.19119100 -0.09665300 3.23727000 0.37648800 2.57036100 0.36302400 4.22847600 -1.15553700 3.32489700 1.52607200 2.56784000 1.57900900 2.38937100 2.01430900 3.53457500 -0.53038500 1.31548500 -0.71589500 -1.58087400 -1.81190900 1.14137000 -2.41695700 2.03544100 0.75885800 -0.21025900 2.07083500 -1.83191800 3.45735400 -0.66692100 3.12801000 -1.72951400 4.03673900 -2.92873700 5.07245800 -2.62598100 3.73978100 -3.70949300 3.98004900 -3.32092200 2.26645300 1.44677900 2.63427700 0.27164400 3.34690400 1.57541800

10

С	-3.82683700	-0.44545300	0.10104400
С	-2.41814900	-0.28360600	0.01312600
С	-1.57555000	-1.45907700	-0.13549500
С	-2.25363600	-2.71826400	-0.17521900
С	-3.62575500	-2.82745200	-0.08418300
С	-4.43729500	-1.68138400	0.05559100
Н	-4.43632400	0.45030800	0.20926000
Н	-1.62844100	-3.59985600	-0.28792200
Н	-4.08668300	-3.81237200	-0.12239600
Н	-5.51709600	-1.77115800	0.12555200
С	-0.08279800	2.79316100	0.11162200
С	-0.54434800	3.65689200	-1.06509500
Н	-1.61908200	3.86893800	-1.01030800
Н	-0.00608400	4.61145100	-1.05757200
Н	-0.33945900	3.15057600	-2.01480200
С	-0.39607900	3.45484900	1.45603500
Н	-0.08825400	2.80555100	2.28320200
Н	0.14808200	4.40261100	1.53787400
Н	-1.46739000	3.66512400	1.56134300
С	1.39825600	2.33050700	-0.01206500
Н	1.89894100	2.68233000	-0.91895600
Н	2.00275100	2.54130900	0.87536000
Ν	-0.69824200	1.44351700	0.04003000

0	-0.28219100	-1.46681800	-0.23717000
С	-1.93396200	1.06999400	0.08636500
Н	-2.68900000	1.85446800	0.19577600
Pd	0.88484600	0.34206300	-0.15154700
С	3.19305500	-1.69237900	0.07140600
С	2.38381600	-2.52753700	1.02509900
Н	2.79630500	-3.52961300	1.17426800
Н	2.35048900	-2.00642100	1.98955500
Н	1.35646500	-2.58719200	0.65145400
0	4.41145100	-2.11547100	-0.28305600
Н	4.61116600	-2.96857600	0.14002200
0	2.82249900	-0.62002200	-0.39604300

-3.70030900	-1.00462400	-0.16474900
-2.32466900	-0.67576800	-0.02262700
-1.36588900	-1.73583600	0.19763900
-1.88522600	-3.06760200	0.25213300
-3.22936200	-3.34133900	0.10706100
-4.16201800	-2.30311000	-0.10533200
-4.40687600	-0.19257900	-0.32848100
-1.16566900	-3.86377400	0.42320900
-3.57405300	-4.37209000	0.15961100
-5.21943000	-2.52233400	-0.21822700
-0.72481100	2.81254600	-0.10137400
-1.80466400	3.48460100	-0.96330900
-2.79919900	3.45323400	-0.50505700
-1.54779900	4.54095700	-1.09647000
-1.86120000	3.02074400	-1.95467000
-0.81646300	3.31647200	1.35009000
-0.06684300	2.83447100	1.98460300
-0.65971900	4.40092100	1.38583000
-1.80492600	3.09700800	1.76990600
0.66983300	3.07191900	-0.70088900
0.61800300	2.86711400	-1.77852100
0.91565500	4.13929500	-0.59079000
-0.84735300	1.31208700	-0.06508200
-0.09314100	-1.56397700	0.35219700
-2.00458200	0.72490400	-0.10958200
-2.87466200	1.37146700	-0.23371000
0.88367300	0.32796300	0.15276500
3.22504100	-1.62290200	-0.11651300
2.48625500	-2.35837500	-1.19947500
2.99017800	-3.27213100	-1.52693500
1.48324500	-2.58337900	-0.82185100
2.36507500	-1.68249000	-2.05321900
1.72706300	2.16873700	-0.06177600
2.63277900	2.09427300	-0.67598900
2.01878600	2.50640100	0.94153900
4.40731900	-2.09106300	0.29651600
4.64181600	-2.89978400	-0.19085500
2.81783900	-0.59820300	0.42262200
	$\begin{array}{r} -2.32466900\\ -1.36588900\\ -1.38522600\\ -3.22936200\\ -4.16201800\\ -4.40687600\\ -1.16566900\\ -3.57405300\\ -5.21943000\\ -0.72481100\\ -1.80466400\\ -2.79919900\\ -1.54779900\\ -1.54779900\\ -1.86120000\\ -0.81646300\\ -0.06684300\\ -0.65971900\\ -1.80492600\\ 0.66983300\\ 0.61800300\\ 0.91565500\\ -0.84735300\\ -0.09314100\\ -2.00458200\\ -2.87466200\\ 0.88367300\\ 3.22504100\\ 2.48625500\\ 2.99017800\\ 1.48324500\\ 2.36507500\\ 1.72706300\\ 2.63277900\\ 2.01878600\\ 4.40731900\\ 4.64181600\\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

С	-3.73595900	-0.69520400	-0.00013900
С	-2.34262800	-0.42767300	0.00002300
С	-1.42073600	-1.54239200	0.00014400
С	-1.98111900	-2.84821100	0.00012700
С	-3.34723900	-3.06189000	-0.00004200
С	-4.24615500	-1.97888000	-0.00018900
Н	-4.41970000	0.15171800	-0.00024200
Н	-1.28592600	-3.68309200	0.00025500
Н	-3.72743900	-4.08082300	-0.00006800
Н	-5.31846100	-2.14846400	-0.00032900
С	-0.26553300	2.84471000	-0.00008400
С	-0.71635400	3.57516400	-1.26726800
Н	-1.80506100	3.70515500	-1.29018500
Н	-0.25247200	4.56715800	-1.30564100
Н	-0.41471600	3.01650000	-2.16009800
С	-0.71628500	3.57540300	1.26699400
Н	-0.41460200	3.01690300	2.15991000
Н	-0.25240800	4.56740800	1.30516800
Н	-1.80499400	3.70539000	1.28994400
С	1.25190400	2.49421600	-0.00009900
Н	1.78131100	2.81460100	-0.90202000
Н	1.78130100	2.81465100	0.90181300
Ν	-0.77057100	1.44512700	0.00005800
0	-0.11573200	-1.42750800	0.00042100
С	-1.96970700	0.97073800	0.00000800
Н	-2.79337600	1.69070900	-0.00006900
Pd	0.90065400	0.46630900	0.00012400
С	3.06456900	-1.69401000	-0.00018700
С	4.46826700	-2.23159200	-0.00019700
Н	4.61763200	-2.86209800	0.88309700
Н	4.61742000	-2.86315800	-0.88272900
Н	5.18869000	-1.41295700	-0.00066500
0	2.14291300	-2.62639800	-0.00027500
Н	1.19177800	-2.25640400	-0.00006700
0	2.84991500	-0.47004400	0.00001400
5'			

C C C C C H H	-3.49733900 -2.18295100 -1.07861200 -1.36911600 -2.66599600 -3.75182300 -4.32711400 -0.52919100	-1.51769600 -0.99128300 -1.90660400 -3.29648000 -3.76749700 -2.87584800 -0.81663900 -3.98186300	-0.10481400 -0.01431900 0.08340100 0.06693500 -0.02968700 -0.11494400 -0.17074300 0.13959700
H H	-0.52919100 -2.84518000	-3.98186300	-0.03697300

Н	-4.76924800	-3.24751300	-0.18764800
C	-1.13856900	2.71143900	0.02131000
C C	-2.38548900	3.24959000	-0.69560100
Н	-3.31365800	3.04113100	-0.15238900
	-2.30389700		
Н		4.33829700	-0.78147200
Н	-2.46915000	2.83472000	-1.70650200
С	-1.15856300	3.12640000	1.50338800
Н	-0.28834000	2.73372000	2.03747800
Н	-1.15773400	4.21913900	1.58950600
Н	-2.05893700	2.74222100	1.99639600
С	0.13867600	3.20481900	-0.68603800
Н	0.01514400	3.03696600	-1.76389300
Н	0.23169900	4.29175400	-0.54048100
N	-1.03287700	1.20917100	-0.01891100
0	0.16414700	-1.51781300	0.20048600
C C	-2.08453600		
		0.45238700	-0.02853200
H	-3.05175200	0.95628400	-0.05909000
Pd	0.84799500	0.50602700	0.00151300
С	3.29370300	-1.32490800	-0.01896300
С	4.76544900	-1.62690900	-0.07090500
Н	4.98067100	-2.24597500	-0.94861700
Н	5.34291000	-0.70284200	-0.11493700
Н	5.05010000	-2.20466900	0.81527600
С	1.37895500	2.45493300	-0.19323200
H	2.21875200	2.53301200	-0.89316000
Н	1.71456800	2.79611600	0.79480000
0	2.53199500	-2.38679700	0.02560000
Н	1.53104600	-2.15222600	0.08176600
0	2.88747500	-0.14875800	-0.01910300
11			
11			
С	-3 99138600	-0.82647500	-0 43534300
Ċ	-2.61008500	-0.51038900	-0.29967600
Č	-1.63433300	-1.58194400	-0.34509400
C C	-2.13770700	-2.90386600	-0.51788900
C C	-3.48698000	-3.16205000	-0.64268000
C	-4.43719200	-2.11833400	-0.60373100
Н	-4.70904300	-0.00907800	-0.40090300
Н	-1.40624200	-3.70560100	-0.54908300
Н	-3.82146700	-4.18854900	-0.77328000
Н	-5.49679700	-2.33111600	-0.70354300
С	-0.71697900	2.83078100	0.26434100
С	-1.04511100	3.68876300	-0.96003100
Н	-2.12894500	3.79666600	-1.08264200
Н	-0.61430400	4.68840600	-0.83390400
Н	-0.62743700	3.22978400	-1.85994000
C	-1.32198200	3.38462100	1.55662500
Н	-1.09536200	2.71582300	2.39121200
H	-0.89898700	4.37379000	1.76480600
Н	-2.40924700	3.49012500	1.46675100
С		0 55005500	
	0.80648500	2.55005700	0.39783100
H		2.55005700 2.91100200	

S41

Н	1.23006000	2.68932400	1.39017900
Ν	-1.15248500	1.42929000	0.04724000
0	-0.35036300	-1.42045100	-0.25028900
С	-2.30749000	0.88017900	-0.12046200
Н	-3.15812500	1.56723700	-0.11933200
Pd	0.56079100	0.52133100	0.11986400
С	2.86391300	-1.39593500	0.09591900
С	4.32384200	-1.74026500	0.07272200
Н	4.49637900	-2.69968300	0.56697300
Н	4.63022100	-1.83394800	-0.97614900
Н	4.90991300	-0.95106000	0.54598100
0	2.07251300	-2.40595800	-0.08015700
Н	1.10166600	-2.14606600	-0.10471200
0	2.52658300	-0.20151100	0.25762700
С	1.23416800	0.15812900	-2.74156800
С	1.05451200	0.67543400	-4.16602000
Н	1.61358800	0.04507200	-4.86104200
Н	-0.00888900	0.65748500	-4.43069400
Η	1.39687700	1.71266200	-4.24341900
0	1.82070900	-0.88527500	-2.49418600
0	0.67506000	0.97727100	-1.87639400
С	0.53304800	-0.58965200	2.85028500
С	0.11514900	-0.40534100	4.30603300
Η	-0.97307200	-0.29057200	4.36543300
Н	0.42371400	-1.27440100	4.89113800
Н	0.56605100	0.50261900	4.72029700
0	1.05394400	-1.61636600	2.44142400
0	0.24780700	0.48498500	2.14470100

С	3.83348100	0.50094700	1.24629700
-			
C	2.45906700	0.28097100	0.95714700
С	1.53137700	1.37184800	1.09683300
С	2.05672200	2.63663300	1.47609600
С	3.40271400	2.81239600	1.73160900
С	4.31094800	1.73828400	1.62444200
Н	4.52240600	-0.33613600	1.15112700
Н	1.35420600	3.45958000	1.56526100
Н	3.76510400	3.79559300	2.02242000
Н	5.36623000	1.88478400	1.83200400
С	0.85077400	-2.93903900	-0.44018800
С	2.18526100	-3.55654500	-0.88281000
Н	2.85209600	-3.76405400	-0.03933200
Н	1.98074600	-4.51403000	-1.37287300
Н	2.70569200	-2.91114300	-1.59884400
С	0.23010000	-3.77471700	0.69227800
Н	-0.70633700	-3.33976100	1.04268100
Н	0.05019800	-4.79699800	0.34028900
Н	0.91798000	-3.82013800	1.54417700
С	-0.08784300	-2.81998000	-1.66087200
Н	0.47318900	-2.38137500	-2.49111900
Н	-0.40755600	-3.82670700	-1.96532200

N O C H Pd C C H H H C H H O C C H H H O C C H H H O C C H H H H	1.01133800 0.24825400 2.11718000 2.94365500 -0.58591600 -2.52181300 -3.85924900 -3.78005100 -4.26740300 -4.26740300 -1.30402900 -1.76749000 -2.03878700 -1.75976500 -0.88398500 -2.25722600 0.57417000 1.44151700 2.46109700 1.06006000 1.46261100 0.12552500 0.41341400 -2.28364300 -2.62297600 -3.38219800 -2.98564900	-1.52455500 1.23435400 -1.04618400 -1.75508000 -0.35669800 1.91384100 2.49734600 3.57753700 2.01678100 2.30678400 -1.96134800 -1.52559500 -2.39398700 2.67430800 2.2026700 0.75438100 1.36592100 1.45312100 1.3107600 0.78770900 2.48312000 2.35702300 0.11264800 -0.53865000 -1.37408000 -0.86256700 -2.36396000	0.04815800 0.93632400 0.52244200 0.57744200 -0.30709900 -0.46234300 -0.80930100 -0.95287700 -1.70009000 0.03615000 -1.37619900 -2.26113100 -0.69739000 0.24753600 0.50439800 -0.86551600 -2.39486300 -3.64670400 -3.40546700 -4.42789300 -4.00930500 -1.83759300 -2.02588800 2.13254000 3.36438400 3.96020200 3.06781300
н Н О	-2.98364900 -1.72008200 -2.75021800	-2.36396000 -1.52034600 0.57753400	3.96790300 1.95627900
0 12	-1.45178300	-1.18974500	1.34817200
C C C C C C C H H H H C C H H H C C H H H H C	3.89840300 2.54612400 2.26106600 3.39907500 4.68530200 4.95408600 4.08469100 3.19273600 5.51108200 5.97371800 -0.84100600 -0.79490400 0.08999800 -1.68471700 -0.76856200 -0.83292600 -0.81860600 -1.73129500 0.04372700 -2.00427100	-0.77414200 -0.35829700 0.79382200 1.43601800 0.99516900 -0.12589500 -1.63693200 2.29416800 1.51800100 -0.46288600 -1.73538600 -1.65455200 -2.16902700 -2.13549200 -0.61175400 -3.17988800 -3.19603500 -3.69865800 -3.72201100 -0.90438300	-0.57133000 -0.38417500 0.46350000 1.05446700 0.84540300 0.02246000 -1.20807500 1.68684800 1.32291900 -0.13536100 -1.66264600 -3.19072500 -3.58276900 -3.52263100 -1.15579900 -0.06264900 -1.50799100 -1.52805500 -1.05743800

Н	-2.53367200	-0.25795100	-1.75665800
Н	-2.65284300	-1.41157100	-0.34896200
Ν	0.27553500	-0.96357900	-1.06664600
0	1.09813000	1.28524800	0.71464900
С	1.56163100	-1.12466700	-1.07111400
Н	1.92237100	-1.94946600	-1.69160600
Pd	-0.71671800	0.31804300	0.00773000
С	-1.61513700	-1.30198900	2.22267200
0	-2.75618100	-0.92467900	2.00216200
0	-0.54994200	-1.04894000	1.48068700
С	-1.72597800	2.53999000	-0.46835900
0	-1.94378400	1.96794900	0.64438900
0	-1.04242400	1.89782800	-1.35021500
С	-1.23657600	-2.14581300	3.43304200
Н	-0.63241200	-3.00790500	3.13350200
Н	-0.63276000	-1.54129300	4.11901300
Н	-2.14350400	-2.47916200	3.94213000
С	-2.20545400	3.92845400	-0.75065600
Н	-1.40530000	4.63292600	-0.49258100
Η	-2.43479100	4.04363100	-1.81338100
Н	-3.08256900	4.15659800	-0.14022900

С	3.78449100	0.72737200	0.75242300
С	2.45001900	0.25971000	0.56333300
С	2.23004000	-1.05427900	-0.01289800
С	3.40272600	-1.80909500	-0.34592400
С	4.67105600	-1.31064600	-0.15590900
С	4.87989800	-0.02398500	0.39886500
Н	3.92590200	1.71456500	1.18852700
Н	3.24026500	-2.79447900	-0.77215300
Н	5.52958100	-1.91665600	-0.43727600
Н	5.88586300	0.35605100	0.54659500
С	-0.81405800	2.07342200	1.48771600
С	-0.40106800	2.51471000	2.90081000
Н	0.52567800	3.09765300	2.90336400
Н	-1.18671500	3.15249400	3.31982400
Н	-0.27183300	1.64792600	3.55746600
С	-0.80527800	3.26492500	0.51592200
Н	-1.13041400	2.97416500	-0.48586400
Н	-1.47847200	4.04735300	0.88418900
Н	0.20146300	3.69113800	0.44080600
С	-2.19438100	1.39031300	1.54129400
Н	-2.21690800	0.69983900	2.39207600
Н	-2.96660100	2.15308300	1.71835100
Ν	0.12039700	1.01186200	0.97148000
Ο	1.07936500	-1.58391800	-0.21748400
С	1.41713200	1.12517100	1.02573300
Н	1.77430600	2.02585200	1.52833300
Pd	-0.76160000	-0.42739600	-0.09850800
С	-2.50531800	0.63927000	0.26207700
Н	-3.28820100	-0.11316500	0.36577500

Н	-2.63268900	1.23959400	-0.63443900
С	-0.68853600	1.26894900	-2.59277000
0	-1.82782000	1.70982400	-2.50281800
0	-0.05025300	0.50716300	-1.73330300
С	-1.91262300	-2.56277200	0.41402700
0	-1.83562700	-2.13904600	-0.78537700
0	-1.47424000	-1.79458100	1.34436400
С	0.20712300	1.56464100	-3.79228900
Н	1.16950500	1.96515800	-3.45847300
Н	0.40698900	0.63527100	-4.33629700
Н	-0.29102800	2.27901200	-4.45128900
С	-2.45708200	-3.91720200	0.73454100
Н	-1.62631700	-4.63357100	0.73615100
Н	-2.91636800	-3.91840500	1.72641200
Н	-3.17941700	-4.22425000	-0.02584600

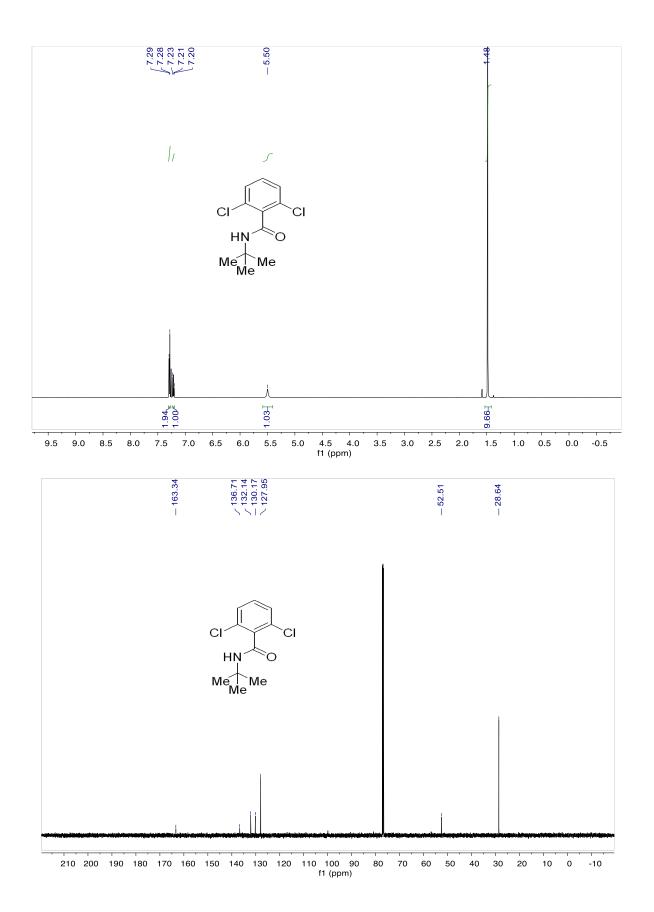
TS(12-8)

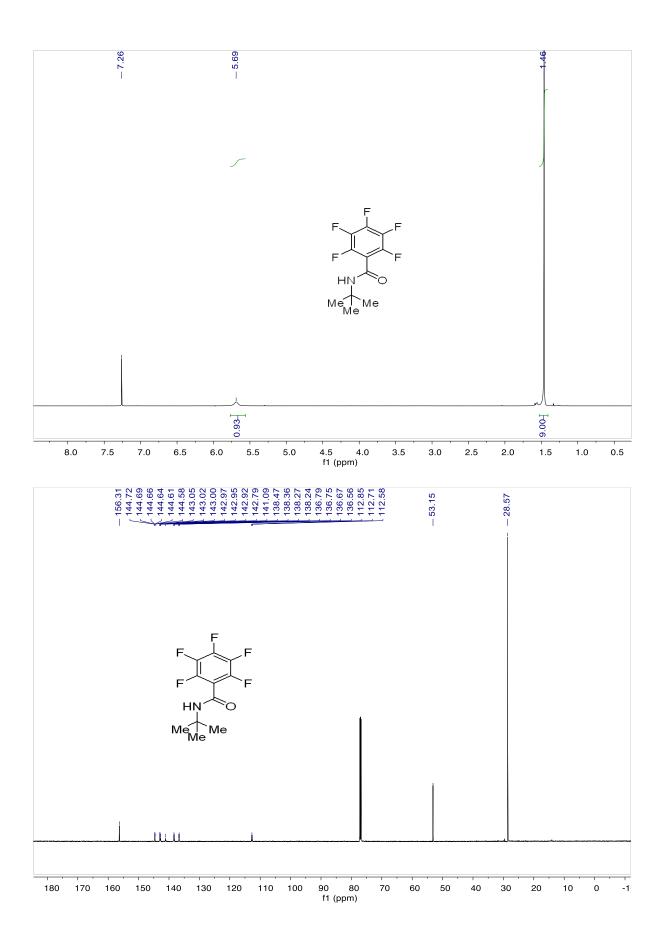
C	4 20057000	0 7 10 7 (0 0 0	0.07(50(00
C	4.28957900	-0.74276800	0.37653600
C	2.92235400	-0.43413900	0.15948200
С	2.50511100	0.94145200	0.07149600
С	3.51091300	1.93604000	0.23203800
С	4.82734600	1.59698400	0.47396400
С	5.23392500	0.24692500	0.55059500
Н	4.58266500	-1.78991100	0.41360500
Н	3.19719700	2.97257500	0.15980500
Н	5.56381400	2.38677700	0.60100100
Н	6.27368400	-0.00509100	0.73372100
С	-0.21334300	-2.36006400	-0.70572500
С	0.39273900	-3.12702200	-1.91305600
Н	1.11655300	-3.86761800	-1.55533300
Н	-0.39474600	-3.67006700	-2.44503300
Н	0.88948700	-2.44588900	-2.61032700
C	-0.77595900	-3.34532800	0.32962900
Н	-1.19389300	-2.80528100	1.18030400
Н	-1.55632100	-3.96624000	-0.12358800
Н	0.02721200	-3.99928300	0.68431400
C	-1.26004100	-1.47573700	-1.32339400
H	-0.98258900	-0.66465500	-1.99202200
Н	-2.23942800	-1.90108600	-1.48004000
N	0.72273300	-1.42204500	-0.05580200
0	1.29433900	1.35366600	-0.19844800
C C	2.01363100	-1.50797300	-0.11318600
Н	2.45454900	-2.45551200	-0.42947100
Pd	-0.34662500	0.27334800	0.27274900
ru C	-3.02182500	-0.57804100	0.27274900
0	-3.29767500	-0.57818800	-0.26325600
0	-1.82853500	-0.56706000	1.43628500
C	-1.85335300	2.31176000	-0.89298300
0	-1.47167200	1.95881600	0.30975400
0	-1.55798100	1.73331300	-1.94022800
С	-4.12780800	-0.57831600	1.98947200
Н	-4.25892300	0.45164400	2.34145300

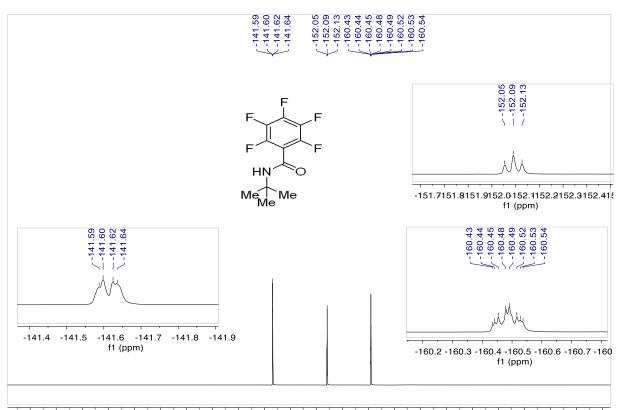
Н	-5.06530700	-0.92861900	1.55333600
Н	-3.84899800	-1.19375600	2.84887500
С	-2.75141800	3.54062200	-0.87993500
Н	-2.29666500	4.34403300	-0.29138800
Н	-2.93449400	3.88239700	-1.90122000
Н	-3.70708500	3.28514400	-0.40702600

TS(12'-8')

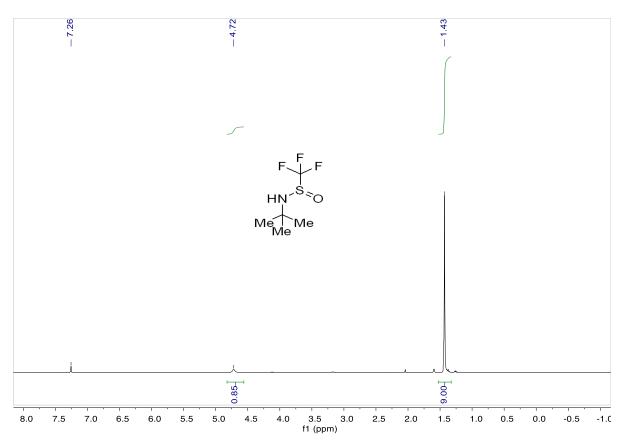
С	4.24950100	0.61373800	-0.49459300
C C	2.89152700	0.01373800	-0.18337000
C C	2.46522100	-0.98198400	0.09546100
C C	3.44615400	-0.98198400	0.03057700
C C	4.75854400	-1.72617100	-0.30322200
C C	4.73834400 5.17623100	-0.40744600	-0.57568500
Н	4.55479400	1.64192000	-0.67936400
Н	4.33479400 3.12224400	-3.02014100	0.25091500
	5.47931000	-2.53893700	-0.35407200
H	6.20957400	-2.33893700	-0.33407200
H			-0.83433400 0.42774700
C	-0.06553300	2.67079300	
C	0.78091500	3.72758300	1.16315600
H	1.52083700	4.19745700	0.50765000
H	0.11922500	4.52505100	1.51695900
H	1.29617000	3.30178300	2.03205000
C	-0.65310700	3.30816700	-0.84523700
H	-1.26168500	2.59403400	-1.40015600
H	-1.26813000	4.17604300	-0.58035500
Н	0.15988900	3.65015700	-1.49536900
C	-1.21302700	2.21021800	1.39502900
H	-1.04652000	2.66464600	2.39334600
Н	-2.17630300	2.60083500	1.05908300
N	0.71734600	1.46605000	0.02498900
0	1.25369100	-1.31017100	0.46699800
С	2.01228300	1.48331000	-0.00608600
Н	2.51804300	2.43626900	0.14774400
Pd	-0.32293000	-0.31018500	-0.30821300
С	-1.34832400	0.78218300	1.76014000
Н	-0.47326500	0.18594800	1.99437100
Н	-2.21569600	0.49620800	2.33383300
С	-3.01990000	0.44778700	-0.77221700
Ο	-3.16299100	0.30609100	0.46203900
0	-1.89296400	0.49144500	-1.37861600
С	-1.67509000	-2.63483100	0.59278100
Ο	-1.28681800	-2.07696100	-0.52652600
0	-1.56695600	-2.15622200	1.72102000
С	-4.24552500	0.57683400	-1.65663100
Н	-4.40173400	-0.38124700	-2.16587400
Н	-5.12992800	0.81536900	-1.06285700
Н	-4.08143500	1.33968300	-2.42319400
С	-2.30594400	-4.00316400	0.35991800
Н	-2.68525800	-4.40681900	1.30144800
Н	-3.12229600	-3.92541800	-0.36637600
Н	-1.55972100	-4.68809500	-0.05851700

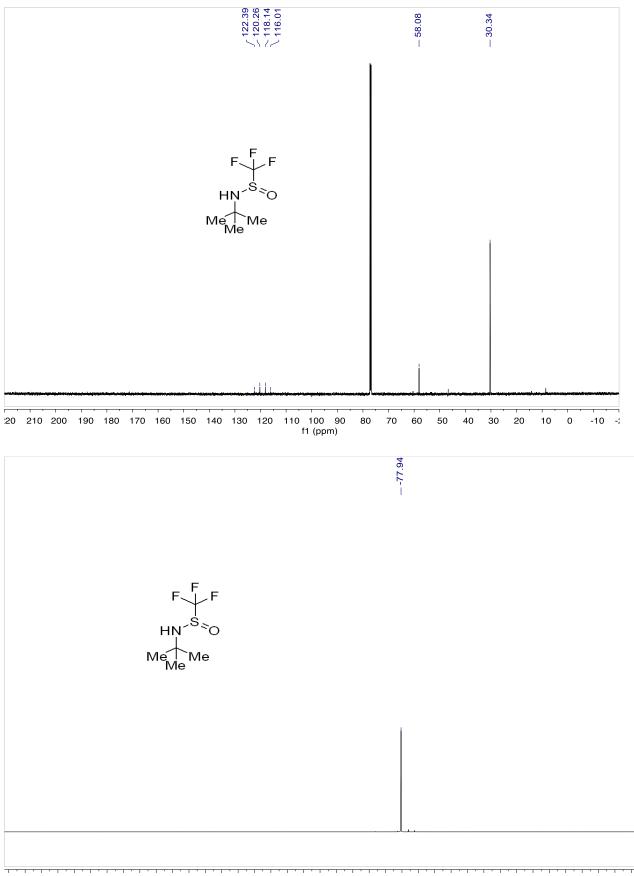

С	-3.87338700	0.37778900	-0.45616900
C C	-2.51730800	-0.04536800	-0.41911500
C C	-2.21522800	-1.38315200	-0.01163100
C	-3.30154400	-2.23445300	0.33384100
C	-4.60620700	-1.78486100	0.28649200
C	-4.90868800	-0.46468900	-0.11039600
H	-4.08708600	1.39793700	-0.76867500
Н	-3.06133100	-3.24781700	0.63963700
Н	-5.41150900	-2.46198300	0.56108800
Н	-5.93765900	-0.12081900	-0.14430200
С	0.62161800	1.95613500	-1.26974100
С	1.54359500	1.51652300	-2.42048200
Н	0.93844700	1.21970400	-3.28385100
Н	2.18374700	2.35306900	-2.72242600
Н	2.18516500	0.68083500	-2.13935600
С	-0.18629200	3.18222100	-1.73337200
Н	-0.79999900	3.60547300	-0.93316900
Н	0.52024900	3.95678700	-2.04758900
Н	-0.82109100	2.94799600	-2.59453600
С	1.46336800	2.35493300	-0.03805100
Н	2.11221000	1.54526100	0.29258500
Н	2.07008700	3.23197900	-0.28095400
Ν	-0.23423200	0.79347800	-0.85980600
0	-1.01428500	-1.88220700	0.06668300
С	-1.52628200	0.91581400	-0.80947200
Н	-1.94713900	1.87435700	-1.10082100
Pd	0.69147100	-0.92594300	-0.25737900
С	0.46606100	1.93143000	2.10591400
Ο	0.57749000	2.74992600	1.02877200
Ο	1.15971000	0.95710200	2.30216400
С	3.01003900	-1.72258600	0.11967100
Ο	2.01108600	-2.48083800	0.33770600
0	2.78302100	-0.55285000	-0.35427700
С	-0.65586600	2.39165800	3.00094000
Н	-0.53847800	1.95174300	3.99270000
Η	-0.69008000	3.48273800	3.06541300
Н	-1.60623600	2.04838400	2.57354100
С	4.40731800	-2.15696400	0.43879000
Н	5.10976500	-1.73488000	-0.28517000
H	4.67451800	-1.77996300	1.43383400
Н	4.47499900	-3.24742500	0.44842700

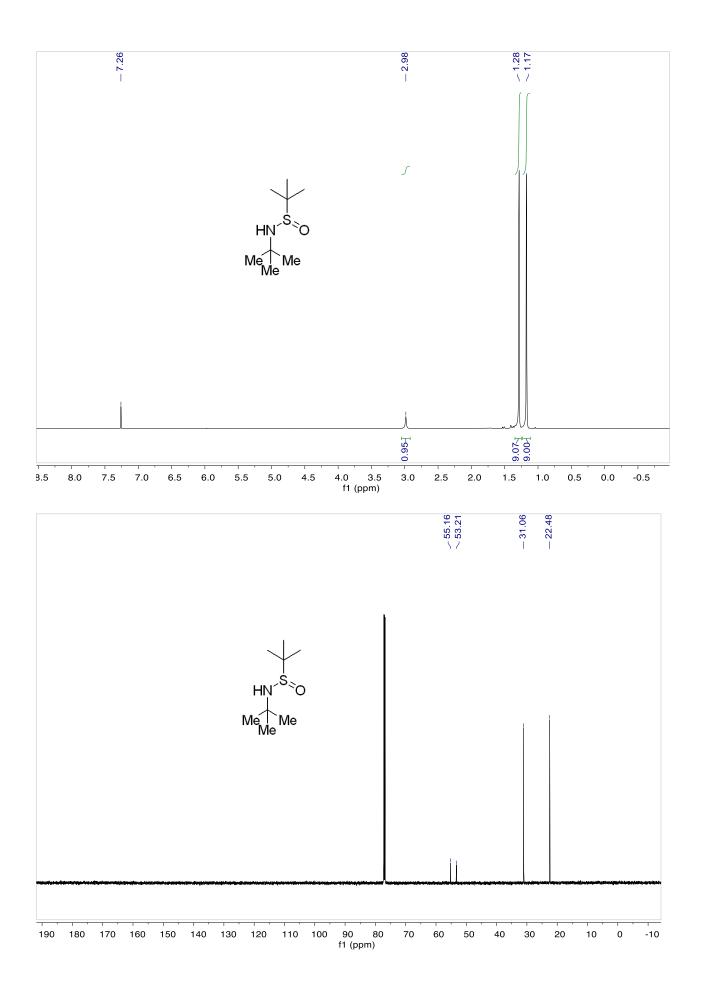

8'

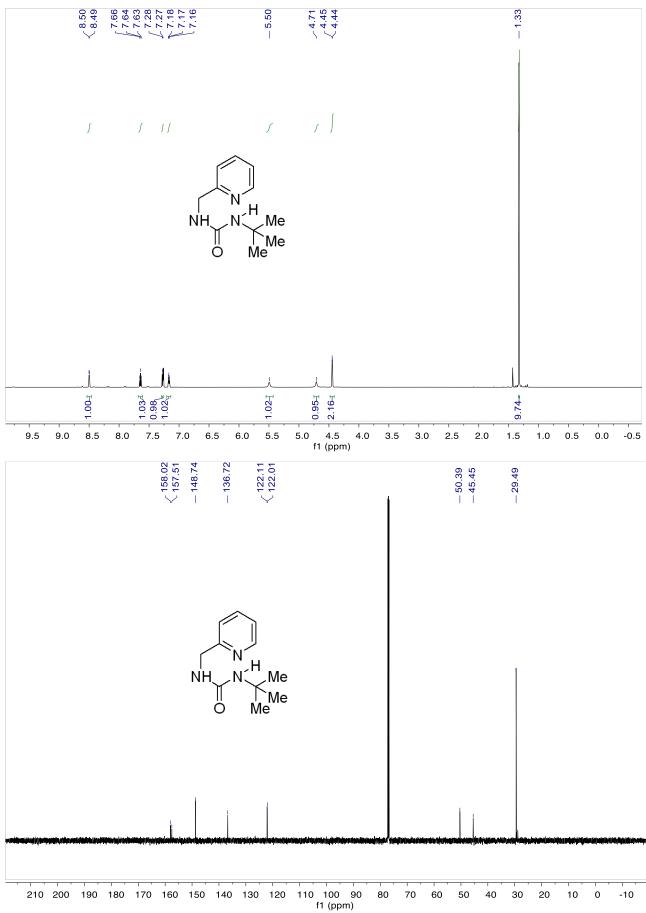

С	3.89585800	0.60713500	0.59636100
С	2.55268300	0.15505700	0.51775500
С	2.29637800	-1.20128700	0.15255600

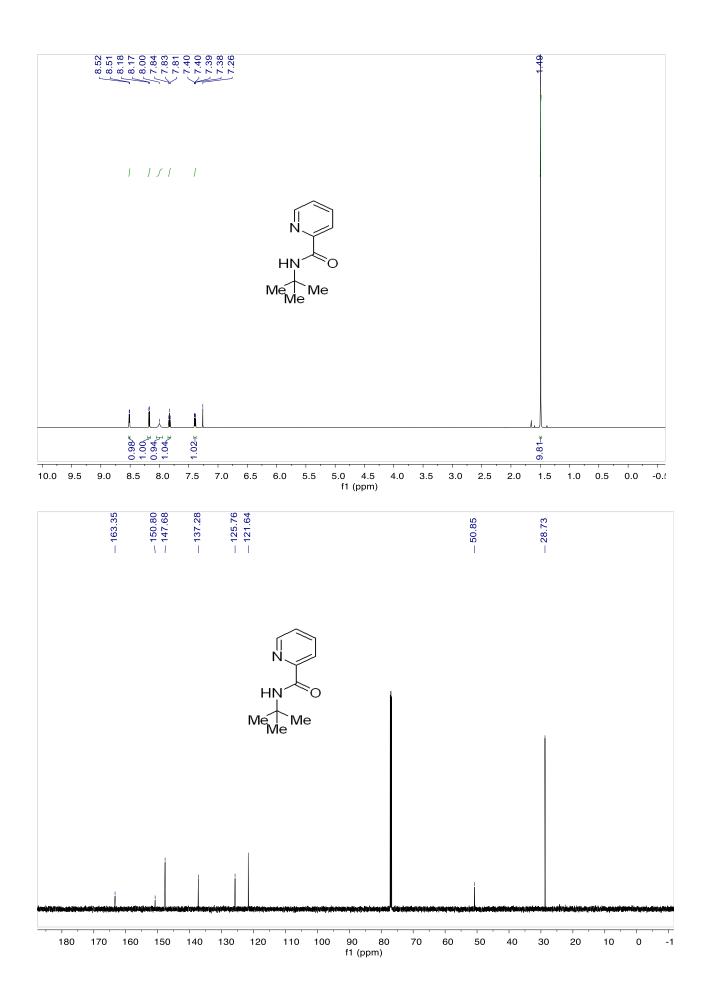
С	3.40900600	-2.04252000	-0.11691000
C	4.70335100	-1.56675600	-0.02635900
Ċ	4.96230300	-0.22855300	0.33408000
H	4.07569700	1.64453700	0.87083000
Н	3.20076700	-3.07065000	-0.39589400
Н	5.53211100	-2.23804000	-0.23821600
Н	5.98194500	0.13743700	0.40196900
С	-0.66952700	2.14341400	1.08170800
Ċ	-1.45413200	1.82365900	2.37075600
H	-0.75779000	1.63436900	3.19544200
Н	-2.08437100	2.67802900	2.64199500
Н	-2.09798600	0.95121300	2.24994800
С	0.09523200	3.46010600	1.31090900
Н	0.73372700	3.74397500	0.46905300
Н	-0.63874900	4.26028800	1.45008200
Н	0.71014300	3.42049700	2.21665300
С	-1.65593700	2.30400300	-0.10492800
Н	-2.20458900	1.37418200	-0.25919400
Н	-2.39776900	3.05819400	0.18961000
Ν	0.23582000	0.97090000	0.80629100
0	1.10451900	-1.72460700	0.03086900
С	1.52279300	1.12061300	0.78734200
Н	1.91197800	2.11485000	0.98993900
Pd	-0.62555500	-0.84624400	0.44349800
С	-1.07028300	2.76284500	-1.43870000
Н	-1.87508600	2.84031700	-2.17567100
Η	-0.57504500	3.73309200	-1.36042000
С	-0.46138500	0.75348300	-2.57086800
0	-0.04387100	1.88310600	-1.95388900
0	-1.63173800	0.46438600	-2.72150800
С	-2.90052000	-1.83435100	0.37413700
0	-1.86865000	-2.53530900	0.11674700
0	-2.72290600	-0.61113900	0.71438300
С	0.70029500	-0.09421700	-3.02224200
Η	0.82195300	-0.92113300	-2.31346400
Н	0.47190600	-0.52200600	-4.00211800
Н	1.63136600	0.47497600	-3.06072600
С	-4.28196800	-2.39796300	0.25052900
Н	-4.93278000	-1.97464700	1.02070900
Н	-4.68859100	-2.12039400	-0.72980300
Н	-4.25779500	-3.48769200	0.32474000

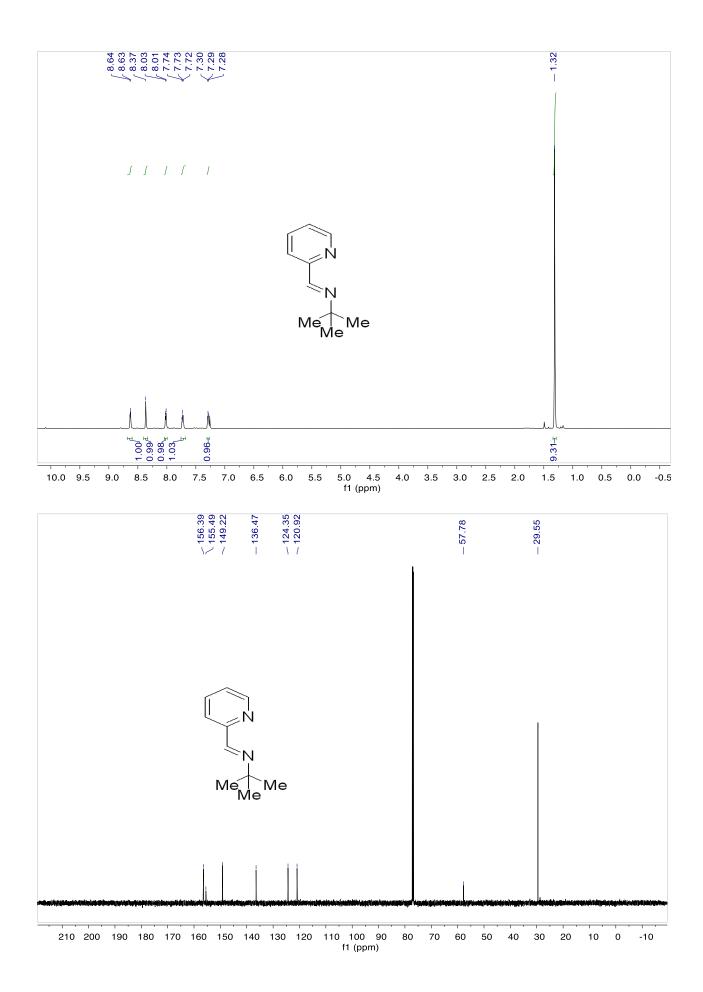

11. NMR Spectrum

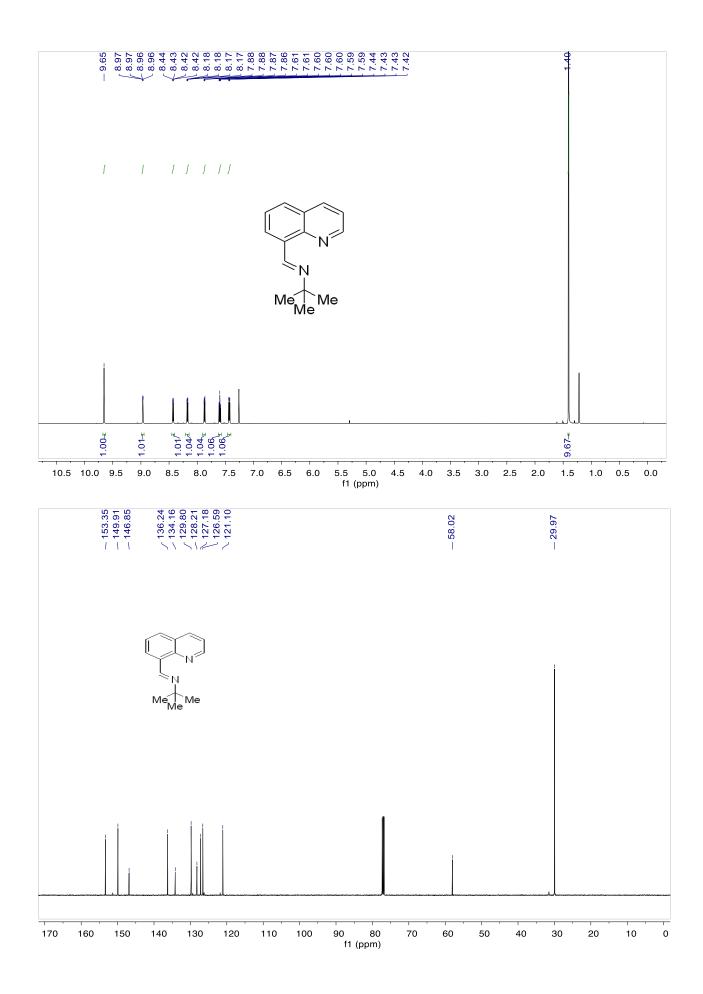


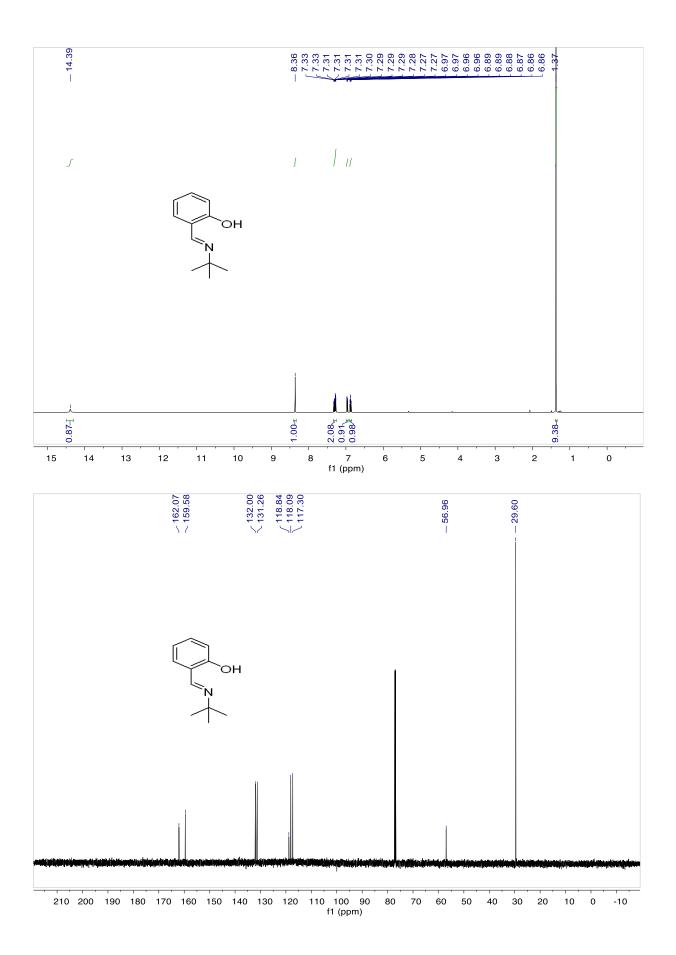


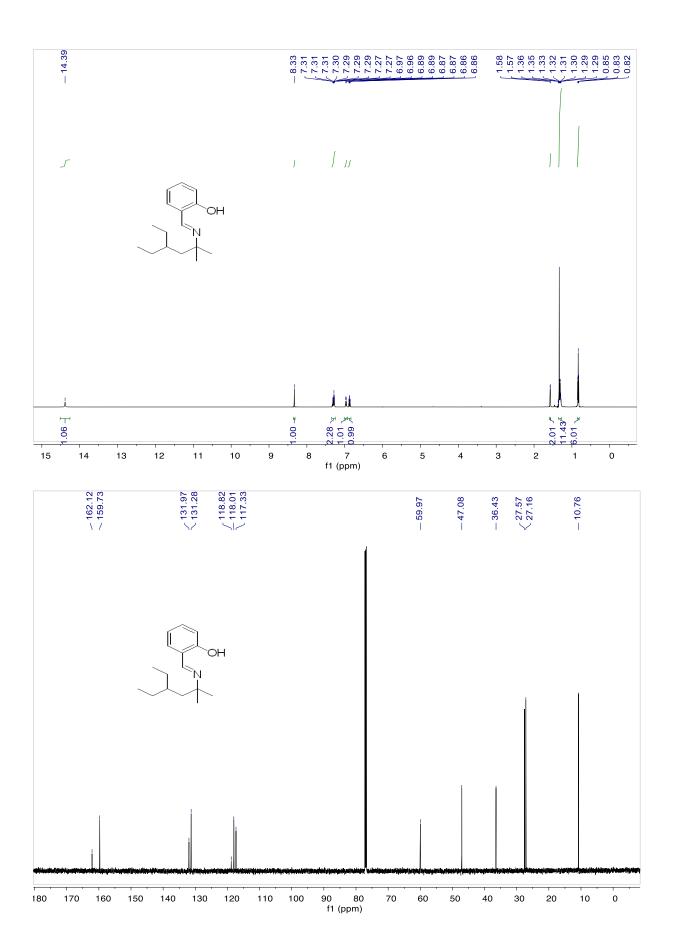

-95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -200 -20E f1 (ppm)

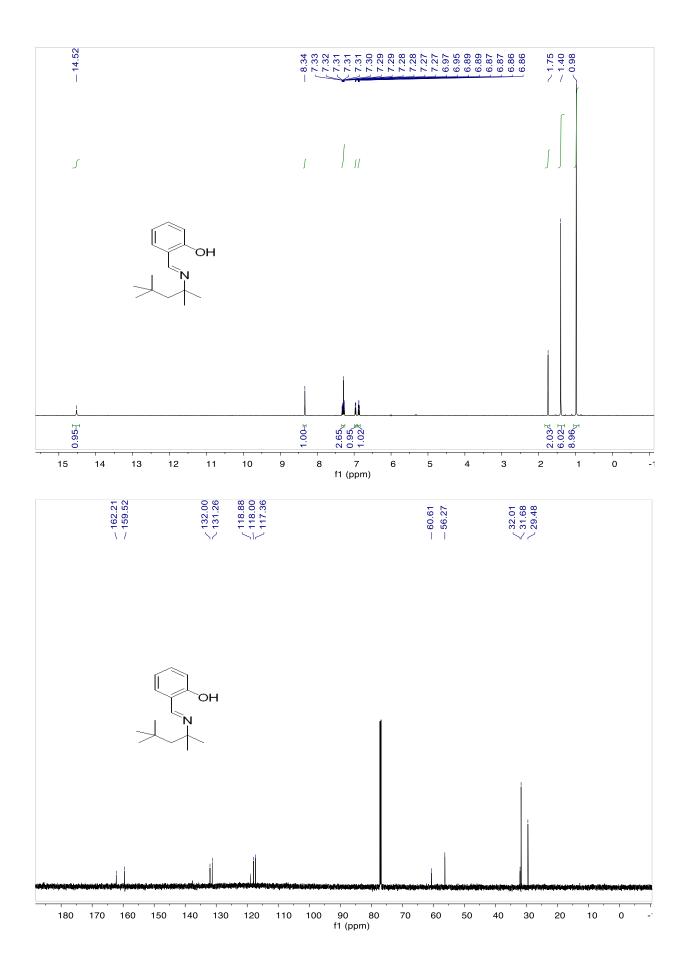


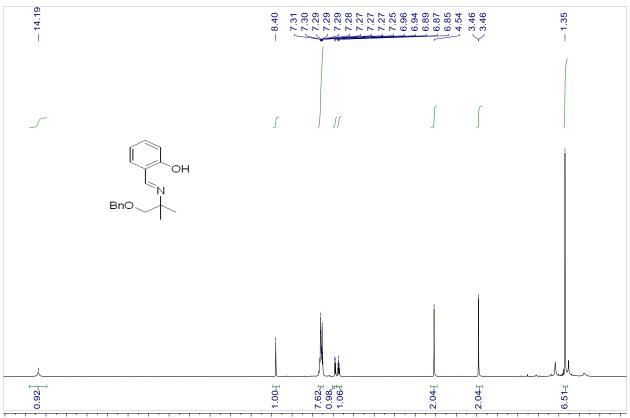


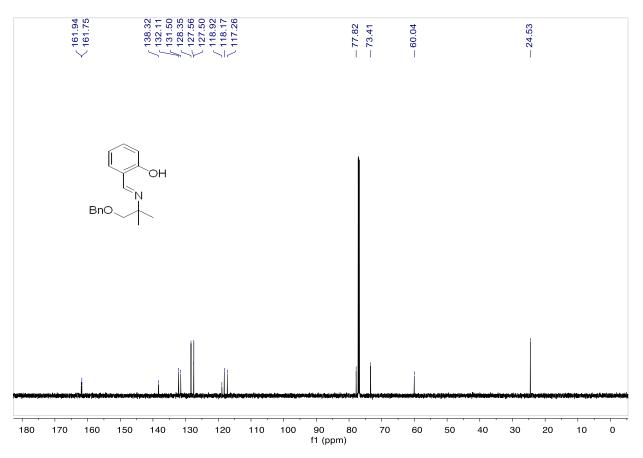

-54 -55 -56 -57 -58 -59 -60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 -77 -78 -79 -80 -81 -82 -83 -84 -85 -86 -87 -88 -89 -90 -91 -9 f1 (ppm)

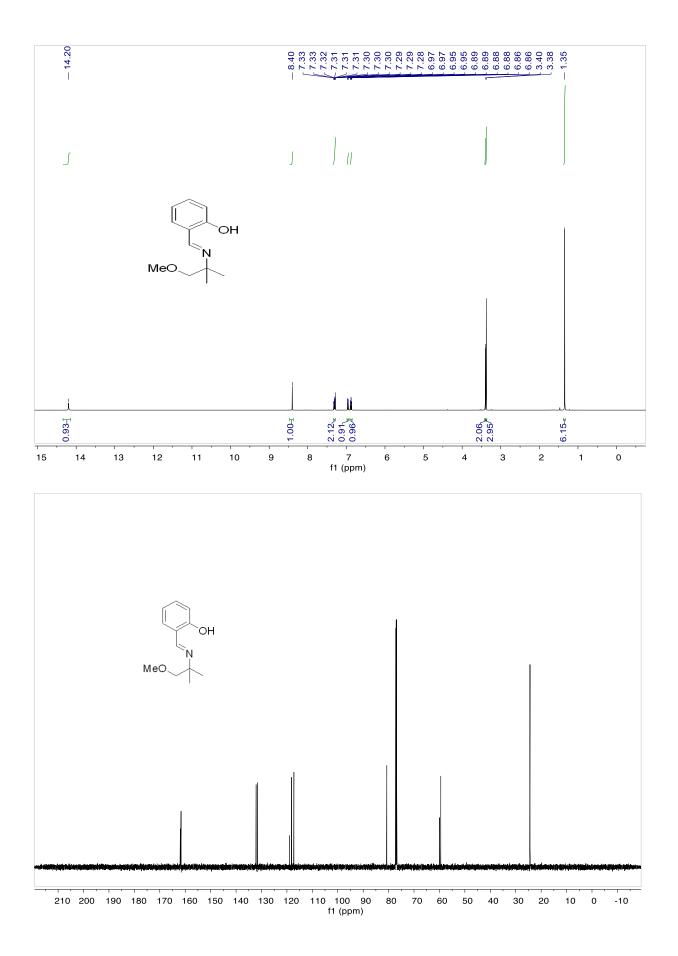


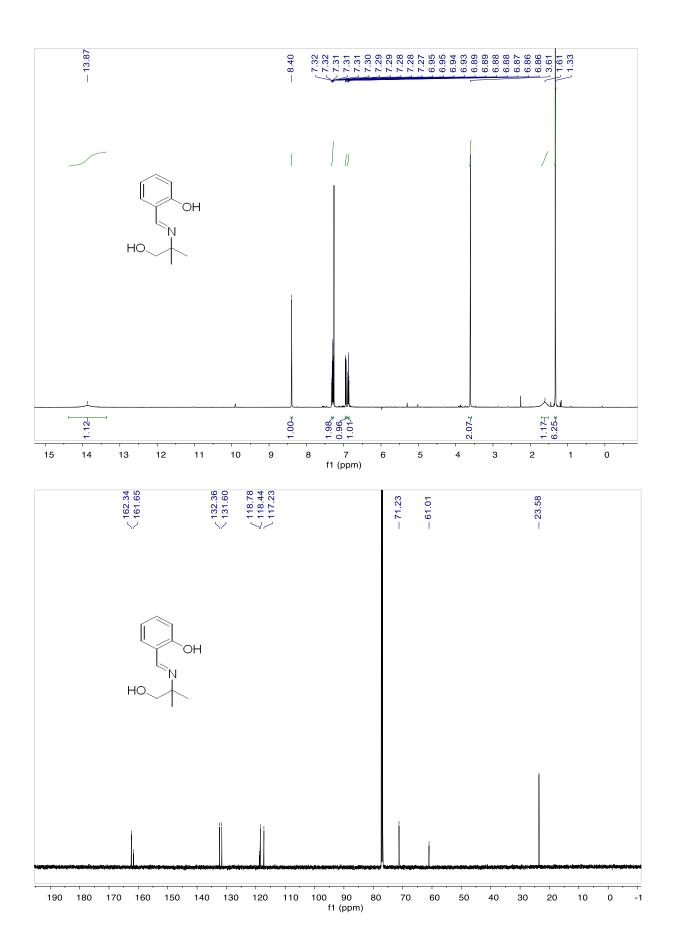


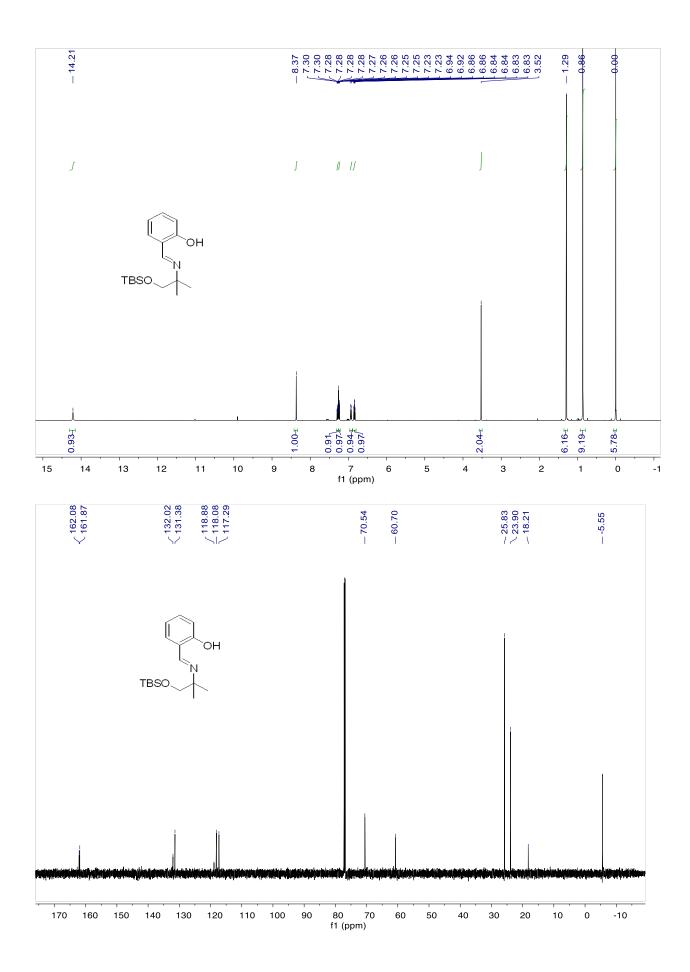


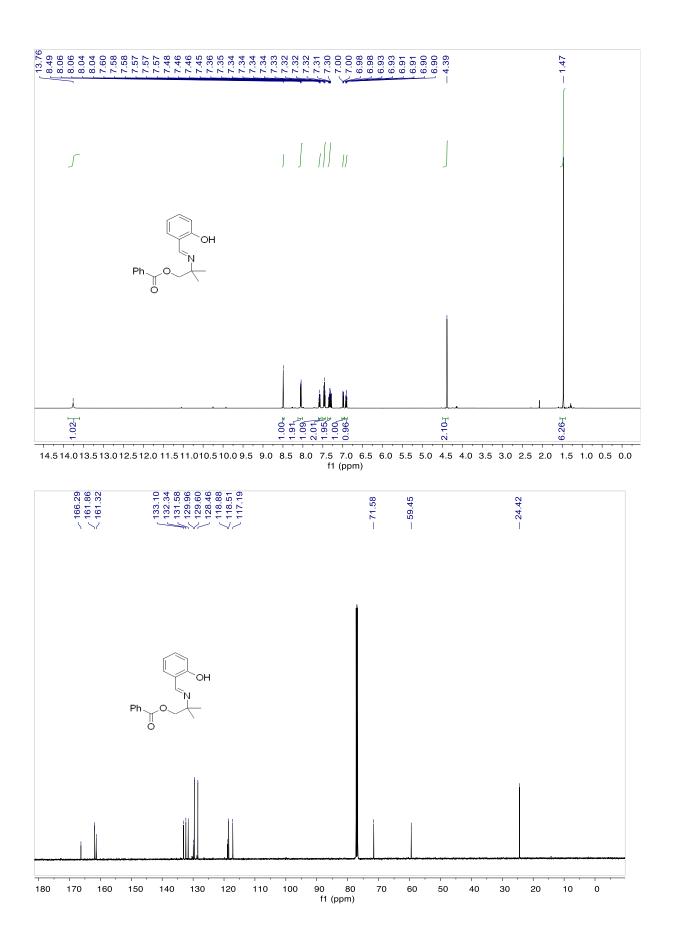


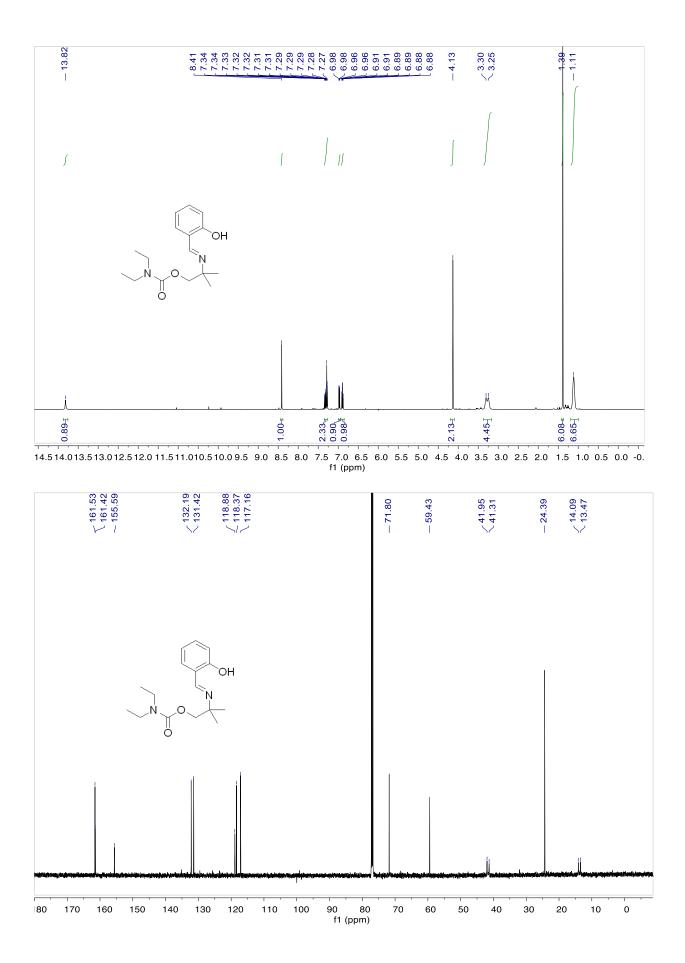


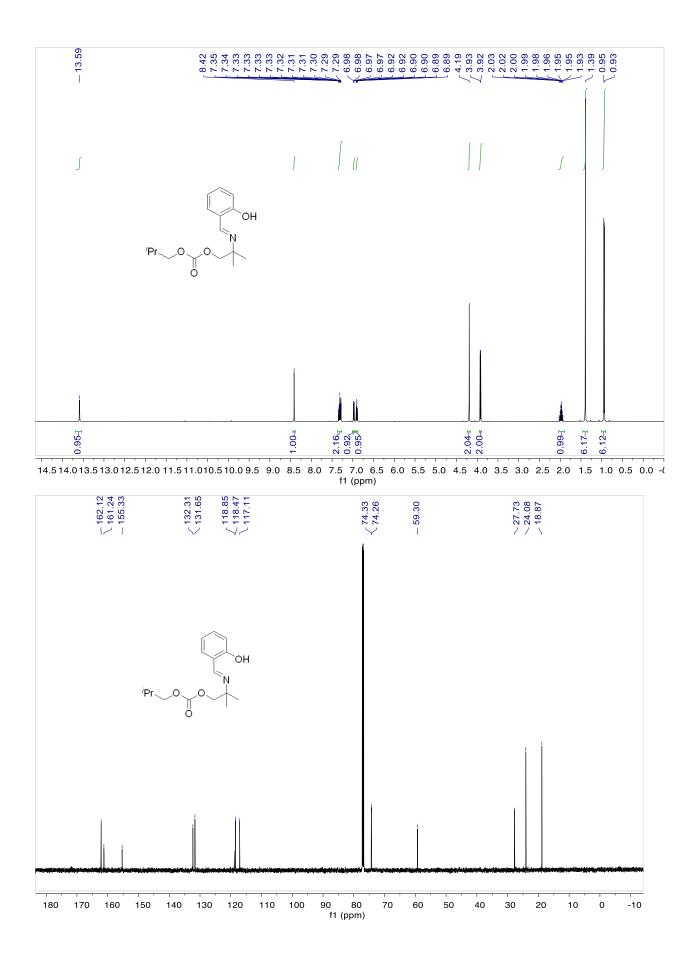




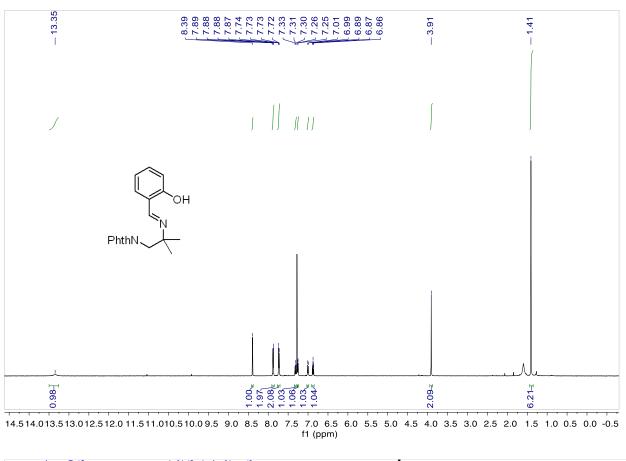

I5.014.514.013.513.012.512.011.511.010.510.09.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.(f1 (ppm)

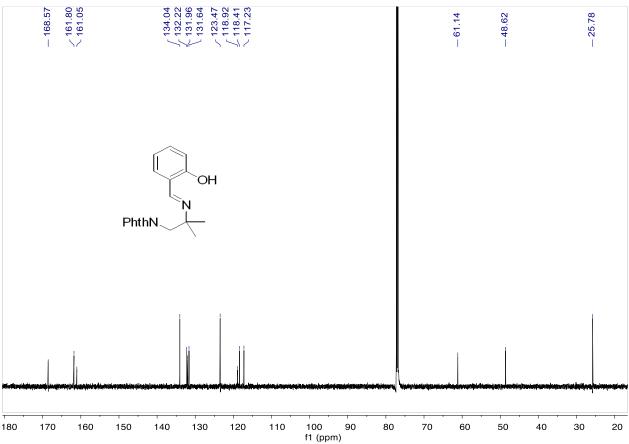


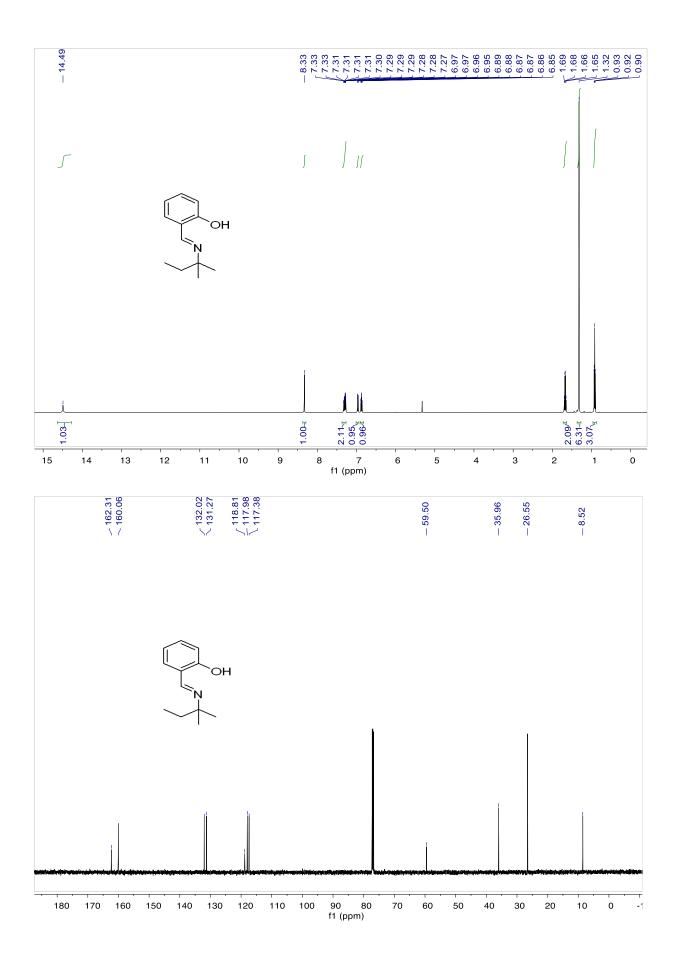


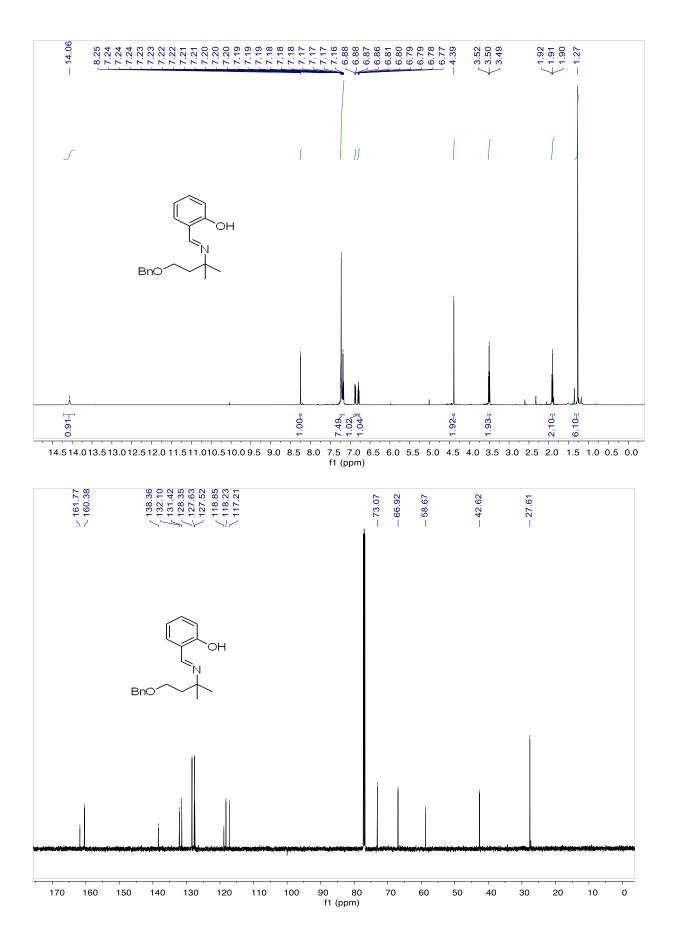

S62

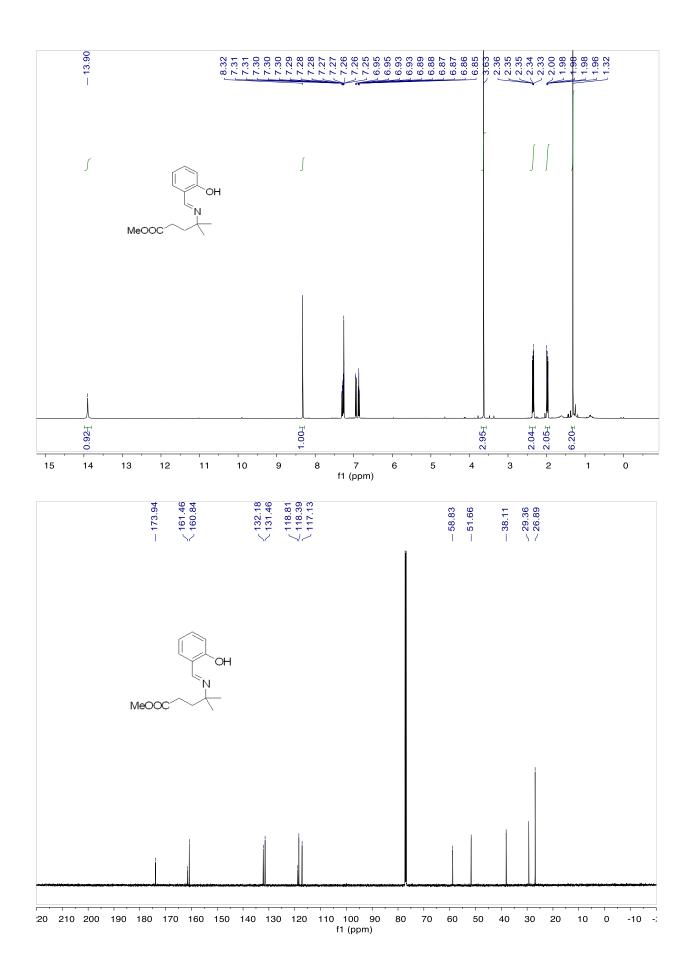


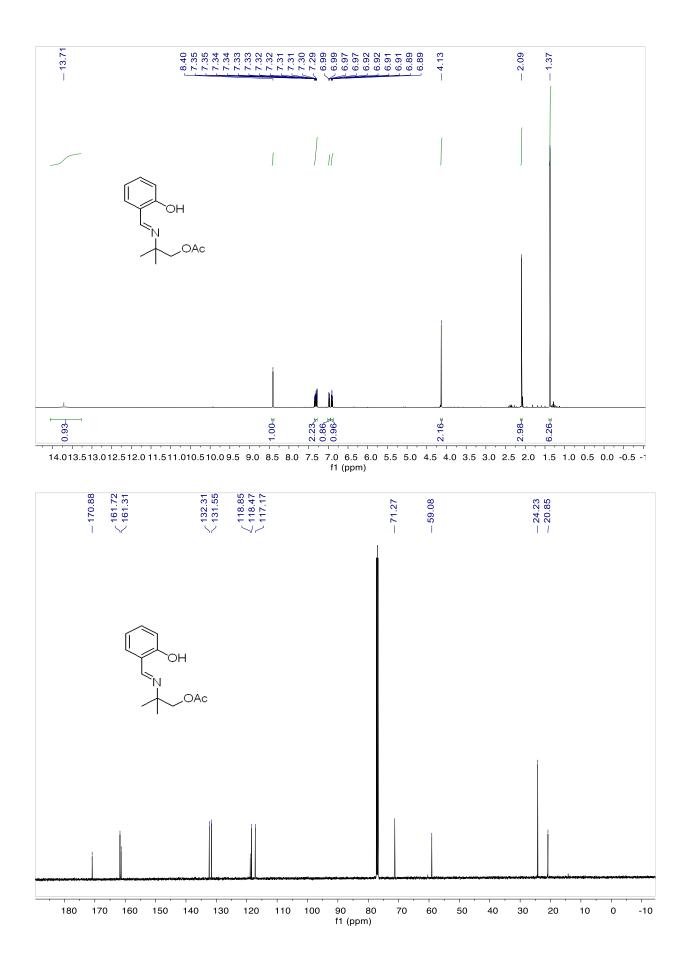


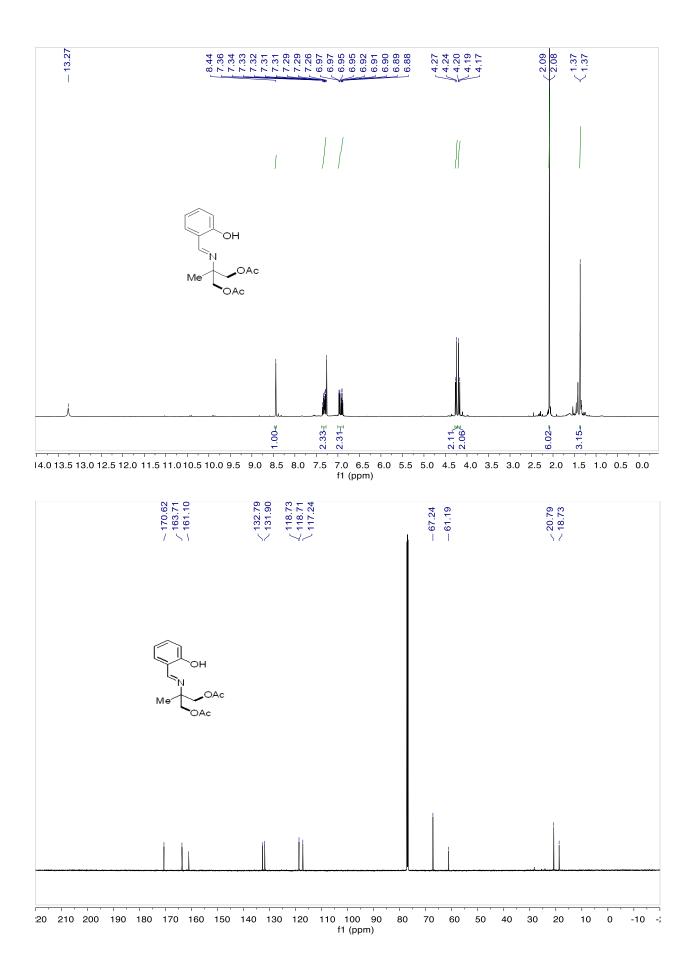


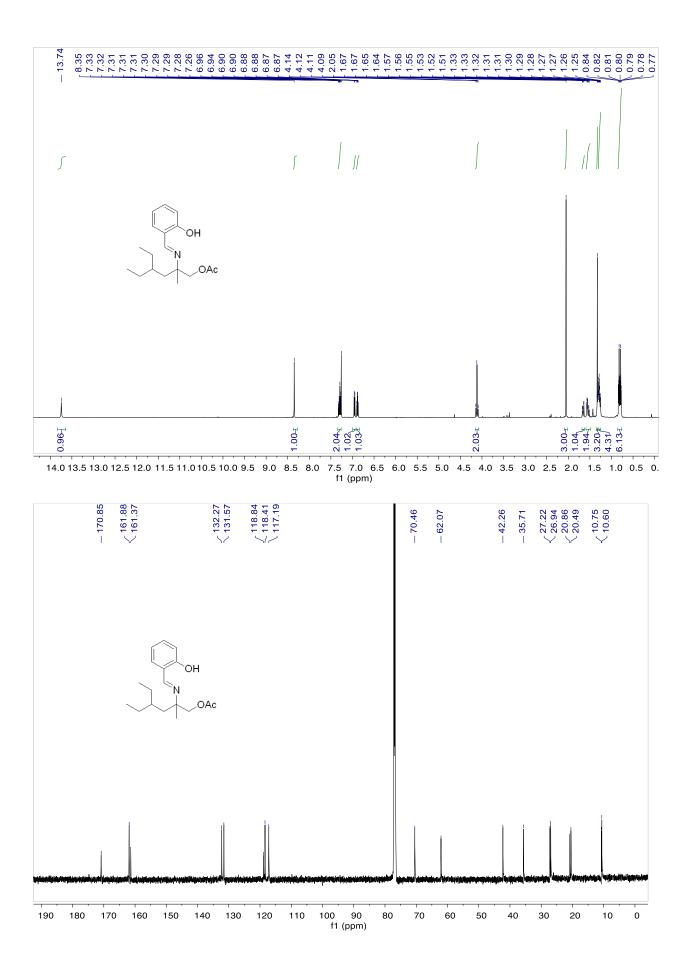


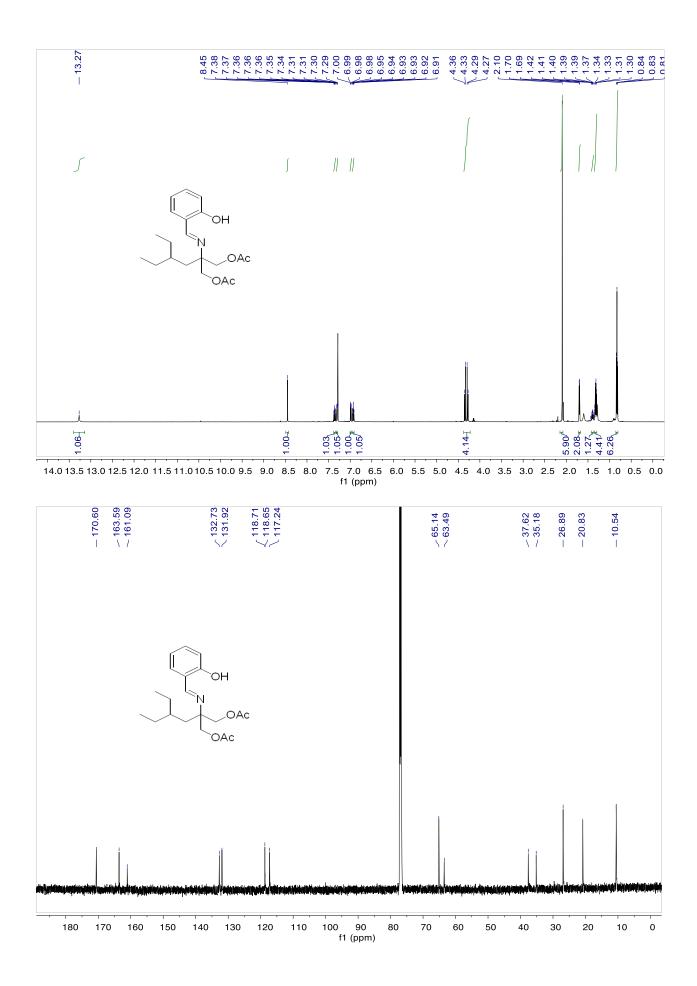


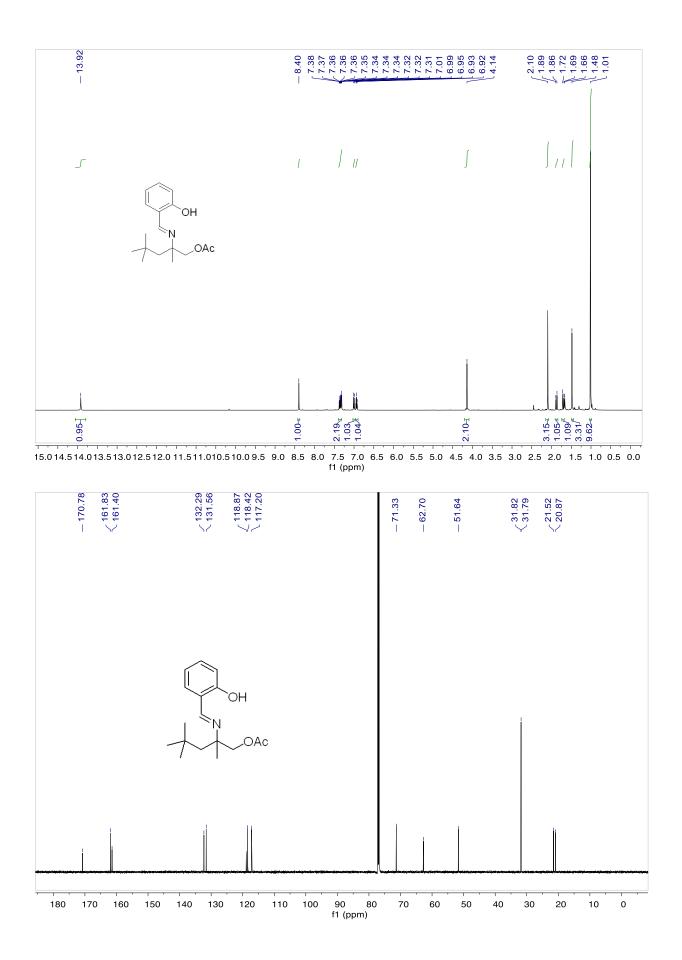


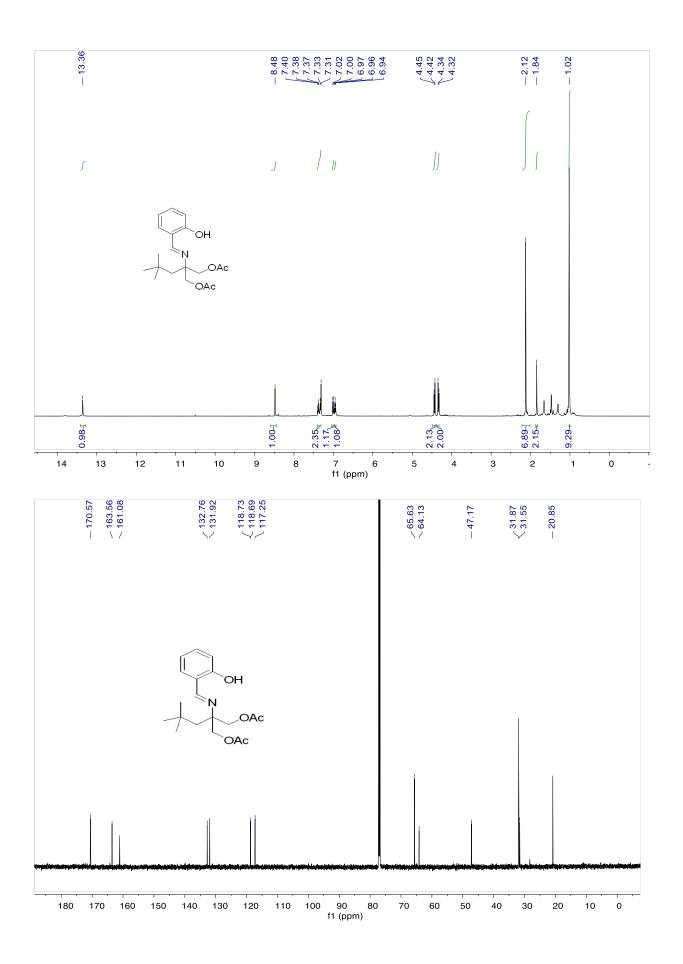


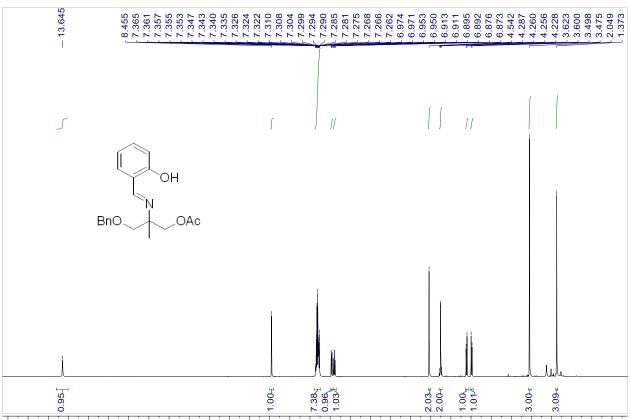




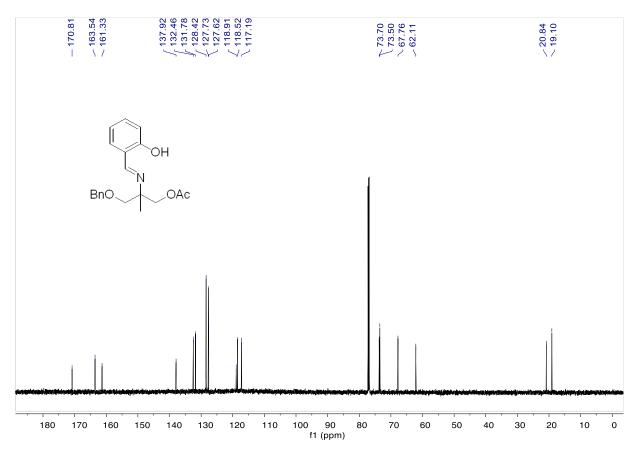


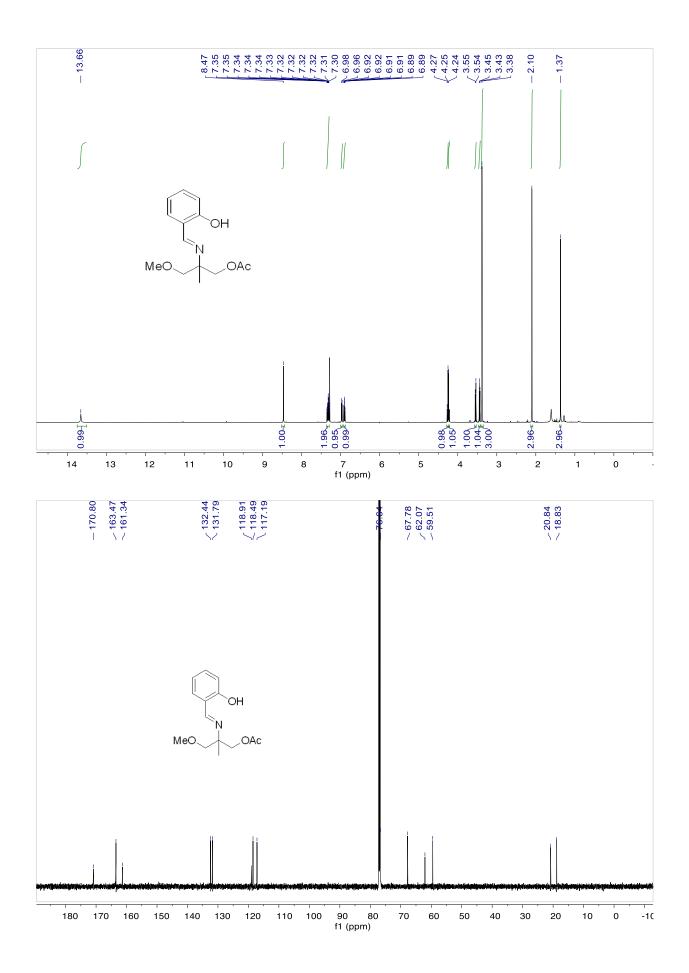


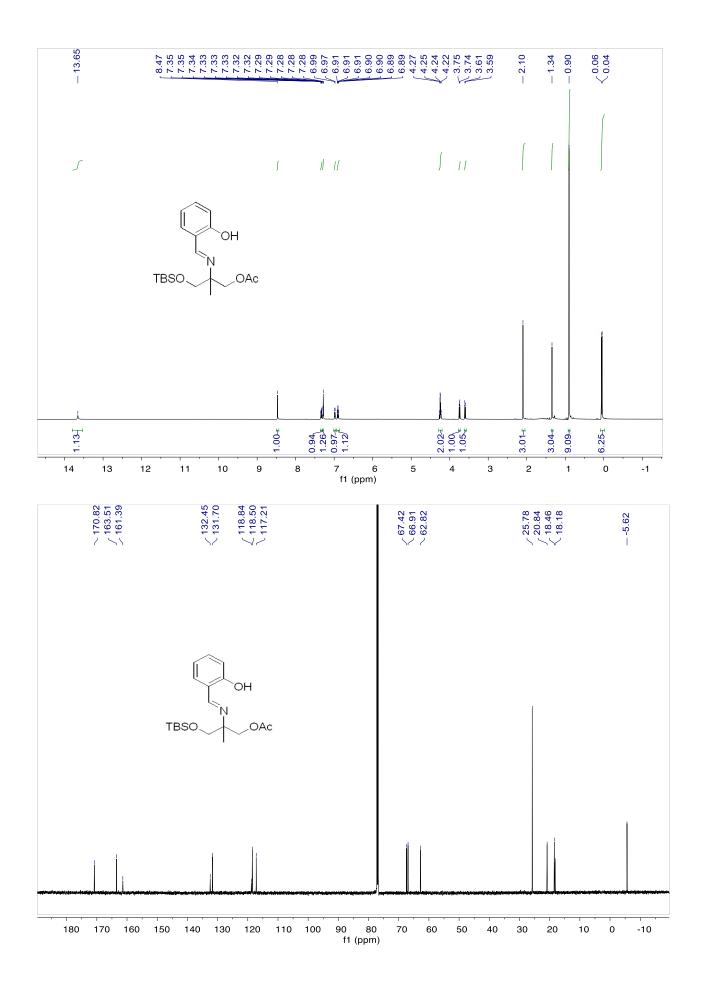


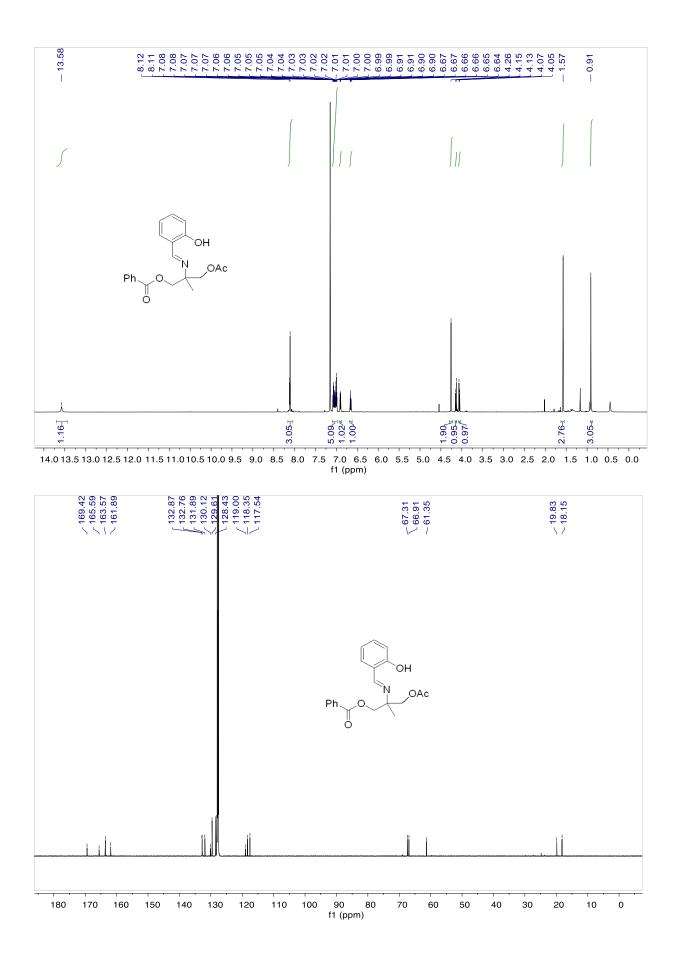


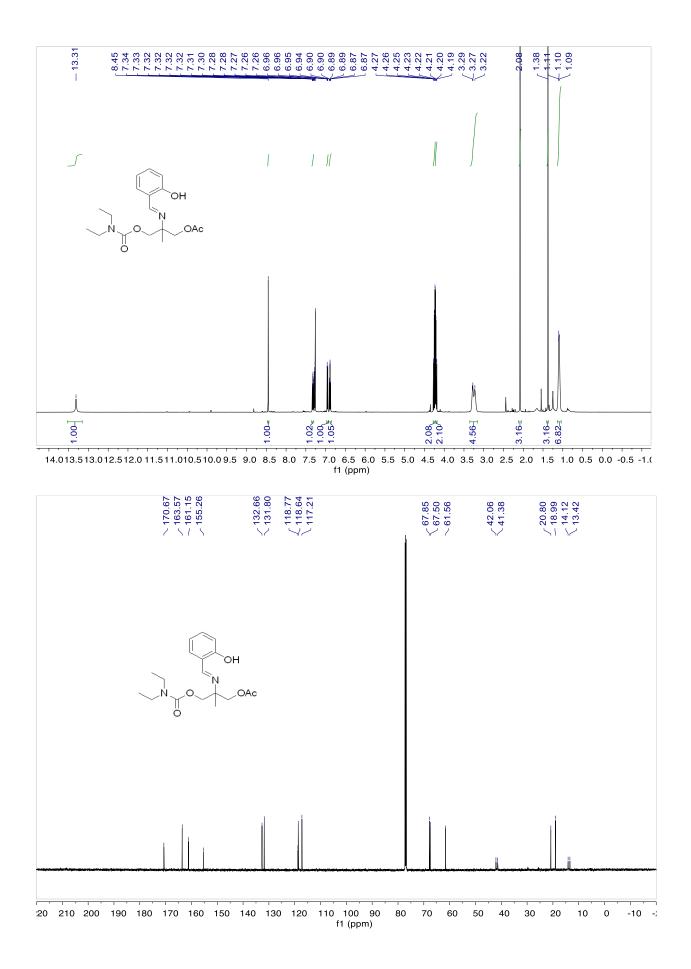
S75

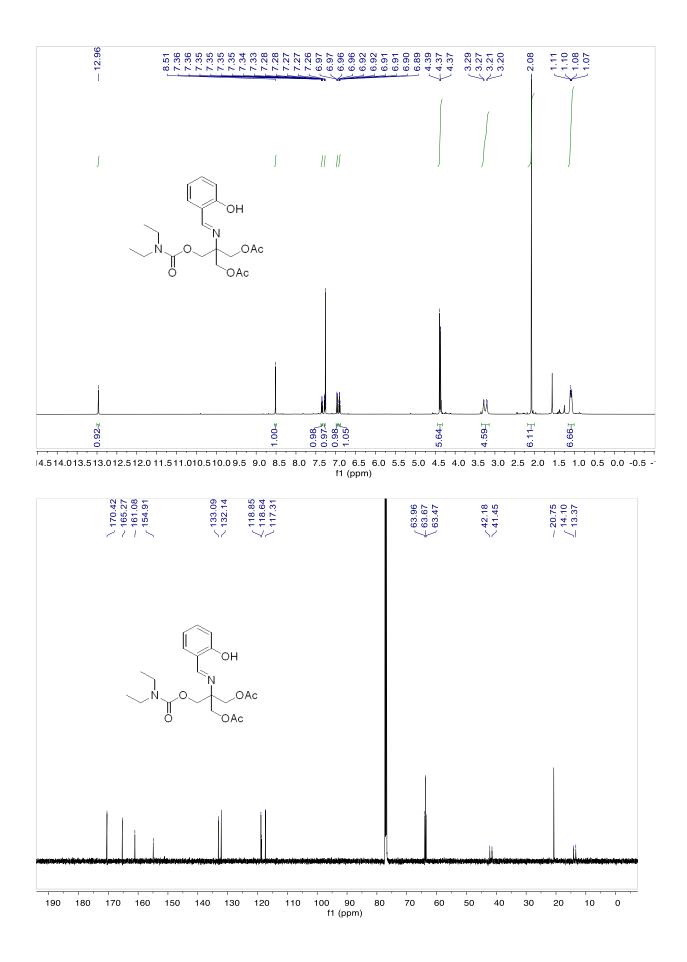


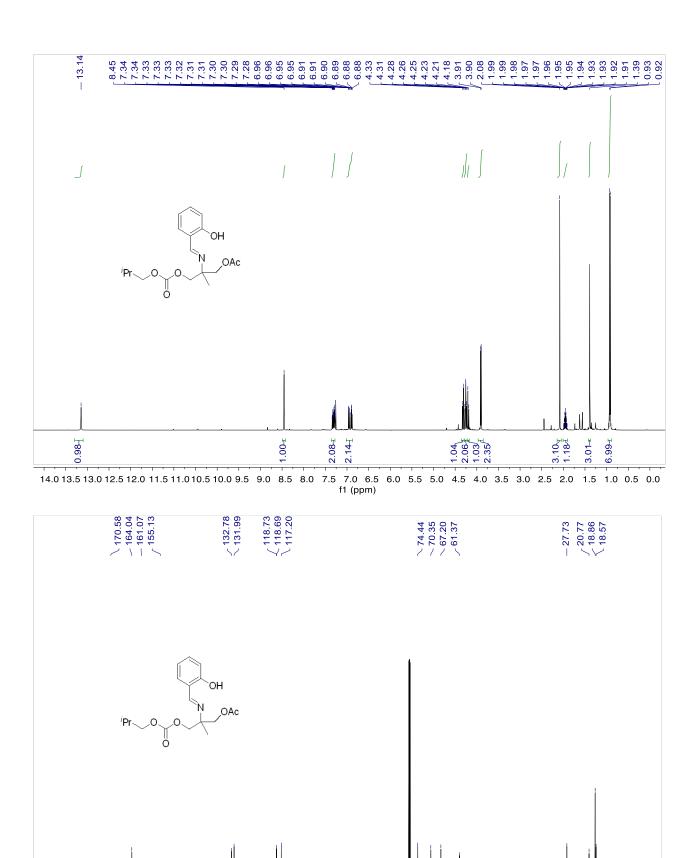


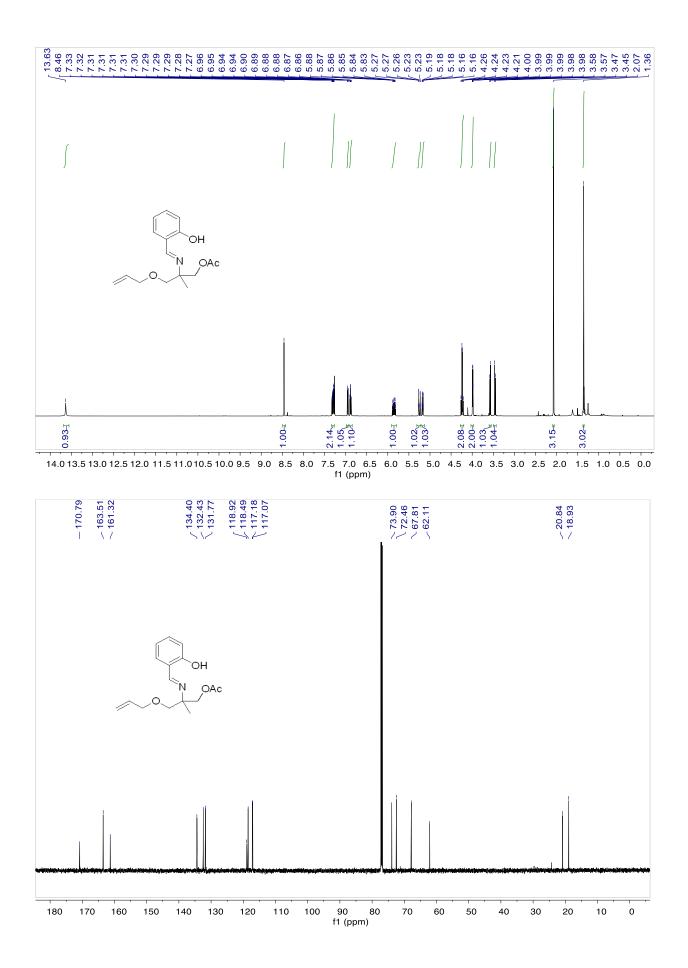


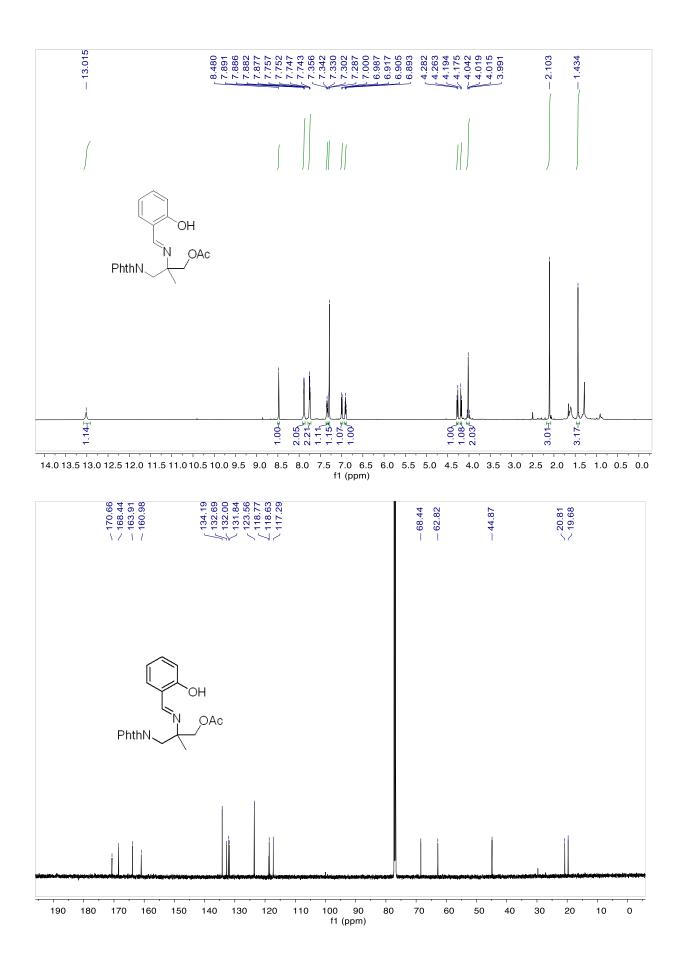


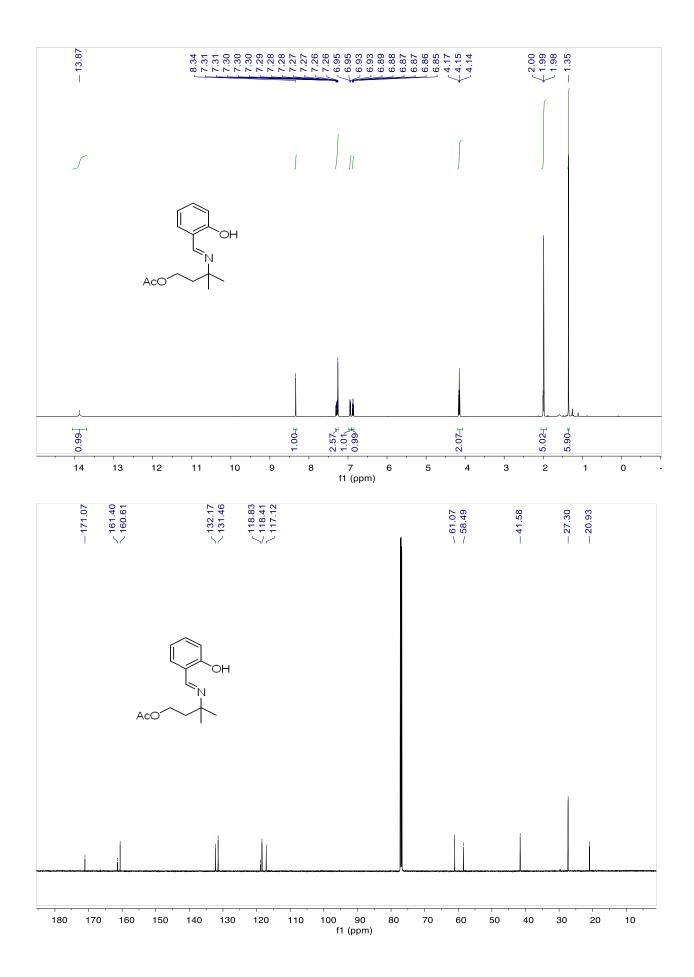

15.014.514.013.513.012.512.011.511.010.510.09.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

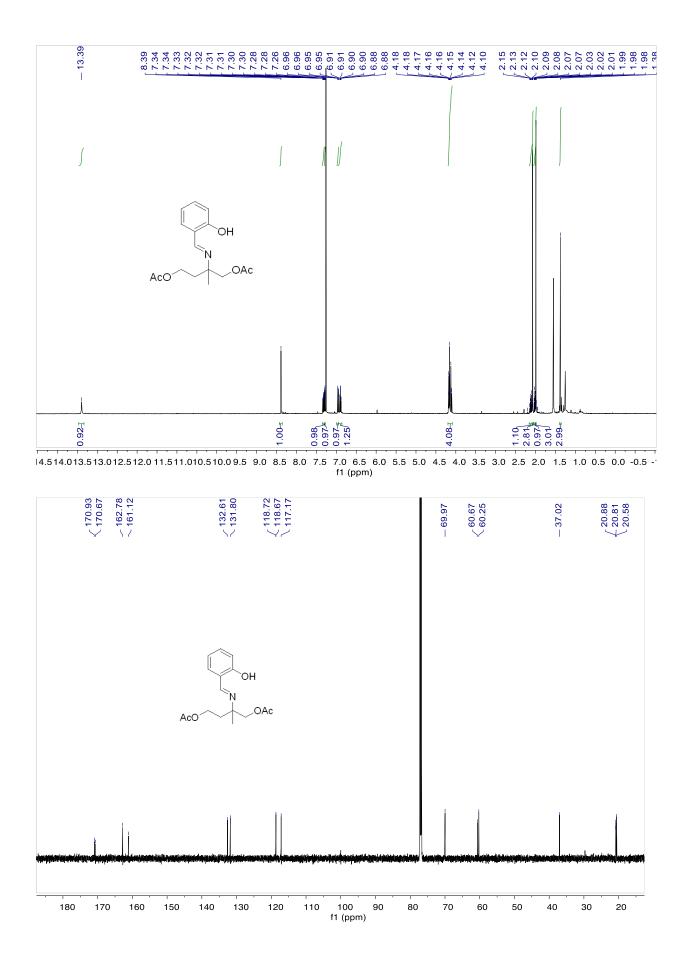


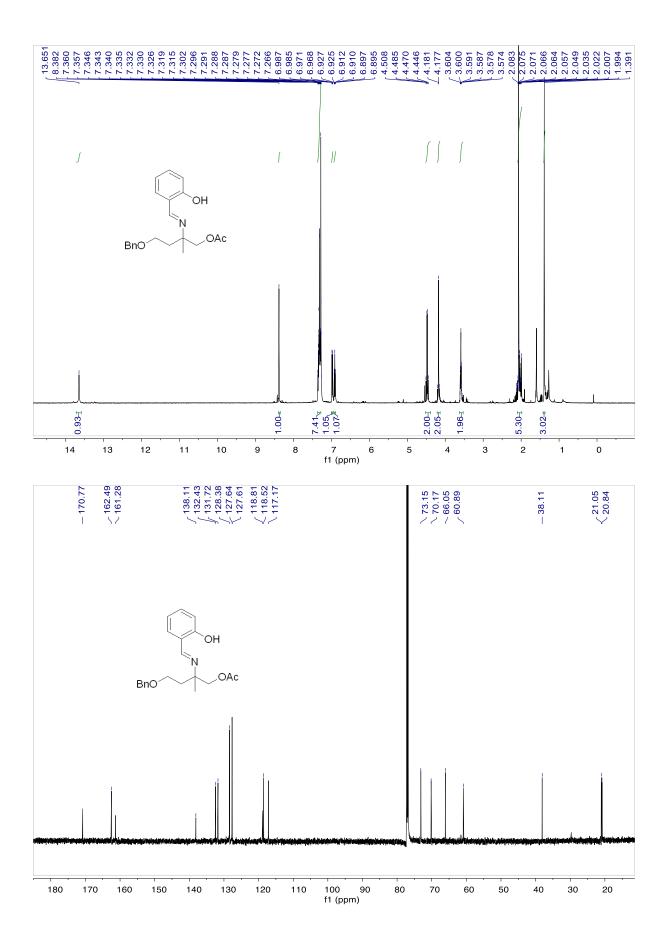


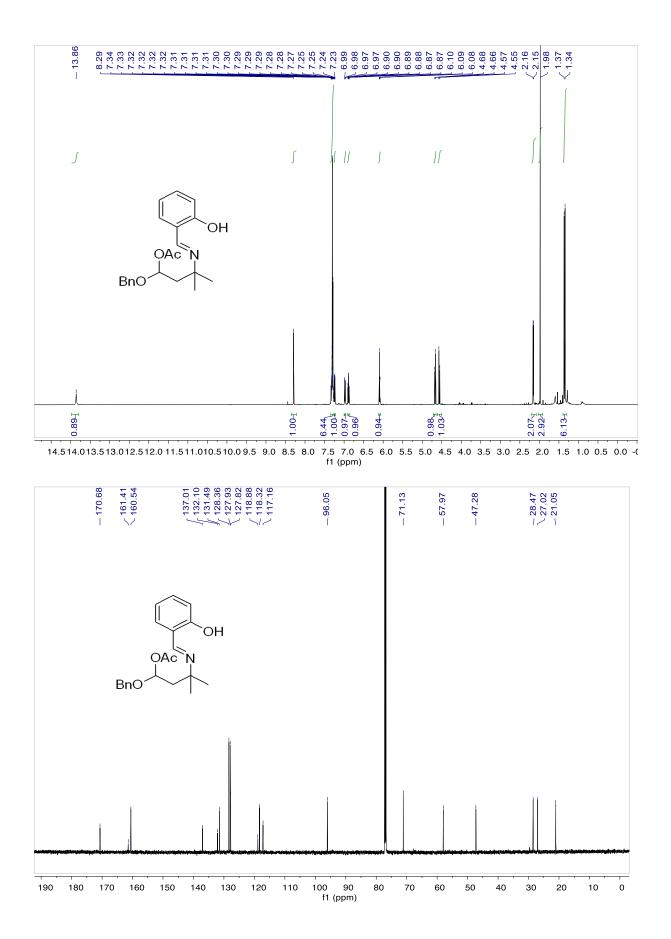


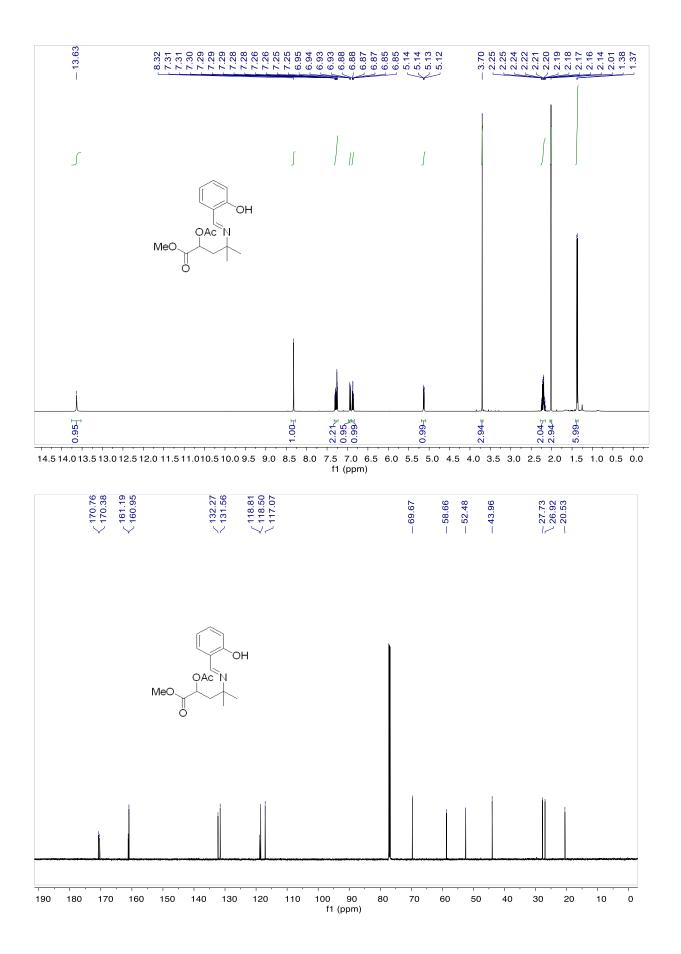


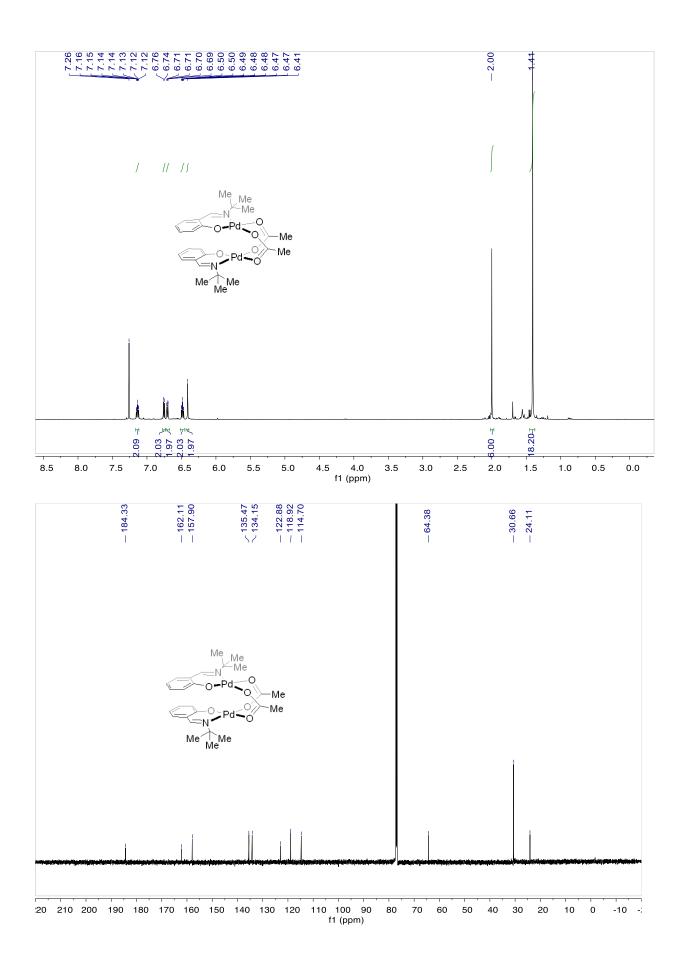


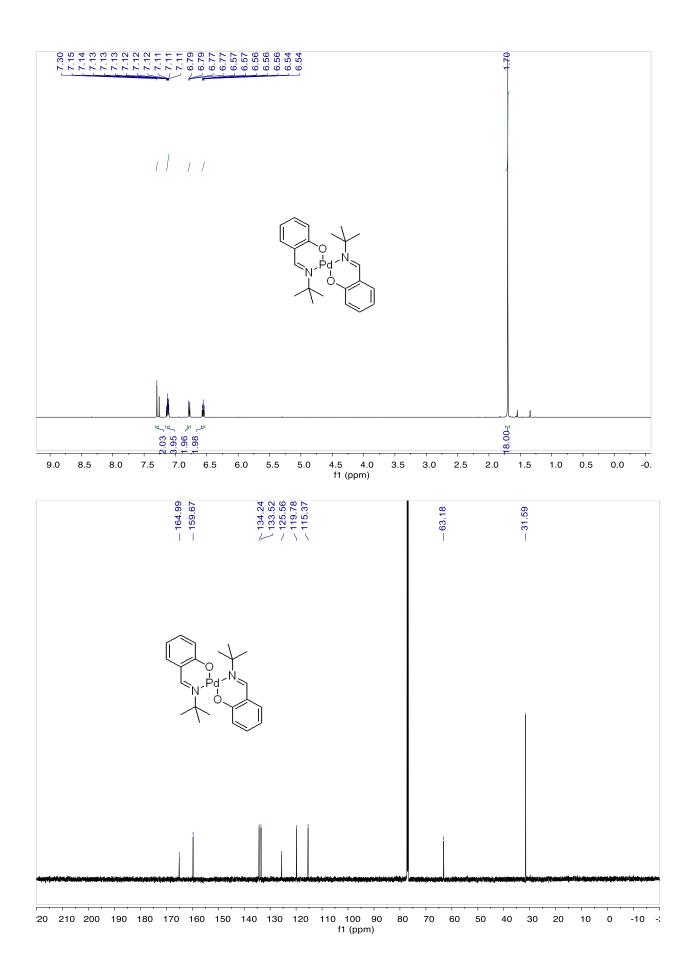


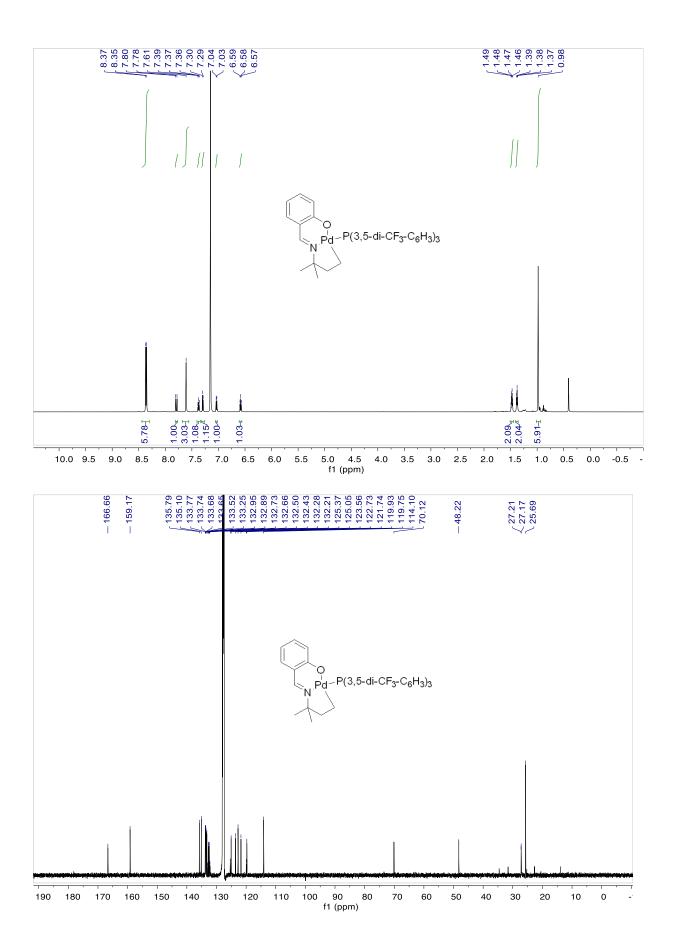


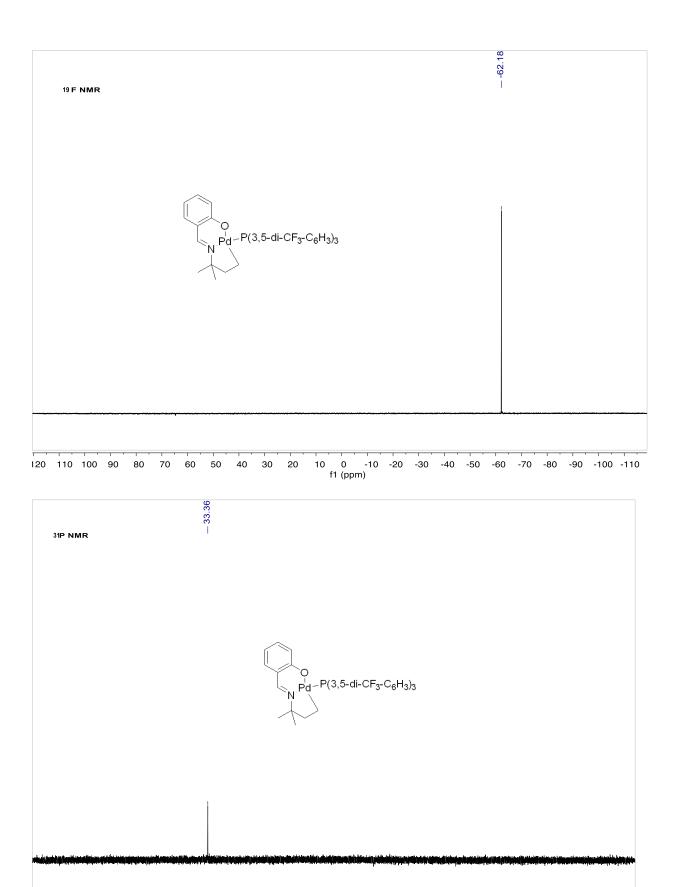












140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

12. References

(1) Integrated Spectral Database System of Organic Compounds. (Data were obtained from the National Institute of Advanced Industrial Science and Technology (Japan)). (2) McNally, A.; Haffemayer, B.; Collins, B. S. L.; Gaunt, M. J. Palladium-catalysed C-H activation of aliphatic amines to give strained nitrogen heterocycles Nature 2014, 510, 129. (3) Yada, A.; Liao, W.; Sato, Y.; Murakami, M. Buttressing Salicylaldehydes: A Multipurpose Directing Group for C(sp³)–H Bond Activation Angew. Chem. Int. Ed. **2017**, 56, 1073. (4) (a) Calleja, J.; Pla, D.; Gorman, T. W.; Domingo, V.; Haffemayer, B.; Gaunt, M. J. A steric tethering approach enables palladium-catalysed C–H activation of primary amino alcohols Nat Chem 2015, 7, 1009; (b) Liu, Y.; Ge, H. Site-selective C–H arylation of primary aliphatic amines enabled by a catalytic transient directing group Nat Chem 2017, 9, 26. (5) Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

(6) He, G.; Lu, G.; Guo, Z.; Liu, P.; Chen, G. Benzazetidine synthesis via palladium-catalysed intramolecular C–H amination *Nat. Chem.* **2016**, *8*, 1131.

(7) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions *The Journal of Physical Chemistry B* **2009**, *113*, 6378.
(8) Paton, R. S. GoodVibes v3.0.1 2019, https://github.com/bobbypaton/GoodVibes.