## **Supporting information**

# Ligand-Functionalized Organometallic Polyoxometalate as an Efficient Catalyst Precursor for Amide Hydrogenation

Shun Hayashi\*<sup>[a]</sup>, Koichi Momma<sup>[b]</sup>, Kiyohiro Adachi<sup>[c]</sup>, Daisuke Hashizume<sup>[c]</sup>

<sup>[a]</sup>Division of Physical Sciences, Department of Science and Engineering, National Museum of Nature and Science, Ibaraki 305–0005, Japan
<sup>[b]</sup>Division of Mineral Sciences, Department of Geology and Paleontology, National Museum of Nature and Science, Ibaraki 305–0005, Japan
<sup>[c]</sup>RIKEN Center for Emergent Matter Science, Saitama 351-0198, Japan
E-mail: s-hayashi@kahaku.go.jp

#### **List of Figures**

- S1. Positive-ion electrospray ionization mass spectrum of [(RhCp<sup>E</sup>)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>].
- S2. Fourier transform infrared spectra of (a) [RhCp\*Cl<sub>2</sub>]<sub>2</sub>, (b) [RhCp<sup>E</sup>Cl<sub>2</sub>]<sub>2</sub>, (c) [(RhCp\*)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>], and (d) [(RhCp<sup>E</sup>)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>].
- S3. Thermal ellipsoid plot at the 50% probability level of  $[(RhCp^E)_4Mo_4O_{16}]$ .
- S4. Rh K-edge (a) k<sup>3</sup>-weighted and (b) Fourier transforms of extended X-ray absorption fine structure spectra of (i) Rh<sub>4</sub>Mo<sub>4</sub>(Cp<sup>E</sup>)/Al<sub>2</sub>O<sub>3</sub>, (ii) Rh<sub>4</sub>Mo<sub>4</sub>(Cp<sup>\*</sup>)/Al<sub>2</sub>O<sub>3</sub>, and (iii) Rh–Mo/Al<sub>2</sub>O<sub>3</sub>.
- S5. Result of recycle test of  $Rh_4Mo_4(Cp^E)/Al_2O_3$  for hydrogenation of **1a**.
- S6. UV-vis spectra of the pristine precursor and filtrate of mixture with support in MeOH: (a)  $[(RhCp^E)_4Mo_4O_{16}]$  and (b)  $[(RhCp^*)_4Mo_4O_{16}]$ .
- S7. Electrostatic potentials mapped on electron density surfaces of (a)  $[(RhCp^E)_4Mo_4O_{16}]$  and (b)  $[(RhCp^*)_4Mo_4O_{16}]$ .
- S8. Representative gas chromatography chart of reaction mixture after hydrogenation of 1d catalyzed by Rh<sub>4</sub>Mo<sub>4</sub>(Cp<sup>E</sup>)/Al<sub>2</sub>O<sub>3</sub>.

### List of Tables

- S1. Data collection and details of single-crystal structural refinement
- S2. Structural parameters obtained by curve-fitting the Rh K-edge FT-EXAFS data
- S3. Support effect on hydrogenation of **1a** catalyzed by Rh–Mo-based catalysts prepared from [(RhCp<sup>E</sup>)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>]
- S4. Hydrogenation of *n*-octanamide catalyzed by  $Rh_4Mo_4(Cp^E)/Al_2O_3$
- S5. Hydrogenation of primary amides to amines

#### Chemicals

A (pentamethylcyclopentadienyl)rhodium(III) dichloride dimer, diethyl 2,4-dimethyl-5-[(triisopropylsilyl)methylene]-1,3-cyclopentadiene-1,3-dicarboxylate, 4-acetylmorpholine, 1-acetylpiperidine, *N*-butylpropionamide, and *n*-octanamide were purchased from TCI. Rhodium(III) chloride, ammonium molybdate(VI) tetrahydrate, disodium molybdate(VI) dihydrate, and zirconium(IV) oxide were purchased from FUJIFILM Wako Chemicals. Molecular sieves (3A) were purchased from Nacalai Tesque and dried overnight at 393 K before use.  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> (JRC-ALO-8) and TiO<sub>2</sub> (JRC-TIO-17) were supplied by the Catalysis Society of Japan and calcined under static air at 773 K for 3 h before use. Deionized water (Milli-Q, >18 M\Omega cm) was used in all experiments.



Figure S1. Positive-ion electrospray ionization mass spectrum of  $[(RhCp^E)_4Mo_4O_{16}]$ . Inset shows experimental and simulated isotope patterns of monovalent cation  $[M+H]^+$ . Divalent cations are assigned to  $[M-O]^{2+}$ ,  $[M+2H]^{2+}$ ,  $[M+H+Na]^{2+}$ , and  $[M+2Na]^{2+}$ .



Figure S2. Fourier transform infrared spectra of (a)  $[RhCp^*Cl_2]_2$ , (b)  $[RhCp^ECl_2]_2$ , (c)  $[(RhCp^*)_4Mo_4O_{16}]$ , and (d)  $[(RhCp^E)_4Mo_4O_{16}]$ .



Figure S3. Thermal ellipsoid plot at the 50% probability level of  $[(RhCp^E)_4Mo_4O_{16}]$ . Hydrogen atoms are omitted for clarity.

| Crystal data                                                         |                                                                                                                |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Structural formula                                                   | C <sub>28</sub> H <sub>38</sub> Mo <sub>2</sub> O <sub>16</sub> Rh <sub>2</sub> ,C <sub>7</sub> H <sub>8</sub> |
| Space group                                                          | <i>C</i> 2/ <i>c</i> (#15)                                                                                     |
| <i>a</i> /Å                                                          | 24.1704(3)                                                                                                     |
| b /Å                                                                 | 13.44359(16)                                                                                                   |
| c /Å                                                                 | 24.7083(4)                                                                                                     |
| $\beta$ /°                                                           | 96.3133(13)                                                                                                    |
| Volume /Å <sup>3</sup>                                               | 7979.94(18)                                                                                                    |
| Ζ                                                                    | 8                                                                                                              |
| $D_{\text{calc}}/\text{g/cm}^3$                                      | 1.865                                                                                                          |
| F000                                                                 | 4464                                                                                                           |
| $\mu$ /mm <sup>-1</sup>                                              | 1.497                                                                                                          |
| Crystal size /mm                                                     | $0.093 \times 0.07 \times 0.01$                                                                                |
| Data collection                                                      |                                                                                                                |
| Temperature /K                                                       | 200.15                                                                                                         |
| Radiation                                                            | Mo Kα ( $\lambda$ = 0.71073 Å)                                                                                 |
| Voltage, current                                                     | 50 kV, 24 mA                                                                                                   |
| $\theta_{\rm max}$ /°                                                | 31.043                                                                                                         |
| No. of reflections measured                                          | 116395                                                                                                         |
| Independent reflections $(I > 2\sigma(I))$                           | 11226                                                                                                          |
| Index ranges of $h$ , $k$ , and $l$                                  | $-33 \le h \le 32, -19 \le k \le 18, -34 \le l \le 34$                                                         |
| Absorption correction                                                | Numerical                                                                                                      |
| Maximum and minimum transmission                                     | 0.863, 1.000                                                                                                   |
| factors                                                              |                                                                                                                |
| Refinement                                                           |                                                                                                                |
| Number of variables/restraints                                       | 548 / 528                                                                                                      |
| Reflection/parameter ratio                                           | 20.5                                                                                                           |
| $R_1,  \mathrm{w}R_2  (I > 2\sigma(I))$                              | 0.0289, 0.0600                                                                                                 |
| $R_1$ , w $R_2$ (All reflections)                                    | 0.0474, 0.0652                                                                                                 |
| Goodness-of-fit:                                                     | 1.009                                                                                                          |
| $\Delta  ho_{ m max},  \Delta  ho_{ m min}  ({ m e}^{-/}{ m \AA}^3)$ | 0.756, -0.695                                                                                                  |

Table S1. Data collection and details of single-crystal structural refinement



Figure S4. Rh K-edge (a)  $k^3$ -weighted and (b) Fourier transforms of extended X-ray absorption fine structure spectra of (i) Rh<sub>4</sub>Mo<sub>4</sub>(Cp<sup>E</sup>)/Al<sub>2</sub>O<sub>3</sub>, (ii) Rh<sub>4</sub>Mo<sub>4</sub>(Cp<sup>\*</sup>)/Al<sub>2</sub>O<sub>3</sub>, and (iii) Rh–Mo/Al<sub>2</sub>O<sub>3</sub>.

Table S2. Structural parameters obtained by curve-fitting the Rh K-edge FT-EXAFS data

| 1                                                                                 | 5                    |        | 0                   | 0                                            |       |
|-----------------------------------------------------------------------------------|----------------------|--------|---------------------|----------------------------------------------|-------|
| Compound                                                                          | Bonds                | CN*    | $r$ /Å $^{\dagger}$ | $\sigma^2$ /10 <sup>-3</sup> Å <sup>2‡</sup> | R /%§ |
| Rh <sub>4</sub> Mo <sub>4</sub> (Cp <sup>E</sup> )/Al <sub>2</sub> O <sub>3</sub> | Rh–O <sup>[a]</sup>  | 4.3(5) | 2.04(1)             | 6(1)                                         | 3.5   |
| Rh4Mo4(Cp*)/Al2O3                                                                 | Rh–O <sup>[a]</sup>  | 4.3(5) | 2.04(1)             | 5(1)                                         | 3.4   |
| Rh-Mo/Al <sub>2</sub> O <sub>3</sub>                                              | Rh–O <sup>[a]</sup>  | 4.7(6) | 2.04(1)             | 7(1)                                         | 6.2   |
| Rh <sub>2</sub> O <sub>3</sub>                                                    | Rh–O <sup>[a]</sup>  | 5.3(5) | 2.060(9)            | 4.0(9)                                       | 4.8   |
| Rh foil                                                                           | Rh-Rh <sup>[b]</sup> | 11(2)  | 2.709(9)            | 5(1)                                         | 5.5   |

\*Coordination number. <sup>†</sup>Bond length. <sup>‡</sup>Debye–Waller factor.

$${}^{\$}R = (\Sigma(k^{3}\chi^{\text{data}}(k) - k^{3}\chi^{\text{fit}}(k))^{2})^{1/2} / (\Sigma(k^{3}\chi^{\text{data}}(k))^{2})^{1/2}.$$

r ranges for the curve-fitting analyses: [a] 1.3–1.9 and [b] 2.0–2.8 Å.

Table S3. Support effect on hydrogenation of **1a** catalyzed by Rh–Mo-based catalysts prepared from  $[(RhCp^E)_4Mo_4O_{16}]^{[a]}$ 

| Entry | Catalyst                                                            | Yield.<br>/% |
|-------|---------------------------------------------------------------------|--------------|
| 1     | Rh4Mo4(Cp <sup>E</sup> )/Al2O3                                      | 45           |
| 2     | Rh <sub>4</sub> Mo <sub>4</sub> (Cp <sup>E</sup> )/TiO <sub>2</sub> | 45           |
| 3     | $Rh_4Mo_4(Cp^E)/ZrO_2$                                              | 48           |

[a] Reaction conditions: **1a** (0.1 mmol),  $H_2$  (0.8 MPa), 1,2-dimethoxyethane (0.5 mL), catalyst (10 mg, Rh: 0.97 mol%), molecular sieves (3A, 20 mg), 353 K, and 4 h.



Figure S5. Result of recycle tests of  $Rh_4Mo_4(Cp^E)/Al_2O_3$  for hydrogenation of **1a**. Reaction conditions: **1a** (0.1 mmol), H<sub>2</sub> (0.8 MPa), *n*-octane (0.5 mL), catalyst (10 mg, Rh: 0.97 mol%), molecular sieves (3A, 20 mg), 353 K, and 2 h.

| (                | $C_7H_{15}C(O)NH_2$                                                               | ► C <sub>8</sub> H <sub>17</sub> NH <sub>2</sub> + | C <sub>8</sub> H <sub>17</sub> OH | + (C <sub>8</sub> H <sub>17</sub> | <sub>7</sub> ) <sub>2</sub> NH | + (C <sub>8</sub> ⊦ | I₁ <sub>7</sub> )₃NH |    |
|------------------|-----------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------|-----------------------------------|--------------------------------|---------------------|----------------------|----|
|                  | 1d                                                                                | 2d                                                 | 3d                                | 40                                | d                              |                     | 5d                   |    |
| Entres           | Catalant                                                                          | 4                                                  |                                   | Conv.                             | Sele                           | ct. /%              |                      |    |
| Entry            | Catalyst                                                                          |                                                    | /h                                | /%                                | 2d                             | 3d                  | 4d                   | 5d |
| 1-1              |                                                                                   |                                                    | 2                                 | 26                                | 92                             | 5                   | 3                    | -  |
| 1-2              | Rh4Mo4(CpE)/Al2O2                                                                 | 3                                                  | 6                                 | 72                                | 89                             | 4                   | 7                    | -  |
| 1-3              |                                                                                   |                                                    | 10                                | 97                                | 76                             | 3                   | 20                   | 1  |
| 2 <sup>[b]</sup> | Rh4Mo4(CpE)/Al2O2                                                                 | 3 (Rh: 1 wt%)                                      | 6                                 | 86                                | 69                             | 16                  | 15                   | -  |
| 3 <sup>[c]</sup> | Rh4Mo4(Cp <sup>E</sup> )/Al <sub>2</sub> O <sub>2</sub>                           | $_3 + Al_2O_3$                                     | 6                                 | 75                                | 59                             | 7                   | 27                   | 8  |
| 4 <sup>[d]</sup> | Rh <sub>4</sub> Mo <sub>4</sub> (Cp <sup>E</sup> )/Al <sub>2</sub> O <sub>2</sub> | 3                                                  | 6                                 | 56                                | 70                             | 15                  | 12                   | 2  |

Table S4. Hydrogenation of *n*-octanamide catalyzed by Rh<sub>4</sub>Mo<sub>4</sub>(Cp<sup>E</sup>)/Al<sub>2</sub>O<sub>3</sub><sup>[a]</sup>

Reaction conditions: [a] 1d (0.025 mmol), H<sub>2</sub> (0.8 MPa), *n*-octane (2 mL), catalyst (4 mg, Rh: 5 wt%, 7.8 mol%), molecular sieves (3A, 20 mg), 393 K. [b] Catalyst (20 mg, Rh: 1 wt%) was used. [c]  $Al_2O_3$  (16 mg) was added. [d] Without molecular sieves.

| Table S5. Hydrogenation | of primary | amides | to amines |
|-------------------------|------------|--------|-----------|
|                         |            | 0      |           |

|                                                         | $\stackrel{O}{\Vdash}_{R} \longrightarrow R^{\frown} NH_2$ |                         |             |            |             |                  |              |  |  |
|---------------------------------------------------------|------------------------------------------------------------|-------------------------|-------------|------------|-------------|------------------|--------------|--|--|
| Catalyst                                                | R                                                          | P <sub>H2</sub><br>/MPa | Temp.<br>/K | Time<br>/h | Conv.<br>/% | Select.<br>/%    | Ref.         |  |  |
| $Rh_4Mo_4(Cp^E)/Al_2O_3^{[a]}$                          | C7                                                         | 0.8                     | 393         | 10         | 97          | 76               | This<br>work |  |  |
| $Rh_6(CO)_{16} + Mo(CO)_6$                              | Су                                                         | 10                      | 433         | 16         | 100         | 87               | [S1]         |  |  |
| $Ru_3(CO)_{12} + Mo(CO)_6$                              | Су                                                         | 10                      | 433         | 16         | 100         | 85               | [S2]         |  |  |
| $Ru_3(CO)_{12} + Re_2(CO)_{10}$                         | Су                                                         | 10                      | 433         | 16         | 100         | 93               | [S3]         |  |  |
| Pd/Re/graphite <sup>[a]</sup>                           | Су                                                         | 3                       | 433         | 20         | 21          | 0 <sup>[d]</sup> | [S4]         |  |  |
| Rh-MoO <sub>x</sub> /SiO <sub>2</sub> +CeO <sub>2</sub> | Су                                                         | 8                       | 413         | 4          | 89          | 62               | [S5]         |  |  |
| 2Ru1W/SiO <sub>2</sub>                                  | Су                                                         | 5                       | 433         | 12         | 94          | 84               | [S6]         |  |  |
| Ru-(0.2)Mo/TiO <sub>2</sub>                             | Су                                                         | 5                       | 433         | 12         | 83          | 80               | [S7]         |  |  |
| 2Ru0.2Mo/SiO <sub>2</sub>                               | Су                                                         | 5                       | 433         | 12         | 90          | 75               | [S8]         |  |  |
| $Rh_6(CO)_{16} + Re_2(CO)_{10}^{[b]}$                   | C5                                                         | 10                      | 453         | 8          | 100         | 76               | [S9]         |  |  |
| RuWOx/MgAl <sub>2</sub> O4 <sup>[c]</sup>               | C2                                                         | 5                       | 473         | 6          | 96          | 84               | [S10]        |  |  |
| $Ru/Nb_2O_5-L^{[c]}$                                    | C2                                                         | 4                       | 453         | 5          | 100         | 75               | [S11]        |  |  |
| Ni2M03N <sup>[c]</sup>                                  | C5                                                         | 2                       | 473         | 4          | 94          | 75               | [S12]        |  |  |
| Pt/V/HAP <sup>[a]</sup>                                 | C7                                                         | 3                       | 343         | 9          | 50          | 0 <sup>[e]</sup> | [S13]        |  |  |
| Rh-V/Al <sub>2</sub> O <sub>3</sub>                     | C11                                                        | 3                       | 403         | 5          | -           | $40^{[f]}$       | [S14]        |  |  |

[a] Molecular sieves (3A or 4A) were added. [b] Diethylamine was added. [c] NH<sub>3</sub> was added. [d] A dimer formed. [e] Alcohol formed. [f] Yield. Cy = cyclohexyl, C2 = CH<sub>3</sub>CH<sub>2</sub>, C5 = CH<sub>3</sub>(CH<sub>2</sub>)<sub>4</sub>, C7 = CH<sub>3</sub>(CH<sub>2</sub>)<sub>6</sub>, and C11 = CH<sub>3</sub>(CH<sub>2</sub>)<sub>10</sub>.



Figure S6. UV-vis spectra of the pristine precursor (dotted) and filtrate of mixture with support in MeOH (solid): (a)  $[(RhCp^E)_4Mo_4O_{16}]$  and (b)  $[(RhCp^*)_4Mo_4O_{16}]$ .



Figure S7. Electrostatic potentials mapped on electron density surfaces of (a)  $[(RhCp^E)_4Mo_4O_{16}]$  and (b)  $[(RhCp^*)_4Mo_4O_{16}]$ .



Figure S8. Representative gas chromatography chart of reaction mixture after hydrogenation of 1d catalyzed by  $Rh_4Mo_4(Cp^E)/Al_2O_3$  (Conv.: 97%, Select. to 2d: 76%). Reaction conditions: 1d (0.025 mmol), H<sub>2</sub> (0.8 MPa), *n*-octane (2 mL), catalyst (4 mg, Rh: 5 wt%, 7.8 mol%), molecular sieves (3A, 20 mg), 393 K, and 10 h.

#### References

- (S1) Beamson, G.; Papworth, A. J.; Philipps, C.; Smith, A. M.; Whyman, R. Selective Hydrogenation of Amides Using Rh/Mo Catalysts. *J. Catal.* **2010**, *269*, 93–102.
- (S2) Beamson, G.; Papworth, A. J.; Philipps, C.; Smith, A. M.; Whyman, R. Selective Hydrogenation of Amides Using Ruthenium/ Molybdenum Catalysts. *Adv. Synth. Catal.* **2010**, *352*, 869–883.
- (S3) Beamson, G.; Papworth, A. J.; Philipps, C.; Smith, A. M.; Whyman, R. Selective Hydrogenation of Amides Using Bimetallic Ru/Re and Rh/Re Catalysts. *J. Catal.* **2011**, *278*, 228–238.
- (S4) Stein, M.; Breit, B. Catalytic Hydrogenation of Amides to Amines under Mild Conditions. *Angew. Chem. Int. Ed.* **2013**, *52*, 2231–2234.
- (S5) Nakagawa, Y.; Tamura, R.; Tamura, M.; Tomishige, K. Combination of Supported Bimetallic Rhodium–Molybdenum Catalyst and Cerium Oxide for Hydrogenation of Amide. *Sci. Technol. Adv. Mater.* 2015, *16*, 014901.
- (S6) Zhang, Y.; Li, L.; Liu, F.; Qi, H.; Zhang, L.; Guan, W.; Liu, Y.; Wang, A.; Zhang, T. Synergy between Ru and WO<sub>X</sub> Enables Efficient Hydrodeoxygenation of Primary Amides to Amines. ACS *Catal.* 2022, *12*, 6302–6312.
- (S7) Zhang, Y.; Zhang, F.; Li, L.; Liu, F.; Wang, A. Highly Chemoselective Reduction of Amides to Amines over a Ruthenium-Molybdenum Bimetallic Catalyst. *ChemistrySelect* 2022, 7, e202203030.
- (S8) Zhang, Y.; Zhang, F.; Li, L.; Qi, H.; Yu, Z.; Liu, X.; Cao, C.; Liu, F.; Wang, A.; Zhang, T. Decoration of Ru Nanoparticles with Mononuclear MoO<sub>x</sub> Boosts the Hydrodeoxygenation of Amides to Amines. J. Catal. 2023, 417, 301–313.
- (S9) Hirosawa, C.; Wakasa, N.; Fuchikami, T. Hydrogenation of Amides by the Use of Bimetallic Catalysts. *Tetrahedron Lett.* **1996**, *37*, 6749–6752.
- (S10) Coeck, R.; Berden, S.; De Vos, D. E. Sustainable Hydrogenation of Aliphatic Acyclic Primary Amides to Primary Amines with Recyclable Heterogeneous Ruthenium-Tungsten Catalysts. *Green Chem.* 2019, 21, 5326–5335.
- (S11) Guo, W.; Xia, Q.; Jia, H.; Guo, Y.; Liu, X.; Pan, H.; Wang, Y.; Wang, Y. Highly Selective Synthesis of Primary Amines from Amide over Ru-Nb<sub>2</sub>O<sub>5</sub> Catalysts. *Chem. Asian J.* 2022, *17*, e202101256.
- (S12) Yang, H.; Zhou, L.; Chen, H.; Zeng, Y.; Li, D.; Hu, C. Efficient Hydrogenation of Aliphatic Acyclic Amides to Amines by Bimetallic NiMo Nitrides via Heterogeneous Catalysis. *Chem. Eng.* J. 2023, 473, 145374.
- (S13) Mitsudome, T.; Miyagawa, K.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Yamasaki, J.; Kitagawa, Y.; Kaneda, K. Mild Hydrogenation of Amides to Amines over a Platinum-Vanadium Bimetallic Catalyst. *Angew. Chem. Int. Ed.* 2017, 56, 9381–9385.
- (S14) Pennetier, A.; Hernandez, W. Y.; Kusema, B. T.; Streiff, S. Efficient Hydrogenation of Aliphatic Amides to Amines over Vanadium-Modified Rhodium Supported Catalyst. *Appl. Catal. A* 2021, 624, 118301.