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Supplement – Quantitative bias analysis simulation 

R Code 

The following code replicates the simulation study results provided in the main text. It is heavily 
based on code published to accompany Mayeda et al. (2018), which can be found at 
https://github.com/ermayeda/education_cognitive_decline_simulation. 

Generating intercepts 

First, we present a function that estimates the intercept for the logistic regression used to 
generate predicted probabilities of death. We assumed that the probability of death was given 
by the following equation in agreement with Figure S1: 

Pr(𝑆𝑖 = 0)

=
exp{𝛾0,𝑐 + 𝛾1𝐼(𝑄𝑖 = 2) + 𝛾2𝐼(𝑄𝑖 = 3) + 𝛾3𝑈𝑖 + 𝛾4𝐼(𝑄𝑖 = 2)𝑈𝑖 + 𝛾5𝐼(𝑄𝑖 = 3)𝑈𝑖}

1 + exp{𝛾0,𝑐 + 𝛾1𝐼(𝑄𝑖 = 2) + 𝛾2𝐼(𝑄𝑖 = 3) + 𝛾3𝑈𝑖 + 𝛾4𝐼(𝑄𝑖 = 2)𝑈𝑖 + 𝛾5𝐼(𝑄𝑖 = 3)𝑈𝑖}

where 𝐼 is an indicator function and 𝑄𝑖 denotes the pseudo-individual’s TRAP exposure, with 1 
corresponding to the first/lowest tertile of exposure (i.e.,“low”), 2 corresponding to the second 
tertile of exposure (i.e., “medium”), and 3 corresponding to the third/highest tertile of 
exposure (i.e., “high”). The values of 𝛾1, … 𝛾5 are chosen as part of the simulation, and a root 
finding procedure is applied to estimate the 𝛾0,𝑐 that gives approximately the correct marginal 
probability of death, as given by life tables in Arias (2015) National Vital Statistics Reports, Vol. 
64, No. 11. The parameter matrices produced by this code are used in the next code chunk. 

#Hard code the non-intercept parameters 
g_2nd <- log(c(1.05, 

 1.25, 
 1.25, 
 1.50, 
 1.50, 
 1.25, 
 1.25, 
 1.50, 
 1.50)) 

g_3rd <- log(c(1.25, 
 1.75, 
 1.75, 
 2.25, 
 2.25, 
 1.75, 
 1.75, 
 2.25, 
 2.25)) 

https://github.com/ermayeda/education_cognitive_decline_simulation


g_u <- log(c(0.9, rep(c(0.7, 0.8), 4))) 

g_int_2nd <- log(c(1, 
  1, 
  1, 
  1, 
  1, 
  0.9, 
  0.9, 
  0.8, 
  0.8)) 

g_int_3rd <- log(c(1, 
  1, 
  1, 
  1, 
  1, 
  0.7, 
  0.7, 
  0.5, 
  0.5)) 

sim_params <- data.frame(g_2nd, g_3rd, g_u, g_int_2nd, g_int_3rd) 

#These come from survival probabilities in Arias (2015) for Black men, 
#Black women, White men, and White women 

p_surv_bm60 <- 36790/1e5 
p_surv_bw60 <- 38761/1e5 
p_surv_wm60 <- 61933/1e5 
p_surv_ww60 <- 68462/1e5 

p_surv_bm65 <- 29314/1e5 
p_surv_bw65 <- 30852/1e5 
p_surv_wm65 <- 52964/1e5 
p_surv_ww65 <- 60499/1e5 

p_surv_bm75 <- 18854/1e5 
p_surv_bw75 <- 17216/1e5 
p_surv_wm75 <- 29205/1e5 
p_surv_ww75 <- 32777/1e5 

p_surv_bm85 <- 1747/1e5 
p_surv_bw85 <- 3029/1e5 
p_surv_wm85 <- 5145/1e5 
p_surv_ww85 <- 7152/1e5 



#### 

#Obtain intercepts 

get_g0 <- function(x, pdie, mean_2, mean_3){ 
  pdie - exp(x + g_2nd*mean_2 + g_3rd*mean_3 + g_u*mean_u + g_int_2nd*mean_2*
mean_u + g_int_3rd*mean_3*mean_u)/(1 + exp(x + g_2nd*mean_2 + g_3rd*mean_3 + 
g_u*mean_u + g_int_2nd*mean_2*mean_u + g_int_3rd*mean_3*mean_u)) 
} 

mean_u = 0 

g0_bm60 <- rep(0, nrow(sim_params)) 
g0_bw60 <- rep(0, nrow(sim_params)) 
g0_wm60 <- rep(0, nrow(sim_params)) 
g0_ww60 <- rep(0, nrow(sim_params)) 

g0_bm65 <- rep(0, nrow(sim_params)) 
g0_bw65 <- rep(0, nrow(sim_params)) 
g0_wm65 <- rep(0, nrow(sim_params)) 
g0_ww65 <- rep(0, nrow(sim_params)) 

g0_bm75 <- rep(0, nrow(sim_params)) 
g0_bw75 <- rep(0, nrow(sim_params)) 
g0_wm75 <- rep(0, nrow(sim_params)) 
g0_ww75 <- rep(0, nrow(sim_params)) 

g0_bm85 <- rep(0, nrow(sim_params)) 
g0_bw85 <- rep(0, nrow(sim_params)) 
g0_wm85 <- rep(0, nrow(sim_params)) 
g0_ww85 <- rep(0, nrow(sim_params)) 

for(i in 1:nrow(sim_params)){ 
  g_2nd <- sim_params[i,"g_2nd"] 
  g_3rd <- sim_params[i, "g_3rd"] 
  g_u <- sim_params[i, "g_u"] 
  g_int_2nd <- sim_params[i, "g_int_2nd"] 
  g_int_3rd <- sim_params[i, "g_int_3rd"] 

  #root finding for intercepts for race by sex/gender, for age 65 and 75 
  g0_bm65[i] <- uniroot(get_g0, interval=c(-5,5), pdie=1-p_surv_bm65, mean_2 
= 0.322, mean_3 = 0.576)$root 
  g0_bw65[i] <- uniroot(get_g0, interval=c(-5,5), pdie=1-p_surv_bw65, mean_2 
= 0.322, mean_3 = 0.576)$root 
  g0_wm65[i] <- uniroot(get_g0, interval=c(-5,5), pdie=1-p_surv_wm65, mean_2 
= 0.358, mean_3 = 0.085)$root 
  g0_ww65[i] <- uniroot(get_g0, interval=c(-5,5), pdie=1-p_surv_ww65, mean_2 
= 0.358, mean_3 = 0.085)$root 



  g0_bm75[i] <- uniroot(get_g0, interval=c(-5,5), pdie=1-p_surv_bm75, mean_2 
= 0.322, mean_3 = 0.576)$root 
  g0_bw75[i] <- uniroot(get_g0, interval=c(-5,5), pdie=1-p_surv_bw75, mean_2 
= 0.322, mean_3 = 0.576)$root 
  g0_wm75[i] <- uniroot(get_g0, interval=c(-5,5), pdie=1-p_surv_wm75, mean_2 
= 0.358, mean_3 = 0.085)$root 
  g0_ww75[i] <- uniroot(get_g0, interval=c(-5,5), pdie=1-p_surv_ww75, mean_2 
= 0.358, mean_3 = 0.085)$root 

} 

g0_65_matrix <- cbind(sim_params, 
  g0_bm65, 
  g0_bw65, 
  g0_wm65, 
  g0_ww65) 

g0_75_matrix <- cbind(sim_params, 
  g0_bm75, 
  g0_bw75, 
  g0_wm75, 
  g0_ww75) 

Carrying out the simulation study 

The next code chunk does the simulation study. Whereas Mayeda et al. (2018) present their 
simulation code as a set of nested functions, we present our code as a single chunk for 
simplicity. Below is the code for 𝐵 = 2000 iterations of the age 65 study. This code iterates 
over a set over parameter values encoded in the parameter matrix, which is created in the prior 
code chunk above. It assumes that this matrix is in the user’s environment, and that the 
tidyverse, lme4, and MASS libraries have been loaded. 

The TRAP exposures for Black and White pseudo-participants are based on observed nitrogen 
dioxide distributions seen in the Chicago Health and Aging Project. We assumed that the true 
difference in the mean rate of cognitive change was 𝛽 = −0.003. 

This code includes some time metric reporting to assess how long the simulations run. If 
desired, this can be removed without affecting the simulation. 

Age = 65  
Bsim = 2000 

t.beta = -0.003 #total causal effect of air pollution on annual rate of cogni
tive decline
N = 1e5 #total number of possible CHAP participants



sampSize = 1e4 #target number of selected CHAP participants 
t.int = 3 #time between cognitive assessment intervals
n.obs = 6 #total number of cognitive assessments

s2z0 = 0.2   # variance of random cognitive intercept 
s2z1 = 0.005 # variance of random cognitive slope 
sz01 = 0.01  #  covariance of random intercept and random slope 
s2e = 0.70   # variance of unexplained variation in Cij 
rho = 0   # correlation between noise terms for Cij 
s2d = 0   # variance of measurement error of Cij 
b00 = 0   # cognitive intercept for those with average air pollution expos
ure (A=0) 
b01 = 0   # effect of a 1 ppm in air pollution on cognitive intercept 
b02 = 0   # effect of U=1 on cognitive intercept 
b10 = -0.006 # effect of time itself on cognitive slope 
b11 =  -0.003 #effect of air pollution on cognitive slope 
b12 = 0.3 

no2_black_mean <- 19.88 
no2_white_mean <- 17.02 

no2_black_sd <- 2.07 
no2_white_sd <- 1.80 

b.err = c(s2z0,sz01,sz01,s2z1)

w.err = sqrt(0.7)
#These are hold overs from Mayeda et al. (2018) for cases where measurement
#error and other biases are of interest. Here, they are set to 0.
a.err = 0
m.err = 0

#In CHAP: 

#10.3% of Black participants <= 33rd percentile of exposure 
#55.7% of White participants <= 33rd percentile of exposure 

#32.2% of Black participants > 33rd but <= 67th percentile of exposure 
#35.8% of White participants > 33rd but <= 67th percentile of exposure 

#57.6% of Black participants > 67th percentile of exposure 
#8.5% of White participants > 67th percentile of exposure 

data_gen <- function(){ 

  ## Create data frame of population 
  df = data.frame(id = 1:N) 



  # Assign the participants a race and sex/gender. For simplicity, equal %s 

  df$race <- rep(c("White", "Black"), times=N/2) 
  df$sex <- c(rep("Male", times=N/4), rep("Female", times=N/4), rep("Male", t
imes=N/4), rep("Female", times=N/4)) 

  df <- arrange(df, race) 

  # Step 1: Generate air pollution exposure variable 
  df$exposure = rnorm(N, mean = 18.8, sd=2.4) 

  no2_black <- rnorm(N/2, mean=no2_black_mean, sd=no2_black_sd) 
  no2_white <- rnorm(N/2, mean=no2_white_mean, sd=no2_white_sd) 
  exposure <- c(no2_black, no2_white) 

  df$exposure <- exposure 

  df$p_tertile2 <- ifelse(df$race == "Black", 0.322, 0.358) 
  df$p_tertile3 <- ifelse(df$race == "Black", 0.576, 0.085) 
  df$tertile2 <- rbinom(N, 1, prob=df$p_tertile2) 
  df$tertile3 <- rbinom(N, 1, prob=df$p_tertile3) 

  # Step 2: Generate U 
  #df$U = rbinom(N, size=1, prob=p_u) 
  df$U = rnorm(N, mean=0, sd=1) 

  # Step 3: Generate selection variable 

  bm_subset <- filter(df, sex=="Male" & race=="Black") 
  bw_subset <- filter(df, sex=="Female" & race=="Black") 
  wm_subset <- filter(df, sex=="Male" & race=="White") 
  ww_subset <- filter(df, sex=="Female" & race=="White") 

  lin.pred_bm = with(bm_subset, exp(g0_bm65 + g_2nd*tertile2 + g_3rd*tertile3 
+ g_u*U + g_int_2nd*tertile2*U + g_int_3rd*tertile3*U))

bm_subset$p_survived = with(bm_subset, lin.pred_bm/(1+lin.pred_bm))
bm_subset$survived = unlist(lapply(1:nrow(bm_subset),function(i){ifelse(run

if(1)<bm_subset$p_survived[i],0,1)})) 

  lin.pred_bw = with(bw_subset, exp(g0_bw65 + g_2nd*tertile2 + g_3rd*tertile3 
+ g_u*U + g_int_2nd*tertile2*U + g_int_3rd*tertile3*U))

bw_subset$p_survived = with(bw_subset, lin.pred_bw/(1+lin.pred_bw))
bw_subset$survived = unlist(lapply(1:nrow(bw_subset),function(i){ifelse(run

if(1)<bw_subset$p_survived[i],0,1)})) 

  lin.pred_wm = with(wm_subset, exp(g0_wm65 + g_2nd*tertile2 + g_3rd*tertile3 
+ g_u*U + g_int_2nd*tertile2*U + g_int_3rd*tertile3*U))

wm_subset$p_survived = with(wm_subset, lin.pred_wm/(1+lin.pred_wm))



  wm_subset$survived = unlist(lapply(1:nrow(wm_subset),function(i){ifelse(run
if(1)<wm_subset$p_survived[i],0,1)})) 

  lin.pred_ww = with(ww_subset, exp(g0_ww65 + g_2nd*tertile2 + g_3rd*tertile3 
+ g_u*U + g_int_2nd*tertile2*U + g_int_3rd*tertile3*U))

ww_subset$p_survived = with(ww_subset, lin.pred_ww/(1+lin.pred_ww))
ww_subset$survived = unlist(lapply(1:nrow(ww_subset),function(i){ifelse(run

if(1)<ww_subset$p_survived[i],0,1)})) 

  df <- bind_rows(bm_subset, bw_subset, wm_subset, ww_subset) 

  # Step 4: Generate cognitive function values at each cognitive assessment. 
The study will include 6 cognitive assessment waves 3 years apart*/ 

  # Generate random terms for cognitive slope and intercept, zeta_0i (z0i) an
d zeta_1i (z1i),where zeta_0i and zeta_1i covary 
  Sig = matrix(unlist(b.err),nrow=2,ncol=2) 
  df = data.frame(df,b = mvrnorm(N,mu = c(0,0),Sigma = Sig)) 

  # Generate visit times 
  time = seq(0,t.int*(n.obs-1),t.int) 
  df.long = df[rep(seq_len(nrow(df)), each=n.obs),] 
  df.long$time = rep(time,N) 

  # Generate autoregressive noise term (unexplained variance in Cij) for each 
visit 
  df$alpha_ij = sqrt((1-a.err*a.err)*w.err) 

  epsilon0 = rnorm(N,0,sqrt(w.err)) 
  autoerr = matrix(0,N*n.obs) 
  df.long$autoerr = for(i in 1:N){ 
    autoerr[n.obs*(i-1)+1] = epsilon0[i] 
    for(j in 2:(n.obs)){ 

autoerr[n.obs*(i-1)+j] = a.err*autoerr[n.obs*(i-1)+j-1]+rnorm(1,0,sqrt(
(1-a.err*a.err)*w.err)) 
    } 
  } 

  df.long$true_cogfxn  = with(df.long, b00 + b01*exposure + b02*U +(b10 + b11
*exposure + b12*U)*time + b.1 + b.2*time + autoerr)

  df.long$delta = rnorm(N*n.obs, 0,  sqrt(m.err)) 
  df.long$measured_cogfxn = with(df.long,true_cogfxn+delta) 

  #Return Final Data 
r.list = list(df.long = df.long,

  #g0 = g0, 
  tB = t.beta, 
  sampSize = sampSize) 



  return(r.list) 
} 

simResults = function(B, trueB){ 
  start_time <- Sys.time() 
  est_b_vec <- rep(0, times=B) 
  emp_coverage_vec <- rep(0, times=B) 

  for (i in 1:B){ 
    dG = data_gen() 
    size = dG$sampSize 
    df.long = dG$df.long 
    df = df.long[!duplicated(df.long$id),] 
    dGS = subset(df,survived==1) 
    sampSize_black_male = sample(dGS[which(dGS$race=="Black" & dGS$sex=="Male
"),"id"], size=0.24*size) 
    sampSize_black_female = sample(dGS[which(dGS$race=="Black" & dGS$sex=="Fe
male"),"id"], size=0.41*size) 
    sampSize_white_male = sample(dGS[which(dGS$race=="White" & dGS$sex=="Male
"), "id"], size=0.13*size) 
    sampSize_white_female = sample(dGS[which(dGS$race=="White" & dGS$sex=="Fe
male"), "id"], size=0.22*size) 
    sampSize = c(sampSize_black_male, sampSize_black_female, sampSize_white_m
ale, sampSize_white_female) 
    dfSamp.long = subset(df.long,id%in%sampSize) 
    dfSamp = dfSamp.long[!duplicated(dfSamp.long$id),] 

    ## run mixed effects model 
    f1 = lmer(measured_cogfxn~exposure + time + exposure:time +(time|id), 

  data = dfSamp.long) 

    est_b <- fixef(f1)[['exposure:time']] 
    est_b_sd <- t(diag(vcov(f1))^0.5)[[4]] 

    U_CI <- est_b + qnorm(0.975)*est_b_sd 
    L_CI <- est_b - qnorm(0.975)*est_b_sd 

    emp_coverage = ifelse(trueB >= L_CI & trueB <= U_CI, 1, 0) 

    est_b_vec[i] <- est_b 
    emp_coverage_vec[i] <- emp_coverage 

  } 
  #print(est_b) 
  mean_beta <- mean(est_b_vec) 
  bias_perc <- (mean(est_b_vec)-trueB)/trueB*100 
  mean_coverage <- mean(emp_coverage_vec) 



  results_list <- list("g_2nd" = g_2nd, 
 "g_3rd" = g_3rd, 
 "g_U" = g_u, 
 "g_int_2nd" = g_int_2nd, 
 "g_int_3rd" = g_int_3rd, 
 "est_b"=est_b_vec, 
 "mean_b" = mean_beta, 
 "bias" = bias_perc, 
 "coverage" = mean_coverage) 

  saveRDS(results_list,file = 'INSERT FILE PATH HERE') 

  cat(paste0("Mean Empirical Cognitive Decline: ", mean_beta, "\n")) 
  cat(paste0("Bias percentage: ", bias_perc, "\n")) 
  cat(paste0("Percent CI coverage: ", mean_coverage, "\n")) 

  end_time <- Sys.time() 
  print(end_time - start_time) 
  cat(paste0("\n")) 
  cat(paste0("\n")) 
} 

###### 

set.seed(247) 

for(i in 1:nrow(g0_65_matrix)){ 

  g_2nd <- g0_65_matrix[i, "g_2nd"] 
  g_3rd <- g0_65_matrix[i, "g_3rd"] 
  g_u <- g0_65_matrix[i, "g_u"] 
  g_int_2nd <- g0_65_matrix[i, "g_int_2nd"] 
  g_int_3rd <- g0_65_matrix[i, "g_int_3rd"] 

  g0_bm65 <- g0_65_matrix[i, "g0_bm65"] 
  g0_bw65 <- g0_65_matrix[i, "g0_bw65"] 
  g0_wm65 <- g0_65_matrix[i, "g0_wm65"] 
  g0_ww65 <- g0_65_matrix[i, "g0_ww65"] 

  iter <- i 
  simResults(B=Bsim, trueB= b11) 

} 



Generating results 

In the code above, results were assembled into a list that includes the simulation parameters 
used, the estimated cognitive decline coefficients, the mean of these coefficients, the 
percentage bias, and the 95% CI coverage. This list is saved based on a file path and name 
provided by the user. Here, we show code that displays the results for the fourth row in Table 
2, which uses the parameters in the fourth row of g0_65_matrix. The percentage bias can be 
accessed via my_data[[3]] where my_data.RDA is the file that was saved as part of the fourth 
simulation study. 

my_result[["bias"]] 

## [1] -94.43659 

The overall results of our simulations are given in Table 3 in the main text. 



Supplement – Assigning 3-year exposure windows 

This section provides further details of how we assigned 3-year exposure windows to 
each participant in our analytic sample. 

Figure S1: Timeline of CHAP (1993-2012) indicating (i) windows during which 
participants were recruited/enrolled into CHAP, (ii) the window in which we have NOX 
and NO2 predicted concentrations, and (iii) the temporal ordering of TRAP exposure 
windows and the period in which participants were followed for cognitive decline. 

Cognitive assessments, every 3 years

Prediction period of NOXand NO2 models

Enrollment of 
original cohort

Earliest 3-y 
exposure window

Enrollment of successive cohorts

Cognitive assessments included in analyses of 
3-y exposure



Figure S2: Algorithm by which we assigned participants in our analyses a 3-year 
exposure window, which in term determined their analytic baseline. 
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Toy examples 

Using the toy dataset below in Table S4, we illustrate how the algorithm in Figure S2 can be 
used to assign participants an analytic baseline visit (which is the end of their 3-year TRAP 
exposure window). 

Table S1. Dataset containing 5 hypothetical participants in our study who entered CHAP 
at different times. 

ID Time at 
current 
residence 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 

1111 n/a 8/1/1993 10/13/1997 2/4/2001 5/30/2004 4/10/2008 3/18/2012 

1112 n/a 10/10/1993 7/2/1996 9/10/1999 

1113 n/a 7/12/1994 11/11/1997 2/1/2001 12/12/2003 

1114 21.5 
years 

5/5/2005 9/14/2008 3/22/2011 

1115 2.9 years 2/16/2005 4/28/2008 1/12/2011 

Example: Participant 1111 

This participant entered CHAP on 8/1/1993, which is before 1/1/1999. Following the 
algorithm flowchart, we assign a residence index date of 1/1/2002. The first CHAP cycle 
after this residence index date is 5/30/2004, which becomes the participant’s analytic 
baseline. Finally, we define their 3-year TRAP exposure window to be 5/30/2001 to 
5/30/2004 (note that the end date is anchored to the analytic baseline). If this participant 
were in our analytic dataset, they would contribute 3 waves of data to our primary 
analyses (5/30/2004, 4/10/2008, and 3/18/2012). 

Example: Participant 1112 

This participant entered CHAP on 10/10/1993, which is before 1/1/1999. Therefore, we 
assign them a residence index date of 1/1/2002. However, this participant did not 
complete any CHAP visits on or after this index date (their last cycle date was 
9/10/1999). We exclude this participant from our analyses due to insufficient follow-up 
time to estimate a 3-year TRAP exposure. 

Example: Participant 1113 

This participant entered CHAP on 7/12/1994, which is before 1/1/1999. We therefore 
assign a residence index date of 1/1/2002. They completed a CHAP cycle on 
12/12/2003, which becomes their analytic baseline. We define their 3-year TRAP 
exposure window to be 12/12/2000 to 12/12/2003, and this hypothetical participant 
would contribute 1 wave of data to our primary analyses (12/12/2003). 



Note that this participant would not be included in a sensitivity analysis based on 5-year 
TRAP exposure. To see this, replace every mention of “3 years” in the algorithm above 
with “5 years.” By following this modified algorithm, you will eventually assign this 
participant a residence index date of 1/1/2004 (5 years after 1/1/1999). However, this 
participant has no CHAP cycles after 12/12/2003, so they would be excluded for 
insufficient follow-up time to estimate a 5-year TRAP exposure, even though they were 
included in our 3-year (primary) analyses. 

Example: Participant 1114 

This participant entered CHAP after 1/1/1999 on 5/5/2005. We therefore need to assign 
a residence index date based on their entry date and their self-reported time at their 
current residence. Subtracting 21.5 years from 5/5/2005 clearly results in a date before 
1/1/1999; therefore, this participant’s residential index date is 1/1/2002 per our 
algorithm. The CHAP visit following this index date is 5/5/2005 – in this case, the 
participant’s analytic baseline equals their true baseline. We define their 3-year TRAP 
exposure window to be 5/5/2002 to 5/5/2005, and they contribute 3 waves of data to our 
analyses. 

Example: Participant 1115 

This participant entered on 2/16/2005, which is after 1/1/1999. Therefore, we assign a 
residence index date based on their entry date and their self-reported time at their 
current residence. Subtracting 2.9 years from 2/16/2005 results in a date of 3/25/2002, 
assuming 2.9 years is equal to 365.25 days/year * 2.9 years = 1059 days after rounding. 
This date is after 1/1/2002, so we assign this participant a residence index date of 
3/25/2002 according to our algorithm. The participant’s analytic baseline is the CHAP 
visit following this index date, which is 4/28/2008. Their 3-year exposure window is 
defined to be 4/28/2005 to 4/28/2008, and they contribute 2 waves of data to our 
primary analyses (4/28/2008 and 1/12/2011). 



Supplement – Inverse probability weight model fit 

In the main text, we report sensitivity analyses involving inverse probability of 
continuation weights (IPCW). These weights are defined as the product of an IPCW due 
to not dying and an IPCW due to not dropping out.  

In Table S5, we report the c-statistics from each pooled logistic regression model used 
to construct these weights. Due to concerns about the lower c-statistics for the IPCW 
model(s) for not dropping out, we conducted additional IPCW sensitivity analyses using 
only the IPCW due to not dying (estimated from models with acceptable discriminatory 
ability based on the c-statistic). 

In Tables S6-S9, we report the estimated coefficients from each pooled logistic 
regression model used to construct IPCWs. Overall, we see that while many of the 
associations between covariates and the probability of dying are in the expected 
direction (e.g., those with poor self-rated health have much higher odds of dying 
compared to those with excellent self-rated health), the associations between covariates 
and the probability of not dropping out are often counter-to-expectations. Although the 
purpose of these models is to predict mortality or dropout rather than estimate effects of 
any given factor on the risk of these outcomes, these preliminary results helped our 
decision to focus on unweighted results for our primary analyses and explore weighted 
results through sensitivity analyses. 

Table S2: C-statistics from models predicting either continuation due to not dropping out 
or continuation due to not dying among participants in our analytic sample (N=6,061) 

TRAP species C-statistic, model
predicting continuation due 

to not dropping out* 

C-statistic, model
predicting continuation due 

to not dying* 

NOX 0.612 0.764 

NO2 0.611 0.765 

PM2.5-10,Cu 0.611 0.764 

PM2.5-10,Zn 0.614 0.764 

*Our predictive models included the following covariates: sex, race, age, years of
educational attainment, smoking status, alcohol consumption within the previous two
weeks, Nagi disability score, self-rated health, self-reported diabetes mellitus status at
the analytic baseline visit, social network score, and global cognition score at the prior
visit. Each model additionally adjusted for the TRAP species of interest, which resulted
in 4 separate models predicting continuation due to not dropping out and 4 separate
models predicting continuation due to not dying.



Table S3: Results from pooled logistic regression models for dropout or death in our 
analytic sample (N=6,061), adjusting for NOX and other relevant covariates. 

Covariate* OR for 
dropout 

OR for 
death 

Age 0.96 1.06 

Male sex (reference: Female sex) 0.91 1.71 

Black (reference: non-Black) 1.47 0.60 

Smoking status 

Never 1.00 (ref) 1.00 (ref) 

Former 0.99 1.32 

Current 0.88 2.41 

Alcohol consumption 

0 drinks/day 1.00 (ref) 1.00 (ref) 

Up to 1 drink/day 0.87 0.89 

2 or more drinks/day 0.98 1.20 

Educational attainment 

Less than 9 years 1.00 (ref) 1.00 (ref) 

9-12 years 1.14 1.14 

13-16 years 1.05 1.06 

17 or more years 0.94 0.88 

Baseline diabetes 0.78 1.70 

Self-rated health 

Excellent 1.00 (ref) 1.00 (ref) 

Good 1.01 1.25 

Fair 0.92 1.74 

Poor 0.94 2.45 

Social network score 1.00 0.99 

Nagi disability score 1.04 0.92 

Global cognitive score 0.82 0.56 

3-year NOX exposure 0.96 1.01 

OR = odds ratio 

*Odds ratios are given for a 1 unit increase in covariate values unless otherwise
specified.



Table S4: Results from pooled logistic regression models for dropout or death in our 
analytic sample (N=6,061), adjusting for NO2 and other relevant covariates. 

Covariate* OR for 
dropout 

OR for 
death 

Age 0.96 1.07 

Male sex (reference: Female sex) 0.91 1.84 

Black (reference: non-Black) 1.32 0.63 

Smoking status 

Never 1.00 (ref) 1.00 (ref) 

Former 0.99 1.33 

Current 0.87 2.22 

Alcohol consumption 

0 drinks/day 1.00 (ref) 1.00 (ref) 

Up to 1 drink/day 0.87 0.85 

2 or more drinks/day 0.97 0.85 

Educational attainment 

Less than 9 years 1.00 (ref) 1.00 (ref) 

9-12 years 1.16 1.13 

13-16 years 1.06 1.08 

17 or more years 0.96 0.94 

Baseline diabetes 0.79 1.62 

Self-rated health 

Excellent 1.00 (ref) 1.00 (ref) 

Good 1.01 1.29 

Fair 0.92 1.98 

Poor 0.95 2.67 

Social network score 1.00 0.99 

Nagi disability score 1.04 0.91 

Global cognitive score 0.82 0.55 

3-year NO2 exposure 0.93 1.04 

OR = odds ratio 

*Odds ratios are given for a 1 unit increase in covariate values unless otherwise
specified.



Table S5: Results from pooled logistic regression models for dropout or death in 
our analytic sample (N=6,061), adjusting for PM2.5-10,Cu and other relevant 
covariates. 
Covariate* OR for 

dropout 
OR for 
death 

Age 0.96 1.07 

Male sex (reference: Female sex) 0.91 1.84 

Black (reference: non-Black) 1.34 0.68 

Smoking status 

Never 1.00 (ref) 1.00 (ref) 

Former 0.99 1.33 

Current 0.87 2.23 

Alcohol consumption 

0 drinks/day 1.00 (ref) 1.00 (ref) 

Up to 1 drink/day 0.88 0.85 

2 or more drinks/day 0.99 0.84 

Educational attainment 

Less than 9 years 1.00 (ref) 1.00 (ref) 

9-12 years 1.16 1.11 

13-16 years 1.09 1.07 

17 or more years 1.02 0.92 

Baseline diabetes 0.80 1.61 

Self-rated health 

Excellent 1.00 (ref) 1.00 (ref) 

Good 1.01 1.30 

Fair 0.92 1.98 

Poor 0.94 2.67 

Social network score 1.00 1.00 

Nagi disability score 1.04 0.91 

Global cognitive score 0.82 0.55 

3-year PM2.5-10,Cu exposure 0.93 1.00 

OR = odds ratio 

**Odds ratios are given for a 1 unit increase in covariate values unless otherwise 
specified.  



Table S6: Results from pooled logistic regression models for dropout or death in 
our analytic sample (N=6,061), adjusting for PM2.5–10,Zn and other relevant 
covariates. 
Covariate* OR for 

dropout 
OR for 
death 

Age 0.96 1.07 

Male sex (reference: Female sex) 0.91 1.84 

Black (reference: non-Black) 1.07 0.69 

Smoking status 

Never 1.00 (ref) 1.00 (ref) 

Former 0.99 1.33 

Current 0.87 2.23 

Alcohol consumption 

0 drinks/day 1.00 (ref) 1.00 (ref) 

Up to 1 drink/day 0.88 0.85 

2 or more drinks/day 0.99 0.84 

Educational attainment 

Less than 9 years 1.00 (ref) 1.00 (ref) 

9-12 years 1.17 1.12 

13-16 years 1.09 1.07 

17 or more years 1.01 0.92 

Baseline diabetes 0.80 1.61 

Self-rated health 

Excellent 1.00 (ref) 1.00 (ref) 

Good 1.01 1.30 

Fair 0.91 1.98 

Poor 0.94 2.67 

Social network score 1.00 0.99 

Nagi disability score 1.04 0.91 

Global cognitive score 0.82 0.55 

3-year PM2.5-10,Zn exposure 0.98 1.00 

OR = odds ratio 

*Odds ratios are given for a 1 unit increase in covariate values unless otherwise
specified.



Supplement – Spearman correlations for TRAP concentrations 

Assessing spatial stability over time 

In the main text, we assume that TRAP concentrations remain spatially stable over time. To test this 
assumption, we estimated 1-year average concentrations for NOX and NO2 over the entire range of 
predictions that we have, from 1999 until 2012, and then we estimated Spearman rank correlations 
between these concentrations over time. We observe that these correlations are quite high, even for 1-
year averages that are separated by several years. This suggests that, at least in terms of rank order, 
TRAP concentrations within the catchment area of the Chicago Health and Aging Project were relatively 
stable over time, and our assumption of stability for the other TRAP species (PM2.5-10,Cu and PM2.5-10,Zn) 
and other time frames (i.e., pre-1999) is justifiable. 

Table S7: Spearman rank correlations of predicted annual average NOx concentrations, from 1999 
through 2012, at all CHAP locations (N=8,473 unique locations).* 

1999

(47.9)

2000

(43.7)

2001

(43.0)

2002

(39.9)

2003

(42.1)

2004

(38.5)

2005

(36.4)

2006

(32.9)

2007

(31.3)

2008

(28.1)

2009

(26.7)

2010

(23.8)

2011

(20.7)

2012

(27.4)

1999 1.0000 0.9997 0.9978 0.9933 0.9894 0.9260 0.9567 0.9905 0.9900 0.9852 0.9671 0.8222 0.8124 0.7691

2000 0.9997 1.0000 0.9989 0.9953 0.9879 0.9217 0.9538 0.9904 0.9900 0.9852 0.9659 0.8169 0.8073 0.7625

2001 0.9978 0.9989 1.0000 0.9987 0.9800 0.9040 0.9399 0.9840 0.9836 0.9777 0.9545 0.7919 0.7819 0.7344

2002 0.9933 0.9953 0.9987 1.0000 0.9698 0.8840 0.9238 0.9758 0.9755 0.9686 0.9415 0.7652 0.7549 0.7043

2003 0.9894 0.9879 0.9800 0.9698 1.0000 0.9692 0.9882 0.9985 0.9982 0.9978 0.9928 0.8924 0.8846 0.8485

2004 0.9260 0.9217 0.9040 0.8840 0.9692 1.0000 0.9951 0.9609 0.9608 0.9672 0.9861 0.9735 0.9689 0.9491

2005 0.9567 0.9538 0.9399 0.9238 0.9882 0.9951 1.0000 0.9830 0.9830 0.9870 0.9970 0.9489 0.9432 0.9161

2006 0.9905 0.9904 0.9840 0.9758 0.9985 0.9609 0.9830 1.0000 0.9999 0.9993 0.9915 0.8812 0.8738 0.8345

2007 0.9900 0.9900 0.9836 0.9755 0.9982 0.9608 0.9830 0.9999 1.0000 0.9994 0.9917 0.8817 0.8744 0.8350

2008 0.9852 0.9852 0.9777 0.9686 0.9978 0.9672 0.9870 0.9993 0.9994 1.0000 0.9951 0.8940 0.8873 0.8490

2009 0.9671 0.9659 0.9545 0.9415 0.9928 0.9861 0.9970 0.9915 0.9917 0.9951 1.0000 0.9319 0.9264 0.8938

2010 0.8222 0.8169 0.7919 0.7652 0.8924 0.9735 0.9489 0.8812 0.8817 0.8940 0.9319 1.0000 0.9997 0.9949

2011 0.8124 0.8073 0.7819 0.7549 0.8846 0.9689 0.9432 0.8738 0.8744 0.8873 0.9264 0.9997 1.0000 0.9958

2012 0.7691 0.7625 0.7344 0.7043 0.8485 0.9491 0.9161 0.8345 0.8350 0.8490 0.8938 0.9949 0.9958 1.0000

*Below each year in the first row is the predicted mean concentration of NOX for that year (in ppb),
across all CHAP locations.



Table S8: Spearman rank correlations of predicted annual average NO2 concentrations, from 1999 
through 2012, at all CHAP locations (N=8,473 unique locations).* 

1999
(19.2)

2000
(18.8)

2001
(19.2)

2002
(18.2)

2003
(19.7)

2004
(17.8)

2005
(18.1)

2006
(16.7)

2007
(16.2)

2008
(15.7)

2009
(14.5)

2010
(14.2)

2011
(13.6)

2012
(13.3)

1999 1.0000 0.9998 1.0000 0.9993 0.9993 0.9965 0.9979 0.9960 0.9956 0.9940 0.9803 0.9775 0.9622 0.9728
2000 0.9998 1.0000 0.9999 0.9997 0.9989 0.9971 0.9985 0.9970 0.9968 0.9954 0.9823 0.9796 0.9648 0.9754
2001 1.0000 0.9999 1.0000 0.9994 0.9993 0.9969 0.9983 0.9965 0.9961 0.9945 0.9814 0.9786 0.9637 0.9741
2002 0.9993 0.9997 0.9994 1.0000 0.9980 0.9973 0.9986 0.9978 0.9978 0.9967 0.9841 0.9817 0.9671 0.9778
2003 0.9993 0.9989 0.9993 0.9980 1.0000 0.9974 0.9983 0.9958 0.9948 0.9932 0.9821 0.9795 0.9657 0.9745
2004 0.9965 0.9971 0.9969 0.9973 0.9974 1.0000 0.9997 0.9992 0.9984 0.9979 0.9926 0.9909 0.9806 0.9874
2005 0.9979 0.9985 0.9983 0.9986 0.9983 0.9997 1.0000 0.9993 0.9987 0.9980 0.9904 0.9884 0.9768 0.9848
2006 0.9960 0.9970 0.9965 0.9978 0.9958 0.9992 0.9993 1.0000 0.9997 0.9994 0.9930 0.9914 0.9806 0.9887
2007 0.9956 0.9968 0.9961 0.9978 0.9948 0.9984 0.9987 0.9997 1.0000 0.9997 0.9925 0.9908 0.9795 0.9884
2008 0.9940 0.9954 0.9945 0.9967 0.9932 0.9979 0.9980 0.9994 0.9997 1.0000 0.9940 0.9925 0.9820 0.9905
2009 0.9803 0.9823 0.9814 0.9841 0.9821 0.9926 0.9904 0.9930 0.9925 0.9940 1.0000 0.9997 0.9964 0.9990
2010 0.9775 0.9796 0.9786 0.9817 0.9795 0.9909 0.9884 0.9914 0.9908 0.9925 0.9997 1.0000 0.9975 0.9995
2011 0.9622 0.9648 0.9637 0.9671 0.9657 0.9806 0.9768 0.9806 0.9795 0.9820 0.9964 0.9975 1.0000 0.9980
2012 0.9728 0.9754 0.9741 0.9778 0.9745 0.9874 0.9848 0.9887 0.9884 0.9905 0.9990 0.9995 0.9980 1.0000

*Below each year in the first row is the predicted mean concentration of NO2 for that year (in ppb),
across all CHAP locations.

Assessing correlation between TRAP and community noise 

In Table 2 of the main text, we presented estimated Spearman rank correlations between 
estimated TRAP concentrations, averaged over 3 years prior to analytic baseline. Below, we 
expand this table to include community noise levels, which we included in our outcome models 
for cognitive decline. 

Table S9: Spearman rank correlations between estimated TRAP concentrations, averaged over 
3 years prior to analytic baseline, and community noise levels (N=6,601). 




