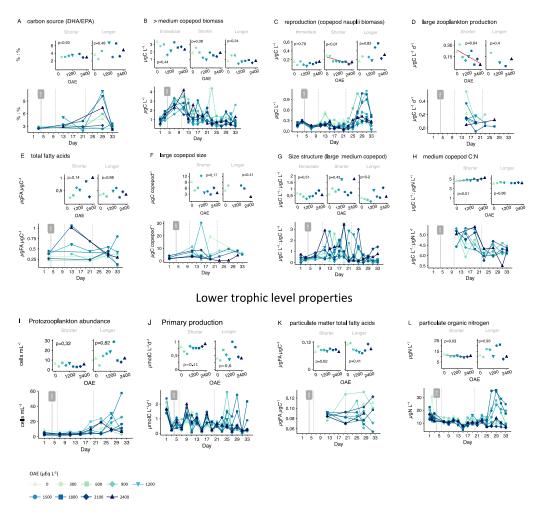
Science Advances

Supplementary Materials for

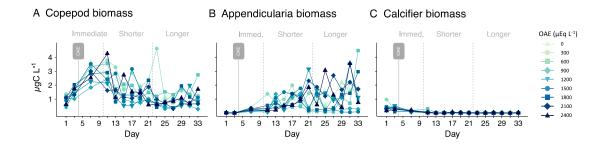
Plankton food web structure and productivity under ocean alkalinity enhancement

Nicolás Sánchez et al.

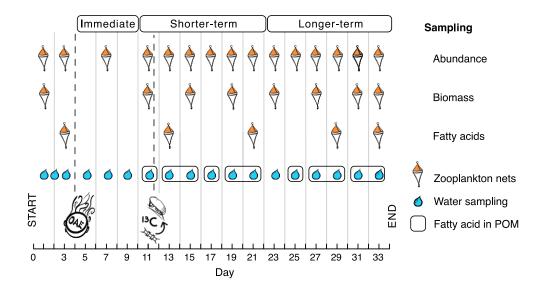

Corresponding author: Nicolás Sánchez, nsanchez@geomar.de

Sci. Adv. **10**, eado0264 (2024) DOI: 10.1126/sciadv.ado0264

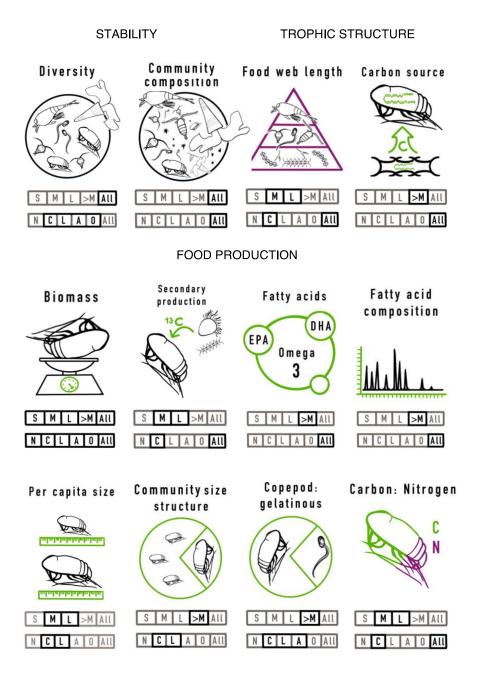
This PDF file includes:


Figs. S1 to S4 Tables S1 to S5

Zooplankton properties


Fig. S1. Continuation of Figure 1.

Continuation of figure 1 reporting key metazoan zooplankton (A-H) and lower trophic level (I-L) responses to OAE. These responses are summarized in tables 1 and 2.


Fig. S2. Metazoan zooplankton biomass development.

Biomass development of key zooplankton groups, across size classes and development, under OAE. In the case of copepods, copepod nauplii are excluded.

Fig. S3. Experimental schedule.

Experimental schedule including sampling of metazoan zooplankton and the water column, as well as OAE simulation and the enrichment in 13C, used to measure zooplankton production.

Fig. S4. Metazoan zooplankton samples overview.

Overview of zooplankton properties assessed, organized according to their food web implication. Green = carbon-based measurement, purple = nitrogen-based. Bar pairs underneath each symbol inform about the zooplankton size classes (upper bars) and taxonomic groups (lower bars) on which each property was assessed, indicated in black. When multiple size or taxonomic categories are enclosed together, these were measured together. Every marked taxon was assessed in every marked size class (factorially), except for production, which could only be measured in bulk zooplankton within the large size class, and except for copepod nauplii, which can only belong to the small size class. For the size bar: S = small, M = medium, L = large, >M = medium and large

together, All = all. For the taxon bar: N = copepod nauplii, C = copepod and copepodite, excluding *Labidocera*, L = *Labidocera*, A = Appendicularia, O = other zooplankton, All = all.

Table S1. Summary of linear regressions for metazoan zooplankton responses to OAE.

Zooplankton responses to OAE through different phases of adjustment. Here we report the statistical outputs form the linear regressions fitted to phase averages. All zooplankton (size, taxonomy and development) samples in which each response was assessed are included.

FOOD WEB IMPLICATION	ZOOPLANKTON PROPERTY	SAMPLE	PHASE	-	STATISTICS	
Stability	Diversity	all zooplankton	i s	df 7 7	t -0.35 0.25	p 0.74 0.81
		large zooplankton	1 s		-0.1 0.17	0.92 0.87
	Trophic level	medium zooplankton	1	3 7 7	0.5 1.28	0.65
Trophic		medium copepod	l s	7	0.5	0.63
structure		PUFA:SFA	l	6 5 6	0.79	0.46
	Carbon source		1	5	-0.1	0.92
		DHA:EPA	s s	6 5	0.75	0.48
		C18:1n-7	1 i	6	-1 -0.75 -0.75	0.35 0.48 0.48
		all zooplankton	s l	7 7 7	0.06	0.95
		all appendicularia	i s l	$\frac{7}{7}$	$\begin{array}{c} 0.67 \\ 0.25 \\ 0.69 \end{array}$	$ \begin{array}{c} 0.52 \\ 0.81 \\ 0.51 \end{array} $
		all calcifiers	i s l	7 7 7	0.95 -0.19 -2.06	$\begin{array}{c} 0.37 \\ 0.86 \\ 0.08 \end{array}$
	Biomass	all other zooplankton	i s l	7 7 7	-1.62 -2.17 0.33	$\begin{array}{c} 0.15 \\ 0.07 \\ 0.75 \end{array}$
Food		copepodites	i s l	7 7 7	-1.06 -0.59 -0.91	$\begin{array}{c} 0.33 \\ 0.57 \\ 0.4 \end{array}$
production: quantity		adult copepod	i s l	7 7 7	1.32 -1.76 -2.01	$0.23 \\ 0.12 \\ 0.08$
		Labidocera	s l	7 7	-0.12 1.7	$0.91 \\ 0.13$
		>medium zooplankton	i s l	7 7 7	-1.03 -0.58 -0.13	$0.34 \\ 0.58 \\ 0.9$
		>medium copepods	i s l	7 7 7	-0.82 -0.95 -1.29	$0.44 \\ 0.38 \\ 0.24$
	Reproduction	copepod nauplii biomass	i s l	7 7 7	0.28 -4.08 0.22	0.79 <0.01 0.83
		large zooplankton	s l	$\frac{7}{2}$	-2.54 -1.07	$0.04 \\ 0.4$
	Production	medium zooplankton	s l	7	-2.26 -1.06	0.06 0.33
		medium copepod	s 1	6	-2.28 -1.78	0.06 0.13
		total FAs	s l	5 6	1.74 0.44	0.14 0.68
	Fatty acids	DHA:EPA	s l	$\frac{5}{6}$	-0.1 0.75	$0.93 \\ 0.48$
		PUFAs	s l	5 6	$0.75 \\ 0.17$	$0.49 \\ 0.87$
		large copepod	s l	$\frac{7}{3}$	-1.52 -0.95	$0.17 \\ 0.41$
	Size	large Labidocera	s l	$^{3}_{2}$	$1.44 \\ -0.45$	0.25 0.7
Food		medium copepod	s l	7 7	$0.4 \\ 0.44$	$0.7 \\ 0.67$
production: quality		medium Temora	s l	7 7	-0.13 -1.72	$0.9 \\ 0.13$
	Size structure	Large: medium copepod	i s l	7 7 7 7	0.69 0.83 1.44	$0.51 \\ 0.43 \\ 0.2$
	Copepod: gelatinous	>medium zooplankton	i s l	7 7 7	-0.62 -0.53 -0.29	$0.56 \\ 0.61 \\ 0.78$
		large zooplankton	s l	73	-0.38 -0.2	$0.72 \\ 0.86$
	Carbon: nitrogen	medium zooplankton	sl	777	1.89 3.3	0.1 0.01
		medium copepod	s	7 6	3.84 0.18	<0.01 0.86

Table S2. Summary of linear regressions of metazoan zooplankton biomass and fatty acid composition to OAE.

Zooplankton biomass (A) and fatty acid (B) composition responses to OAE. We fitted linear regressions to the calculated ecological (based on Bray-Curtis dissimilarity) and environmental distances (based on Euclidean distance) to quantitatively assess the effect of OAE on these multivariate data sets. We further tested for a correlation between the environmental and ecological distances using Mantel tests. In both cases we established a p>0.05 as non-significant . Response phases: i = immediate, s = shorter-term, l = longer-term.

Zooplankton	Dhasa	OAE effe	ect (linear reg	ressions)	Mantel test				
response	Phase	df	t	р	r	р			
Community	i	34	-0.1	0.93	0.01	0.47			
Community -	S	34	-0.45	0.66	0.03	0.42			
composition –	I	34	-1.09	0.28	-0.15	0.8			
Fatty acid	S	19	0.91	0.38	0.13	0.21			
composition	l	26	-1.49	0.15	-0.24	0.62			

Table S3. Equations used in the study.

Here we report on the series of equations and transformations applied to calculate selected food web parameters presented in this study. Further details on how we applied these formulas can be found in the materials and methods sections. ZP = metazoan zooplankton, POM = particulate organic matter, prosome = anterior region of the body of invertebrates (in copepods, roughly corresponds to the bulk of the biomass).

PROPERTY	MEASUREMENT (units)	EQUATION	VARIABLES	SOURC		
	Biovolume (mm ³)	$=\frac{4}{3}\Pi\frac{PL}{2}\frac{PW}{2}\frac{PH}{2}$	PL = prosome length (mm) PW = prosome width (mm) PH = prosome height (same as PW)			
1. COPEPOD PER CAPITA SIZE	Wet mass (μg)	= (1.024 * biovolume)1000	$1.024 = {\rm seawater \ gravity} \ (gcm^{-3})$ at 22°C; assumed similar to cope pods $'$	14		
	Dry mass (μg)	= 0.162 * wetmass	0.162 = constant			
	C mass (μg)	= 0.48 * drymass	0.48 = constant			
2. DIVERSITY	Shannon index (H')	$= -1 \sum (p_i(\ln p_i))$	p_i = taxon-specific biomass relative to total biomass $\ln p_i$ = natural log of p_i			
3. FOOD WEB LENGTH	Zooplankton trophic level $(\delta^{15}N)$	$= ZP\delta^{15}N_t - POM\delta^{15}N_{t\to t-1}$	$ZP\delta^{15}N_t = \text{zooplankton } \delta^{15}N$ on sampling day t $POM\delta^{15}N_{t\to t-1} = \text{mean POM } \delta^{15}N$ across sampling days t and the previous one			
4. SECONDARY PRODUCTION	$\rm AT\%^{13}C$	$=\frac{X}{X+1}100$	$X = (\frac{\delta^{13}C}{1000} + 1)0.0111802$	73		
4. PRODUCTION	Production $(\mu g C L^{-1} d^{-1})$	$=\frac{ZPAT\%^{13}C_{t}-ZPAT\%^{13}C_{t0}}{POMAT\%^{13}C_{t0\to t}-ZPAT\%^{13}C_{t0}}\frac{ZPbiomass_{t\to t\pm 1}}{t-t_{0}}$	$ \begin{array}{l} ZPAT \otimes^{13} C_t = Z\mathbb{P} \mbox{ enrichment on day } t \\ ZPAT \otimes^{13} C_{t0} = Z\mathbb{P} \mbox{ baseline enrichment } \\ POM AT \otimes^{13} C_{t0-s-t} = \mbox{ mean POM } \\ mrichment of measurements between t_0 \mbox{ and } t \\ ZPbiomasset, -ti_{\pm}1 = \mbox{ mean P} \mbox{ binses } (\mu \mathcal{G}L^{-1}) \\ \mbox{ at } t \mbox{ at othe sampling days directly before and after } t - t_0 = \mbox{ days } \end{array} $			
5. COMMUNITY COMPOSITION	Normalized zooplankton biomass	$= \frac{ZPbiomass - ZPbiomas_{min}}{ZPbiomass_{max} - ZPbiomass_{min}}$	ZPbiomass = biomass of each ZP group $ZPbiomas_{min} =$ minimum biomass for each group, per treatment and across time $ZPbiomas_{max} =$ maximum biomass for each group, per treatment and across time	87		

Table S4. Metazoan zooplankton biomass conversion factors.

Compilation of all zooplankton biomass conversion factors (μ gC per ind) applied to calculate zooplankton biomass (μ gC per L) from their abundances (ind per L). Factors were averaged from ZP carbon biomass measured either directly in an elemental analyzer, or indirectly via imagebased carbon calculations, depending on sample availability. This table presents factors for ZP groups that both contributed to more than 0.1% of total biomass and that were found on more than two time points, per treatment. Abundances were resolved to a more detailed taxonomic and developmental level than biomass measurements, which is why in many case the same factor is applied to multiple count groups. In most cases, no temporal trends were observed in per capita biomass, so factors are calculated on average values for the whole experiment.

¹Small copepod(ite) factors are calculated by subtracting the average (across treatments and time) copepod nauplii biomass from the average small bulk ZP biomass from the Gran Canaria 2019 mesocosm campaign. Both campaigns took place in the same location and season, and followed the same sampling strategy. ²Small gelatinous ZP factors used came from the average small Appendicularia biomass from the Gran Canaria 2019 mesocosm campaign. ³Large copepod(ite) factors were calculated both from copepod and selected bulk zooplankton samples which only contained copepods. ⁴Large *Labidocera* factors were calculated from individuals sampled both in the water column and in the sediment traps, as we did not observe consistent biomass differences according to origin. Grey color = factor applied was averaged across all treatments.

SIZE	COUNT	BIOMASS	METHOD	OAE	$\frac{FACTOR}{(\mu gCind^{-1})}$				
	GROUP	GROUP	METHOD	(μEqL^{-1})	immediate shorter	longer			
				0		0.024			
			elemental	300		0.027			
				600		0.03			
all		copepod nauplii		900		0.025			
	copepod			1200	0.029	0.034			
	nauplii		analyzer	1500		0.032			
				1800		0.032			
				2100		0.029			
				2400		0.029			
	Calanoid								
small	Oithona	copepod(ite)	elemental analyzer ¹	all	0.089				
Sillali	On cae a	copepod(ne)		411	0.089				
	Temora								
small	Oikopleura	Appendicularia	elemental	all	0.089				
Sinan	Obelia	Appendicularia	$analyzer^2$	an	0.005				
small	Foraminifera								
	Gastropoda	bulk	elemental	all	0.066				
	Pteropoda	zooplankton	analyzer						
	Radiolaria				1.054				
	Calanoid			0	1.054				
	Corycaeus			300	1.193				
	Microsetella Oithona		elemental	600	1.234				
medium	Ontnona Oncaea	copepod(ite)		900	0.981				
	Paracalanus		analyzer	1200 1500	1.072 1.086				
	Temora			1800	1.145				
	Harpacticoida			$1800 \\ 2100$	0.901				
	narpacticolda			2100 2400	0.901				
				0	0.117				
				300	0.114				
				500 600	0.114				
	Oikopleura			900	0.133				
medium	Obelia	Appendicularia	images	1200	0.133				
	0.0000	rependicularia	magoo	1500	0.125				
				1800	0.138				
				2100	0.180				
				2400	0.144				
					continued in the nex	vt nam			

SIZE	COUNT GROUP	BIOMASS GROUP	METHOD	$\begin{array}{l} \textbf{OAE} \\ (\mu EqL^{-1}) \end{array}$	$\begin{array}{c c} \textbf{FACTOR} \\ (\mu gCind^{-1}) \\ immediate shorter longer \end{array}$
medium	Foraminifera Gastropoda Pteropoda Radiolaria Pluteus	bulk zooplankton	elemental analyzer	0 300 600 900 1200 1500 1800 2100 2400	$\begin{array}{c} 0.564 \\ 0.598 \\ 0.766 \\ 0.694 \\ 0.712 \\ 0.826 \\ 0.672 \\ 0.686 \\ 0.58 \end{array}$
large	Calanoid Centropages Oithona Oncaea Paracalanus Temora	$\operatorname{copepod}(\operatorname{ite})$	elemental analyzer ³	all	5.058
large	Oikopleura	Appendicularia	images	0 300 600 900 1200 1500 1800 2100 2400	$\begin{array}{c} 0.137\\ 0.369\\ 0.226\\ 0.339\\ 0.201\\ 0.284\\ 0.1\\ 0.361\\ 0.126\\ \end{array}$
large	Foraminifera Gastropoda Pteropoda Radiolaria	bulk zooplankton	elemental analyzer	0 300 600 900 1200 1500 1800 2100 2400	3.687 6.023 3.687 3.687 3.891 2.017 3.922 3.687 3.954
large	Labidocera	Labidocera	$elemental$ $analyzer^4$	all	34.209

Table S5. Metazoan zooplankton fatty acids.

Abundant (contributing more than 0.1% to total for each sample) fatty acids (%) measured in zooplankton. Phase average values are reported (S = shorter-term, L = longer-term). Saturated (SFA), monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids were calculated from the individual fatty acids listed in this table. blank = no data, - = below 0.1% threshold.

FATTY ACID FORMULA								MEAI	N FA	(%)								
	0	300		600		900)	12	00	1	.500	18	300	21	.00	24	2400	
	S L	S	L	S	L	S	L	S	L	s	L	S	L	S	L	S	L	
C12:0	0.4	0.6	0.7	0.6	0.3	0.2		1.6	-		0.4	0.7	0.5	0.4	0.4	-	0.5	
C14:0	2.3	3	2.7	1.4	1.8	1.1		1.6	2.3		3.4	1	2.6	1.5	1.7	1.1	2.1	
C14:1, 2OH-C10:0	-	0.1	0.1	-	-	-		-	-		0.2	-	-	-	-	-	0.2	
C15:0	-	0.9	-	0.4	-	-		0.3	-		-	0.3	-	-	0.4	0.3	-	
C16:0	50.5	43.3	49.1	51.6	51.7	51.8		52.9	50.2		64.3	51.9	47.6	52.1	51.3	51.2	46.8	
C16:1	0.7	1.7	1.5	0.4	0.3	0.3		0.3	0.9		1.5	0.3	0.5	0.4	0.7	0.3	0.8	
C16:3n-4	0.2	1.1	-	0.4	-	0.4		0.6	-		0.2	0.3	-	0.8	-	0.5	-	
C17:0	0.3	1.2	0.4	0.4	0.3	0.4		0.3	0.2		0.3	0.3	0.5	0.4	-	0.3	0.3	
C17:1; 3-OH-C12	-	-	0.2	-	-	-		-	-		0.4	-	-	-	-	-	-	
C18:0; C18:1n9t	31.7	27.4	30.8	35.2	33.4	35.5		32.8	30.4		31.2	36.6	30.2	35.4	33.3	36.4	39	
C18:1n7c	0.8	1.5	1.2	0.3	2.4	0.2		0.3	0.8		0.6	0.3	0.9	0.3	0.6	0.2	0.5	
C18:1n9c	4.7	4.4	5.3	4.9	4.7	4.8		4.7	4.6		4.8	4.6	4.3	4.9	4.5	4.5	3.3	
C18:2n6c	0.9	0.8	0.9	0.5	0.6	0.5		0.5	1.1		1.4	0.5	0.9	0.5	-	0.5	0.5	
C18:3n3	0.5	-	0.2	-	0.5	-		-	0.8		0.3	-	0.4	-	-	-	0.2	
C18:3n6	0.3	-	0.3	0.2	0.2	-		-	0.3		0.2	-	0.3	-	0.2	0.1	0.3	
C20:0	0.4	0.3	0.4	0.4	0.3	0.4		0.3	0.3		0.4	0.3	0.4	0.4	0.4	0.4	0.4	
C20:1n9c	0.2	-	-	-	0.3	-		-	0.2		0.2	0.3	0.3	-	-	-	0.5	
C20:2n6c	-	-	-	-	-	-		-	0.2		-	-	-	-	-	-	-	
C20:3n6	-	0.1	-	-	-	-		-	0.3		0.7	-	-	-	-	-	-	
C20:4n6c	0.2	0.2	0.2	0.1	0.1	-		-	0.3		0.3	0.1	0.3	-	0.1	0.1	0.2	
C20:5n3c	1.3	3	2	0.8	0.9	0.7		0.9	1		2.4	0.7	2	0.7	1.5	0.9	0.6	
C22:0	1.7	-	-	-	1.7	-		-	2.8		-	-	1.6	-	-	-	2.3	
C22:1n9c	0.3	0.4	0.4	0.4	0.2	0.4		0.3	0.2		0.2	0.3	0.5	0.2	-	0.5	0.2	
C22:6n3	4.1	9.2	4.9	2.6	3.7	2.4		3.4	5		6.5	2.3	7.8	2	4.9	2.5	3.3	
C23:0	-	-	-	-	-	-		-	-		-	-	0.2	-	-	-	-	
C24:0	0.3	0.3	0.4	-	0.3	-		-	0.2		0.4	0.1	0.4	-	-	-	-	
C24:1; C22:5n3	0.2	0.4	-	0.1	0.1	0.2		0.1	0.2		0.2	-	0.3	0.1	-	0.1	0.2	
SFAs	86.5	77	84	89.8	88.9	89.9		89.7	85		84.6	90.7	82.5	90.2	87.4	89.7	90	
MUFAs	6.3	7.9	8.2	5.6	5.3	5.8		5.3	6.5		4.5	5.4	6.3	5.7	5.8	5.5	5	
PUFAs	7.2	14.5	7.6	4.5	5.8	4.1		5	8.4		10.4	3.9	11.1	4	6.7	4.6	4.8	