
A Additional Proofs1284

A.1 Sigma-Fields1285

Lemma A.1 (σ-field induced by a set system).1286

Let Ω be a set and E ⊂ P (Ω) some set system of Ω. Then the set system1287

σ(E) :=
⋂

F is σ-field on Ω,
E⊂F

F1288

defines the smallest σ-field on Ω that holds E, called the σ-field generated by E.1289

Proof. This is trivial.1290

Remark A.2. For the set system E ⊂ P (Ω) of Ω, E ⊂ σ(E) holds. If the set system1291

E ⊂ P (Ω) is a σ-field on Ω already, σ(E) = E holds: All σ-fields F on Ω considered in1292

the intersection satisfy E ⊂ F . Therefore, E ⊂ ∩F is σ-field on Ω, E⊂F F holds. If E is a1293

σ-field already, E is one of these σ-fields on Ω that satisfy E ⊂ E . Therefore, in this case,1294

∩F is σ-field on Ω, E⊂F F ⊂ E also holds.1295

Remark A.3. If for two set systems E1, E2 ⊂ P (Ω) of Ω, E1 ⊂ E2 holds, σ(E1) ⊂ σ(E2)1296

holds: All σ-fields that hold E2 also hold E1. Therefore, the intersection over all σ-fields1297

that hold E1 creates an equal or smaller set system compared to the intersection over all1298

σ-fields that hold E2.1299

Lemma A.4 (σ-field induced by a function).1300

Let X : Ω −→ X be a function with σ-field FX on X . Then the set system σ(X) :=1301

X−1(FX ) = {X−1(A) ⊂ Ω | A ∈ FX } of Ω defines a σ-field on Ω, called the σ-field1302

generated by X.1303

Proof. (i) Ω ∈ σ(X): By definition of a σ-field on X , X ∈ FX holds. Thus, by definition1304

of σ(X), Ω = X−1(X ) ∈ σ(X) holds.1305

1306

(ii) If B ∈ σ(X), BC ∈ σ(X), too: If B ∈ σ(X), by definition of σ(X), there exists1307

an A ∈ FX , such that B = X−1(A) holds. By definition of a σ-field, AC ∈ FX holds.1308

Thus, by definition of σ(X), BC = (X−1(A))C = X−1(AC) ∈ σ(X) holds.1309

1310

(iii) If Bn ∈ σ(X) for all n ∈ N, ∪n∈NBn ∈ σ(X), too: If Bn ∈ σ(X), by def-1311

inition of σ(X), there exists an An ∈ FX , such that Bn = X−1(An) holds for all1312

n ∈ N. By definition of a σ-field, ∪n∈NAn ∈ FX holds. Thus, by definition of σ(X),1313

∪n∈NBn = ∪n∈NX−1(An) = X−1(∪n∈NAn) ∈ σ(X) holds.1314

Lemma A.5 (σ-field induced by a set system and a function).1315

Let X : Ω −→ X be a function and E ⊂ P (X ) some set system of X . Then X−1(σ(E)) =1316

σ(X−1(E)) holds.1317

Proof. (i) σ(X−1(E)) ⊂ X−1(σ(E)): By remark A.3, X−1(E) ⊂ X−1(σ(E)) implies1318

σ(X−1(E)) ⊂ σ(X−1(σ(E))). By lemma A.4 for FX = σ(E), X−1(σ(E)) is a σ-field on Ω.1319

Thus, by remark A.2, σ(X−1(E)) ⊂ σ(X−1(σ(E))) = X−1(σ(E)) holds.1320

1321

(ii) X−1(σ(E)) ⊂ σ(X−1(E)): By definition of X−1(σ(E)), we need to show that for1322

all A ∈ σ(E), X−1(A) ∈ σ(X−1(E)) holds. We do so by using the principle of good sets:1323
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Let G := {A ⊂ X | X−1(A) ∈ σ(X−1(E))}. The goal is to show that σ(E) ⊂ G holds.1324

1325

(ii.1) E ⊂ G: If A ∈ E , by definition of X−1(E) and remark A.2, X−1(A) ∈ X−1(E) ⊂1326

σ(X−1(E)) holds. Thus, A ∈ G holds.1327

1328

(ii.2) G is a σ-field on X :1329

(ii.2.i) X ∈ G: By definition of a σ-field on Ω, X−1(X ) = Ω ∈ σ(X−1(E)) holds. Thus, by1330

definition of G, X ∈ G holds.1331

1332

(ii.2.ii) If A ∈ G, AC ∈ G, too: If A ∈ G, by definition of G, X−1(A) ∈ σ(X−1(E))1333

holds. By definition of a σ-field, X−1(AC) = (X−1(A))C ∈ σ(X−1(E)) holds. Thus, by1334

definition of G, AC ∈ G holds.1335

1336

(ii.2.iii) If An ∈ G for all n ∈ N, ∪n∈NAn ∈ G, too: If An ∈ G, by definition of G,1337

X−1(An) ∈ σ(X−1(E)) holds for all n ∈ N. By definition of a σ-field, X−1(∪n∈NAn) =1338

∪n∈NX−1(An) ∈ σ(X−1(E)) holds. Thus, by definition of G, ∪n∈NAn ∈ G holds.1339

1340

Finally, as E ⊂ G and G is a σ-field on X , by remark A.3 and A.2, σ(E) ⊂ σ(G) = G1341

holds, which was the goal to show.1342

Remark A.6. If in lemma A.4, the generator of FX is known, i.e., if FX = σ(EX ) holds,1343

using the notation from lemma A.5 with E = EX , we obtain1344

σ(X) := X−1(FX ) = X−1(σ(EX )) = σ(X−1(EX )),1345

i.e., the σ-field generated by the function X equals the σ-field generated by the pre-image1346

of the generator EX of the σ-field FX .1347

A.2 Independence of Two Random Variables1348

Lemma A.7 (Independence of two random variables, version 1).1349

X and Y are independent with respect to P iff1350

P(X ∈ A, Y ∈ B) = P(X ∈ A) · P(Y ∈ B) (A.11)1351

holds for all A ∈ FX , B ∈ FY .1352

Proof. By definition of σ(X) and σ(Y ) (cf. definition 2.1) and the definition of indepen-1353

dence of two families of events (cf. [8]), σ(X) and σ(Y ) are independent iff1354

P(X−1(A) ∩ Y −1(B)) = P(X−1(A)) · P(Y −1(B))1355

holds for all A ∈ FX , B ∈ FY .19 Using that1356

X−1(A) ∩ Y −1(B)1357

= {ω ∈ Ω | X(ω) ∈ A} ∩ {ω ∈ Ω | Y (ω) ∈ B}1358

= {ω ∈ Ω | X(ω) ∈ A, Y (ω) ∈ B}1359

holds and that {X ∈ A, Y ∈ B} is just a short form for the latter set, together with1360

analog arguments for {X ∈ A} and {Y ∈ B}, we obtain equation (A.11).1361

19By definition of a random variable, X is F-FX - and Y is F-FY -measurable, i.e., for all A ∈ FX ,
X−1(A) ∈ F and for all B ∈ FY , Y −1(B) ∈ F holds. Therefore, the considered probabilities are well
defined (P is a function defined on F).
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Lemma A.8 (Independence of two random variables, version 2).1362

Assume that FX = σ(EX ) and FY = σ(EY) holds and that the set systems EX and EY , also1363

called generators, are ∩-stable20. Then X and Y are independent with respect to P iff1364

P(X ∈ A, Y ∈ B) = P(X ∈ A) · P(Y ∈ B) (A.12)1365

holds for all A ∈ EX , B ∈ EY .1366

Proof. By definition 2.1, X and Y are independent iff σ(X) and σ(Y ) are independent.1367

By definition of these σ-fields (cf. definition 2.1), then X and Y are independent iff1368

X−1(σ(EX )) and Y −1(σ(EY)) are independent. By lemma A.5, X−1(σ(EX )) = σ(X−1(EX ))1369

and Y −1(σ(EY)) = σ(Y −1(EY)) holds. Therefore, X and Y are independent iff σ(X−1(EX ))1370

and σ(Y −1(EY)) are independent.1371

For the latter case, using that a probability measure P is uniquely determined by an1372

∩-stable generator of the σ-field it is defined on (cf. [23], lemma 1.42), it suffices to test1373

equation (A.11) on X−1(EX ) and Y −1(EY), respectively, as these are intersection stable if1374

EX and EY are.1375

Remark A.9 (∩-stable generators are enough). If ∩-stable generators EX and EY of the1376

σ-fields FX and FY , respectively, are known, the following lemmata A.10 and A.12 are1377

replaceable by a version where the σ-fields FX and FY are replaced by their generators1378

EX and EY , such as we did in lemma A.8 based on lemma A.7.1379

Lemma A.10 (Independence of two random variables, version 3).1380

X and Y are independent with respect to P iff1381

P(X ∈ A) = P(X ∈ A | Y ∈ B) (A.13)1382

holds for all A ∈ FX and B ∈ FY for which P(Y ∈ B) > 0 holds.1383

Proof. For A ∈ FX and B ∈ FY for which P(Y ∈ B) > 0 holds, by definition of conditional1384

probabilities (cf. [8]), P(X ∈ A, Y ∈ B) = P(X ∈ A | Y ∈ B) · P(Y ∈ B) holds.1385

Comparing equation (A.12) and (A.13) yields both implications, noting that for the case1386

P(Y ∈ B) = 0, equation (A.12) is trivially fulfilled (cf. remark A.11).1387

Remark A.11. Conditional probabilities of the kind P(X ∈ A | Y ∈ B) are only well-1388

defined for B ∈ FY for which P(Y ∈ B) > 0 holds. However, equation (A.11) is also1389

satisfied for B ∈ FY for which P(Y ∈ B) = 0 holds, because due to rules of (probability)1390

measures, 0 ≤ P(X ∈ A, Y ∈ B) ≤ P(Y ∈ B) = 0 and therefore, P(X ∈ A, Y ∈ B) = 01391

holds.1392

While the results of the previous lemmata are well-known observations, we need a slightly1393

different characterization of independence of random variables than usual to link it to1394

group fairness notions in ML.1395

Lemma A.12 (Independence of two random variables, version 4).1396

X and Y are independent with respect to P iff1397

P(X ∈ A | Y ∈ B1) = P(X ∈ A | Y ∈ B2) (A.14)1398

holds for all A ∈ FX and B1, B2 ∈ FY for which P(Y ∈ B1), P(Y ∈ B2) > 0 holds.1399

20A set system E is called ∩-stable iff for any two sets A1, A2 ∈ E , also A1 ∩ A2 ∈ E holds.
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Proof. If X and Y are independent with respect to P, equation (A.14) clearly holds for1400

all A ∈ FX and B1, B2 ∈ FY for which P(Y ∈ B1), P(Y ∈ B2) > 0 holds by lemma A.10.1401

1402

Vice versa, if equation (A.14) holds for all A ∈ FX and B1, B2 ∈ FY for which P(Y ∈1403

B1), P(Y ∈ B2) > 0 holds, we prove that X and Y are independent with respect to P1404

using lemma A.10 as well. To do so, let A ∈ FX and B ∈ FY for which P(Y ∈ B) > 01405

holds.1406

Case 1: If P(Y ∈ B) = 1 holds, by (1) rules of (probability) measures and (2) the1407

definition of conditional probabilities, we obtain1408

0
(1)
≤ P(X ∈ A, Y ∈ BC)

(1)
≤ P(Y ∈ BC) (1)= 1 − P(Y ∈ B) = 0, and therefore,1409

1410

P(X ∈ A) (1)= P(X ∈ A, Y ∈ B) + P(X ∈ A, Y ∈ BC)︸ ︷︷ ︸
=0

1411

(2)= P(X ∈ A | Y ∈ B) · P(Y ∈ B)︸ ︷︷ ︸
=1

1412

= P(X ∈ A | Y ∈ B).1413

Case 2: If 0 < P(Y ∈ B) < 1 holds, by definition of a σ-field, BC ∈ FY and by the1414

assumption of P(Y ∈ B) < 1, P(Y ∈ BC) > 0 holds. Then, the following conditional1415

probabilities are well-defined and we can use equation (A.14): By (1) rules of (probability)1416

measures, (2) the definition of conditional probabilities and (3) this equation (A.14), we1417

obtain1418

P(X ∈ A) (1)= P(X ∈ A, Y ∈ B) + P(X ∈ A, Y ∈ BC)1419

(2)= P(X ∈ A | Y ∈ B) · P(Y ∈ B) + P(X ∈ A | Y ∈ BC) · P(Y ∈ BC)1420

(3)=
(
P(Y ∈ B) + P(Y ∈ BC)

)
· P(X ∈ A | Y ∈ B)1421

(1)= P(X ∈ A | Y ∈ B).1422

B Additional Experimental Results and Analysis1423

In this section, we present further detailed findings regarding the comparison of all the1424

methods introduced in subsection 4.1.2.1425

1426

Increasing fairness: In figure B.1, we see the extension of figure 5 for the missing trained1427

ensemble classifiers.1428

We see that for all fairness-enhancing methods and all leakage sizes, the fairness-enhancing1429

methods on average increase fairness while on average decreasing accuracy by the same or1430

even a smaller amount compared to their corresponding baseline methods. For d = 5, all1431

fairness-enhancing methods allow a large range of fairness improvement at cost of a small1432

range of accuracy, which is only due to the relatively poor accuracy of the leakage detection1433

in this scenario in general. Also for d = 15 and the TFPR- and the ACC-methods with1434

log-barrier function, the range of fairness is larger than the range of accuracy. However, a1435

perfect fairness score of disparate impact being equal to one can not be achieved by these1436

methods. Such result usually comes along with a low accuracy and would increase the1437
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Figure B.1: Accuracy and disparate impact score per method and leakage diameter in
the Hanoi-WDS as well as for different hyperparameters c or λ.

accuracy range, as we will see later. For the other scenarios, the ranges of fairness and1438

accuracy are mostly similarly large. Thus, overall, one can say that fairness and overall1439

performance are mutually dependent to about the same extent.1440

In figure B.2, we see the extension of figure 6 for the missing trained ensemble classifiers.1441

The results do not differ significantly compared to figure 6.1442

1443

The coherence of fairness and overall performance: In figure B.3, we see the extension of1444

figure 7 for the missing trained ensemble classifier.1445

Based on our discussions in subsection 3.4, we investigate into the different methods also1446

within the chosen subcategories:1447

For the TFPR-methods, the methods using the log-barrier yield better results in the1448

sense that their pareto fronts lie above the one using the max-penalty. However, the1449

max-penalty method allows the most fine-grained score combinations, followed by the1450

non-differentiable log-barrier method. As the latter nevertheless allows a disparate impact1451

score larger than 0.8 with a better or similar accuracy score compared to the other TFPR-1452

methods, the TFPR+COV-ndb-log-method is the best performing method among all1453

TFPR-methods.1454

For the ACC-methods, we observe similar results except that for d = 10, the ACC+COV-1455

ndb-log-method even allows the most fine-grained score combinations.1456

For the COV-methods, the log-barrier method also performs better than the max-penalty1457

method in terms of the position of the pareto-front, but also exhibits some score combi-1458

nations apart from the pareto-front due to non-convexity of the OP. The non-convexity1459

problem mostly appears for d = 5. Nevertheless, as both methods allow fine-grained1460
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Figure B.2: TPR per method, group and leakage diameter in the Hanoi-WDS as well as
for different hyperparameters c or λ.

score combinations, the COV+ACC-ndb-log-method outperforms the COV+ACC-ndb-1461

max-method.1462

In contrast, for the DI-methods, both log-barrier and max-penalty method provide sim-1463

ilarily good pareto-fronts. However, as the max-penalty method allows a little less score1464

combinations apart from the pareto-front and a little more fine-grained score combina-1465

tions, the DI+ACC-ndb-max-method outperforms the DI+ACC-ndb-log-method.1466

Also overall, the DI+ACC-ndb-max-method provides the best results: The pareto-front1467

has one of the best shapes (coming closest to the optimal score combination of (DI, ACC) =1468

(1, 1)) and is finest-grained while having only a few combinations apart from its curve.1469

By that, although for all other subcategories, the log-barrier delivers better results, the1470

best method uses the max-penalty, yielding no clear winner of both of them (cf. paragraph1471

“Algorithmic choices” in subsection 4.1.2). Nevertheless, a large advantage of the max-1472

penalty is the easy choice of the hyperparameter µ: While in this case, µ can be any1473

large number (for us, µ = 100 works), for the log-barrier, the choice of µ requires more1474

finetuning (cf. table 4).1475

In contrast, rather more obvious is the result that the non-differentiable methods tend1476

to cause better results compared to the differentiable methods, yielding that the error1477

we make when approximating the ensemble classifier is not compensated by the power of1478

the differentiable optimization algorithm (cf. paragraph “Algorithmic choices” in subsec-1479

tion 4.1.2). Another advantage of the non-differentiable methods are that there are less1480

hyperparameters to choose from (cf. table 4).1481

Overall, the result that the DI+ACC-ndb-max-method provides the best results aligns1482

well with the fact that for this method, the choice of hyperparameters is easiest: While the1483
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hyperparameter µ is easy to choose here as discussed above, also the hyperparameter λ1484

allows a better control of the fairness compared to the hyperparameter c as also elaborated1485

above.1486
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Figure B.3: Coherence of accuracy and disparate impact score for the different fairness-
enhancing methods and different leakage sizes in the Hanoi-WDS, based on different
hyperparameters c or λ. The cross data points visualize the accuracy and disparate
impact score of the corresponding baselines methods (cf. paragraph “Explicit Methods”
in subsection 4.1.2 or table 4).
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