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A Continuous-speech Interface 
to a Decision Support System: 
I. Techniques to 
Accommodate for 
Misrecognized Input 

Abstract Objective: Develop a continuous-speech interface that allows flexible input of 
clinical findings into a medical diagnostic application. 

Design: The authors’ program allows users to enter clinical findings using their own vernacular. It 
displays from the diagnostic program’s controlled vocabulary a list of terms that most closely 
matches the input, and allows the user to select the single best term. The interface program 
includes two components: a speech-recognition component that converts utterances into text 
strings, and a language-processing component that matches recognized text strings with controlled- 
vocabulary terms. The speech-recognition component is composed of commercially available speech- 
recognition hardware and software, and developer-created grammars, which specify the language to 
be recognized. The language-processing component is composed of a translator, which extracts a 
canonical form from both recognized text strings and controlled-vocabulary terms, and a matcher, 
which measures the similarity between the two canonical forms. 

Results: The authors discovered that grammars constructed by a physician, who could anticipate 
how users might speak findings, supported speech recognition better than did grammars 
constructed programmatically from the controlled vocabulary. However, this programmatic method 
of grammar construction was more time efficient and better supported long-term maintenance of 
the grammars. The authors also found that language-processing techniques recovered some of the 
information lost due to speech misrecognition, but were dependent on the completeness of 
supporting synonym dictionaries. 

Conclusions: The authors’ program demonstrated the feasibility of using continuous speech to enter 
findings into a medical application. However, improvements in speech-recognition technology and 
language-processing techniques are needed before natural continuous speech becomes an acceptable 
input modality for clinical applications. 
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Many health professionals resist using medical de- 
cision support applications because of the effort they 
must expend to learn how to operate these applica- 
tions. Barriers to use include input with a keyboard 
or a pointing device, and for applications that use 
controlled-vocabulary terms, the necessity to learn 
the vocabulary. A previous study suggested that health 
care providers might use medical applications more 
often if speech, rather than conventional input tech- 
niques, were the interface modality.’ Ideally, users 
could speak continuous natural-language sentences 
and that input would be translated into the controlled 
vocabulary used by the decision support application. 

Commercially available speech-recognition systems 
require two complementary specifications of the lan- 
guage to be recognized: a grummar, or rules for sen- 
tence construction, and a vocabulary, or a list of 
allowable words. From these specifications speech- 
recognition systems produce an inventory of acoustic 
patterns for all sentences that the systems can rec- 
ognize, and label each pattern with a textual repre- 
sentation of the pattern. To recognize speech, the 
systems generate an acoustic-pattern representation 
of an utterance, and compare the pattern with the 
acoustic patterns in the inventory. The systems des- 
ignate the textual label of the closest pattern as the 
best guess of what was spoken. The variety of sounds 
that are produced when different people speak the 
same sentence or when the same person speaks a 
sentence at different times introduces uncertainty into 
the speech-recognition process, which results in a 
risk of misrecognition. 

Medically oriented speech applications have reduced 
the risk of misrecognition by requiring .short utter- 
ances (individual words or a few words in sequence) 
and by exploiting domain areas where the expected 
language is limited, structured, and well defined.2 
The imposition of similar constraints on a speech 
interface for the entry of clinical findings would most 
likely cause the interface to be unusable, both be- 
cause the domains of typical decision support tools 
are broad and because the language that physicians 
use to define clinical findings is broad. We experi- 
mented with a speech-recognition system that sup- 
ported continuous speech with large vocabularies, so 
that the language physicians could use to enter find- 
ings would be minimally restricted. 

We designed grammars that specified the language 
we expected physicians to use to describe findings. 
We anticipated that physicians would say sentences 
that were not included in the language specification 
and that spoken utterances would be partially mis- 
recognized. We accommodated for misrecognition by 

using a matching procedure to match misrecognized 
input utterances to controlled-vocabulary terms. In 
this article we describe the techniques we used to 
build the speech interface and the lessons we learned 
from that experience. A companion article in this 
issue describes a study that we performed to evaluate 
the speech interface.” 

Background 

Recent advances in speech-recognition technology 
made it feasible to use continuous speech as an input 
modality for medical applications.4,5 We developed a 
continuous-speech interface that allowed the user to 
enterfindings, or clinical observations about a patient, 
into a medical diagnostic program. We built this speech 
interface for use with the knowledge base of Quick 
Medical Reference (QMR),*6.7 a well-known medical 
diagnostic. program. We selected the QMR knowl- 
edge base because it uses a controlled vocabulary,, 
and we believed that a continuous-speech interface 
could facilitate flexible input of clinical findings from 
a controlled vocabulary. The focus of our effort was 
to develop a speech interface for an existing diag- 
nostic system while using available speech-recogni- 
tion technology, rather than to research speech-rec- 
ognition algorithms. 

QMR Knowledge Base 

The QMR program provides access to a database of 
internal-medicine diseases. It was derived from an 
earlier system, INTERNIST-1,6,7 and includes 4,000 
history, physical examination, and laboratory test 
findings; 600 diseases; and links that define causal, 
temporal, and logical interrelationships among dis- 
eases. The findings in the QMR knowledge base are 
expressed as compound-noun phrases. Some of these 
phrases are ungrammatical or awkward (e.g., live fine 
nodule); others may not be familiar to users (e.g., 
abdomen flank bulging bilaterally). One of the ways phy- 
sicians can interact with the standard interface to 
QMR is by entering a list of findings; the system then 
provides differential diagnoses that are ranked by 
their likelihood. The QMR program provides a typ- 
ing-based search tool, which physicians can use to 
enter a set of keywords. The program retrieves terms 

*Quick Medical Reference and QMR are registered trademarks of 
the University of Pittsburgh. The vocabulary of QMR was derived 
from the findings in INTERNIST-l. We used the terms from IN- 
TERNIST-1 for our research, but we have described our research 
as a spoken interface to the QMR vocabulary because we believed 
that the terms from INTERNIST-1 were representative of the QMR 
vocabulary. 
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from the knowledge base that match the typed input. 
The user can then select appropriate terms from the 
retrieved list for entry into the diagnostic program. 
The QMR program addresses the expected variability 
of input by using a synonym dictionary as part of a 
search tool that accepts prefixes or acronyms of terms 
from the user. In contrast to the standard QMR in- 
terface, our interface used speech input and a match- 
ing procedure to match findings with terms from the 
QMR knowledge base. 

Linguistic Methods for Processing 
Medical Vocabulary 

Semantic analysis is a process that extracts the mean- 
ings of phrases from their forms. Linguistic methods 

1) Select body part 

2) Speak finding name 

3) Select finding from list 

the patient has tenderness In the tight upper quadrant 

(4) abdomen bruit systolic right upper quadrant 

(5) abdomen bruit continuous right upper quadrant 

(6) abdomen tenderness left upper quadrant 

(7) abdomen mass left upper quadrant 

F i gure 1 Computer display of the continuous-speech in- 
terface to Quick Medical Reference (QMR). To add a clinical 
finding to the QMR case description, the user selects a 
body part (A) by speaking or by using a pointing device, 
speaks a finding into the speech apparatus, and chooses 
the QMR finding (B) that best corresponds to the intended 
clinical finding. The middle box (C) contains the text string 
that is generated by the speech recognizer. 

that perform semantic analysis of textual phrases have 
been used successfully within applications that in- 
corporate medical terminology. The Linguistic String 
Projects used semantic techniques in computer ap- 
plications that managed narrative data. The CLARIT 
project9 and the SAPHIRE information-retrieval 
systeml0 applied semantic approaches to perform au- 
tomatic indexing. The METEXA system11 used se- 
mantic knowledge to support speech processing 
through a conceptual model of radiologic reports. 
Our approach was similar to these approaches in its 
reliance on the content of expressions rather than on 
the surface form of expressions. Our method ex- 
tracted the key concepts in a phrase to form an 
underlying semantic representation of findings. 

Speech-recognition Systems 
Speech-recognition systems can recognize vocabular- 
ies ranging from tens to thousands of words.‘* Speaker- 
dependent systems accept input only from a specific 
speaker, whereas speaker-independent systems accept 
input from any speaker. Muted-word systems re- 
quires that speakers pause between words or short 
phrases, whereas continuous-speech systems allow 
speakers to utter long sequences of words without 
pausing. Most speech-recognition systems in com- 
mon use incorporate isolated-word technology.2 

The usefulness of speech-recognition systems as user 
interfaces depends in part on the interpretation of 
recognized utterances, or textual representations of ut- 
terances that these systems produce. Research proj- 
ects have used a variety of natural-language pro- 
cessing techniques to interpret textual strings. Simple 
interpretation techniques rely on template matching13; 
more complex techniques use broad linguistic knowl- 
edge including syntax, semantics, and pragmatics.14 

We mentioned earlier in this article that continuous- 
speech recognition systems require target-language 
specifications in the form of grammars and vocabu- 
laries. Common grammar forms are phrase-structure 
rules15 and trigrams (triplets of words and associated 
probabilities that indicate the probability that a given 
word follows its two precedents within a single sen- 
tence). The form of a grammar represents a compro- 
mise between conflicting trends that affect the ac- 
curacy of a speech system: as the size and complexity 
of a grammar increase, the grammar generates more 
speech patterns and therefore the system recognizes 
more variable input. However, the large number of 
possible patterns increases the probability of confu- 
sion between similar patterns, and therefore the rec- 
ognition accuracy decreases. Misrecognition is certain 
to occur for utterances that are not represented in a 
grammar. 
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Design Considerations 

Our research tasks were to develop grammars that 
could support the recognition of spoken sentences, 
and to design a method for matching recognized ut- 
terances to controlled-vocabulary terms. Variability 
in user language, differences in the detail included 
in input utterances and controlled-vocabulary terms, 
and imperfect performance of the speech-recognition 
system influenced the methods we developed. We 
describe our considerations below. 

Variability of Input Language 

Physicians may use different expressions to specify 
a single finding. For example, a physician describing 
a mass in the right upper side of the abdomen might 
use the sentence I noticed a small right upper quadrant 
mass, or the sentence a lump was felt in the right upper 
quadrant. The corresponding term found in QMR is 
abdomen mass right upper quadrant. The absence of stan- 
dard terminology for expressing findings and the 
number of terms in the knowledge base require users 
to speculate on the terms found in the system. It has 
been our experience5 that user interfaces must be 
tuned for each input modality. The QMR keyboard 
interface for entering terms is able to take advantage 
of abbreviations such as RUQ for right upper quadrant 
that may be awkward when given as spoken com- 
mands. 

Continuous-speech recognition systems specify the 
language to be recognized explicitly, in the form of 
a grammar. Specification of the language requires 
system developers to predict what sentences physi- 
cians would use to describe findings. Although phy- 
sicians could express a finding in many ways, in 
reality, conventions of medical language limit the 
ways physicians phrase findings, and therefore we 
believed the task of predicting physician expression 
of findings was feasible. 

We realized that to define a grammar that would be 
small enough to ensure speech recognition with rea- 
sonable accuracy, we would have to select a subset 
of the QMR terms and partition that subset into smaller 
subsets, each of which would have its own target 
sublanguage and subgrammar. 

Variability of Detail 

The main task for our interface was to interpret input 
utterances and to find controlled-vocabulary terms 
from the QMR knowledge base that matched the 
input. We expected that input utterances would not 
match exactly any term in QMR, either because the 
input utterances were less specific than the terms in 

spoken input 

“the patient has 
extreme facial edema” 

Speech Recognizer 

recognized text 
<the patient has fixed edema 
along the hum> 

canonical form 
(fixed, edema, hum) 

Matcher 

best matches 

1. thyroid fixed 
2. jugular venous hum 
3. head and neck edema 

Figure 2 System architecture for the interface program: 
the sequential operation of system modules for analyzing 
input utterances and identifying corresponding Quick 
Medical Reference (QMR) terms. Each step is accompanied 
by an example output. 

QMR or because the utterances were more specific 
than comparable terms in QMR. We anticipated that 
misrecognition would distort the information con- 
veyed by the input utterance. We were aware that 
the ASCII string produced by the speech-recognition 
system for the input utterance might not include some 
of the words that were spoken, or might include 
words that were not spoken. Our interface needed 
a matching process that would recognize correspon- 
dence between input utterances and target con- 
trolled-vocabulary terms despite differences in infor- 
mation content. 

Representation of the Target Language in the Form 
of a Grammar 

The construction of a natural-language grammar re- 
quires the use of linguistic knowledge to form a con- 
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cise formal description that would account for all 
sentences in the language and only these sentences. 
Linguists commonly compose grammars from pro- 
duction rules that can generate the unlimited number 
of sentences included in natural languages.15 How- 
ever, the use of production rules for describing nat- 
ural languages often results in inaccurate specifica- 
tions of these languages: individual rules might be 
overly powerful in that they generate sentences that 
are not part of the language, and the set of rules as 
a whole might not be powerful enough to capture 
all the sentences included in a natural language. 

The construction of grammars for supporting speech 
recognition required that we find a satisfying balance 
between developing a large grammar that would be 
expressive and a small grammar that would support 
accurate recognition. 

Methods 

We used a keyword-based semantic representation 
for finding names and a matching process to map 
input utterances to terms in QMR. We assumed that 
even if utterances were partially misrecognized, 
enough of the semantic content would remain to 
allow the system to match the utterances to con- 
trolled-vocabulary terms that were similar in mean- 
ing. To simplify our task, we assumed that physicians 
would input findings in simple sentences in affir- 
mative form-for example, we assumed physicians 
would say the patient had a mass in the abdomen and 
would not say the patient reported pain in the abdomen 
and the abdomen was tender upon palpation. 

System Architecture 

The interface program we built included the follow- 
ing three modules: 

1. A commercially available speech-recognition sys- 

Finding: 

Dictionary . . . . . 

Canonical 
form: 

(W1,.C1, ), (W2,C2 ), . .., (Wm,Cm) } 

tern that produced ASCII strings from speech sig- 
nals. 

2. A translator that generated keyword-based ca- 
nonical forms from recognized strings and from 
terms in QMR. The translator induced a procedure 
for looking up words in a synonym dictionary. 

3. A matcher that compared canonical forms of input 
utterances and canonical forms of terms in QMR, 
and produced a score for each match. 

The three modules supported the following interac- 
tion cycle for entering a finding to a case description 
(Fig. 1). First, the physician selected a body part and 
spoke a finding into a head-mounted microphone, 
which transferred the acoustic signal to the speech- 
recognition system. Then the speech-recognition sys- 
tem converted the utterance into an ASCII string. 
Next, the translator extracted the essence of the AS- 
CII string into a keyword-based canonical form. Then 
the matcher compared the canonical form that orig- 
inated from the input with similar precomposed forms 
of terms in QMR. At this point, the program dis- 
played the result of the matching as a rank-ordered 
list of terms from QMR. Finally, the user selected a 
finding from several offered to add to the case de- 
scription. When the program could not find an ap- 
propriate matching term from QMR for an input ut- 
terance because the utterance had been misrecognized 
completely, the user could repeat the utterance or 
could edit the string returned by the speech-recog- 
nition system and reenter the edited string. Figure 2 
demonstrates the system architecture that we used 
for our interface. 

Translation of Finding Names into 
Canonical Forms 

The interface program captured the key concepts from 
a recognized utterance in a canonical form by con- 

Concept 

Synonyms and 
associated terms 

t 
b 

Figure 3 Translation of a recognized ut- 
terance into a canonical form through a 
lookup in a synonym dictionary. The struc- 
ture of the dictionary is shown on the right: 
t, designates tokens of the recognized string, 
c, designates concepts that represent syn- 
onyms and related terms, and w, designates 
weights, associated with concepts. 
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F i gure 4 Typical grammar rules from a gram- 
mar that describe possible utterances for phys- 
ical examination findings related to neck bruits. BRUIT-PHRASE -> (INTENSITY) (CYCLE) (REGION) bruit 
Words in uppercase letters designate classes of 
words that represent a single concept. Words INTENSITY-> soft / loud/ faint 
in lowercase letters separated by the or sign (/) 
designate members of a class of synonyms or CYCLE -> systolic / holosystolic I pansystolic I diastolic I continuous 

terms related to the concept in uppercase let- 
ters. Words in parentheses designate optional 

REGION -> neck / carotid I thyroid 

elements. 

strutting a set of related keywords or key concepts. 
For example, the program represented the term the 
liver is enlarged on examination by the canonical form 
{hepar, enlargement}, where hepar designated the con- 
cept liver and enlarqement designated the concept en- 
larged. The translator produced canonical represen- 
tations for terms by identifying the set of meaningful 
words in each recognized string through a lookup in 
a dictionary that included keywords and their syn- 
onyms. The emphasis on key concepts rather than 
on words allowed the program to identify sentences 
of similar meaning independent of their forms. 

The dictionary included a list of concepts, each of 
which represented a set of synonyms. For example, 
the concept uterine represented the class of terms 
uterine, uterus, endometrial, and womb. We generated 
the dictionary by extracting a set of concepts from 
the dictionary used in QMR and by adding synonyms 
to the list of concepts through manual editing. The 
representative concept for a list of synonyms was 
chosen arbitrarily. We observed that infrequent con- 
cepts were more informative in that they designated 
matching terms with greater certainty. We assigned 
to each concept within the dictionary a weight that 
was inversely related to the frequency of the concept 
in the QMR knowledge base. The weighting formula 
emphasized the importance of specific terms by as- 
signing larger weights to these terms. 

We computed weights for concepts in our set of terms 
from QMR according to the formula 

wi = -log ci 

where wi is the weight of concept i, ci is the number 
of occurrences of words and word combinations that 
represent concept i in the knowledge base, and n is 
the total number of words or word combinations in 
the knowledge base. This weighting formula is com- 
monly used in information-retrieval methods,16 but, 
to our knowledge, it is not commonly used in speech- 
based applications. 

For every finding processed, the translator identified 
words that appeared in the synonym dictionary (either 

in isolation or as word combinations) as keywords 
and included the representative of the synonym class 
to which the keywords belonged in the canonical 
form. The translator ignored words that did not ap- 
pear in the synonym dictionary. The canonical form 
comprised pairs of keywords and their associated 
weights. Figure 3 illustrates the translation process. 

Matching Canonical Forms 

When a finding was spoken into the microphone, 
the matcher computed a score for every term in QMR 
based on the distance between the newly generated 
canonical form for the input (t for test canonical form) 
and the precomputed canonical forms for target terms 
(r for reference canonical forms). The distance mea- 
sure was based on the assumption that similar terms 
included the same concepts, and that dissimilar terms 
included different concepts. The distance formula was 
a function of the specificity of concepts, as manifested 
by concept weights: 

D(t, r) = wi - wj - 
i=l j=1 

Wk 

For this formula, I is the number of concepts that 
appear in both canonical forms, m is the number of 
concepts that appear only in the canonical form for 
the input utterance, and n is the number of concepts 
that appear only in the canonical form for the con- 
trolled-vocabulary term. The scoring formula as- 
signed a reward or a penalty to the score, depending 
on whether concepts in the input canonical form were 
included in the canonical form for the target term or 
were excluded from the canonical form. Thus, the 
formula produced higher scores when target terms 
included highly specific concepts and when the ca- 
nonical form of the recognized text matched closely 
to the canonical form of the term in QMR. 

System Configuration 

The speech interface displayed on an NeXT work- 
station (NeXT Computer Inc., Redwood City, CA) 
that was connected to a Speech Systems, Inc. (Tar- 
zana, CA) (SSI) DS200 speech-recognition system. 
The SSI system used a Sun SPARCstation to decode 
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S --> (DC-BEGIN) MASS-M 
S --> (DC-BEGIN) BREAST-M (DC-MID) MASS-M 
S --> (DC-BEGIN) MASS-M (DC-MID) BREAST-M 
S --> (DC-BEGIN) BILATERAL-M (DC-MID) BREAST-M 
S --> (DC-BEGIN) MASS-M (DC-MID) BILATERAL-M 
S --> (DC-BEGIN) BILATERAL-M (DC-MID) MASS-M (DC-MID) BREAST-M 

BREAST-M > breast 
MASS-M > mass / nodule / lump 
BILATERAL-M > bilateral I both sides 

DC-BEGIN --> i {found / noticed / notice / saw / see) ({a / some / many / that the}) 

DC-BEGIN --> {the patient / he / she / {has}{ a / some / many } 

DC-BEGIN --> the I it 

DC-MID->is 
DC-MID --> PREP {the I her I his I the patient’s / a } 

PREP == in I on I about I by I with I at I under I over / of 

utterances. The SSI system included a vocabulary of 
more than 38,000 words (including root forms and 
inflections), from which we used about 1,000 words. 
It recognized continuous speech and was speaker- 
independent. The SSI system required a specification 
of a vocabulary and a grammar for each set of sen- 
tences that it could recognize. 

Construction of Grammars 

The SSI system required that the set of recognizable 
input sentences be specified as grammars of formal 
languages. A formal language is a set of finite-length 
strings formed from a finite vocabulary.‘5 Grammars 
of formal languages are specified in terms of syntactic 
categories, such as (NOUN-PHRASE), terminal sym- 
bols from the language vocabulary, and production 
rules that specify the relation between syntactic cat- 
egories and terminal symbols. Typically, production 
rules are designated by a set of symbols: a syntactic 
category followed by an arrow and a list of syntactic 
categories and/or terminal symbols. This represen- 
tation signifies that the syntactic category may be 
replaced by all that follows the arrow. Production 
rules may be applied in sequence to generate or to 
parse natural-language expressions. Figure 4 shows 
a list of typical rules we included in grammars that 
we constructed for the SSI speech-recognition sys- 
tem. 

We used two approaches to generate grammars for 
the speech-recognition system. First, one of us (WMD) 
tailored grammars manually for the QMR domain by 
reviewing the QMR terminology and estimating sub- 
jectively how health care providers might phrase con- 
trolled-vocabulary terms in natural language. For ex- 
ample, sentences that users could say to describe a 

Figure 5 Sample grammar rules 
that were derived programmati- 
cally from the canonical form {breast, 
mass, bilateral}, which represents the 
QMR term breast mass bilateral. The 
rules in group A were generated 
programmatically. The rules in 
group B, which added nonclinical 
terms that provide flexibility in sen- 
tence structure, were created once 
manually and then added to each 
of the programmatically generated 
grammars. All terms marked with 
the suffix -M are nonterminal sym- 
bols. The symbols DC-BEGIN rep- 
resent classes of words that could 
appear at the beginning of an ut- 
terance and DC-MID the classes of 
words that could appear in the 
middle of an utterance. 

bruit in the neck area, such as soft diastolic carotid 
bruit, neck bruit, or loud continuous bruit, were antici- 
pated and the rules in Figure 4 were extracted, which 
could generate these sentences. Then rules were ex- 
tracted by generalizing sets of words into semantic 
categories, and determining possible orderings for 
these categories. 

Second, we generated grammars programmatically 
by deriving phrase-structure rules from the target 
terms in QMR. We considered each term in QMR to 
be a target finding that the user could express using 
a variety of words and word orders. We generated 
grammars that captured the expected variety of 
expressions by applying a sequence of transforma- 
tions to the canonical form of each target term in 
QMR: 

1. We generated the power set, or the set of all sub- 
sets, of keywords for the canonical form to account 
for use of only some of the relevant keywords in 
the specification of a finding. For example, the 
power set for the canonical form {breast, muss, bi- 
lateral} included {breast, mass, bilateral}, {breast, mass), 
{mass, bilateral}, {breast, bilateral}, {breast}, {mass}, 
and {bilateral}. We expected that physicians would 
not use every keyword in specifying a finding 
when their notion of the particular finding was 
more general than the notion included in the tar- 
get term. However, the resulting power set in- 
cluded subsets that accounted for sentences that 
physicians were not likely to say to describe a 
medical finding. For example, it was not likely 
that a physician-would describe a finding in the 
breast by saying a sentence such as the putient had 
a bilateral breast, which would include only the 
keywords {breast, bilateral}. 
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2. We permuted each subset of keywords to account 
for variations in word order. For example, the 
permutations that resulted from {mass, bilateral} 
were {mass, bilateral} and {bilateral, muss}. These 
permutations accounted for sentences such as there 
was a mass bilaterally and I noticed a bilateral mass. 

3. We substituted synonyms from the synonym dic- 
tionary for the original keywords to account for 
variations in the choice of words for a particular 
finding. For example, the substitutions muss --> 
nodule or bilateral --> both sides accounted for the 
use of the words nodule and both sides to describe 
the finding of a mass in the breast. 

4. We inserted words that could be used in a spec- 
ification of a finding before, between, or after key- 
words. For example, the insertion of the phrase 
the patient had a before the keyword mass and the 
phrase in the before the keyword breast accounted 
for the sentence the patient had a mass in the breast. 
Figure 5 illustrates part of the grammar that was 
generated by applying the transformations to the 
canonical form {breast, muss, bilateral}. 

Both manually generated grammars and program- 
matically generated grammars were used by the SSI 
system to enumerate possible sentences. The SSI sys- 
tem generated the possible sentences by recursively 
expanding syntactic categories according to rules that 
applied to these syntactic categories. Although only 
a portion of th e expanded sentences was stored in 
the computer memory simultaneously, the compu- 
tation necessary to select that portion and to match 
the input utterance against that portion was inten- 
sive. 

To simplify the grammars, we excluded the genera- 
tion and interpretation of morphologic variations of 
words from the scope of our grammar-generation 
procedure. Nevertheless, the grammars that we gen- 
erated included many possible sentences, some of 
which physicians would never say, such as i noticed 
a both side breast. 

To ensure that the grammars would not be overly 
large, consequently yielding poor recognition, we se- 
lected a subset of the terms in QMR and partitioned 
the subset further so that each partition would not 
exceed 50 terms. We selected the domain of physical 
examination findings because this domain could be 
partitioned easily in the subdomains of body parts, 
and these subdomains were intuitive to the user.t 

tWe then excluded all findings that included words not in the 
vocabulary of the speech-recognition system. Thus, we used only 
about half of the physical examination findings (518) that were in 
the INTERNIST-l knowledge base. 

lessons learned 

To evaluate our speech interface, we examined the 
extent to which users were able to enter QMR find- 
ings with speech. The details of the evaluation study 
and the results are included in the companion article 
by Detmer et al. in this issue.3 In this section we 
describe the benefits of using a keyword approach, 
discuss unsuccessful attempts to construct the syn- 
onym dictionary programmatically, and present a 
comparison of grammar construction techniques and 
results. 

Experiences with Keyword Matching 

The method of matching keyword-based canonical 
forms allowed partially misrecognized utterances to 
still match with appropriate QMR terms. Synonyms 
facilitated this process by expanding the number of 
possible utterances that could match to a QMR term. 
In addition, the matching method ignored all key- 
words that were misrecognized as nonkeywords. 
Therefore, only a portion of the misrecognized words, 
namely, keywords that were misrecognized as other 
keywords, affected the accuracy of the matching pro- 
cess. 

The emphasis on keywords allowed the system to 
identify related terms that differed in detail. For ex- 
ample, the input utterance crescendo decrescendo dia- 
stolic murmur did not match any target term exactly. 
However, the system encoded the recognized string 
for the utterance as the canonical form {decrescendo, 
diastolic, murmur} and elicited the more general target 
term heart murmur present and the more specific term 
heart murmur diastolic decrescendo second left interspace, 
both of which are relevant to the input utterance. 
The ability of the matching method to associate a 
variety of textual strings, some of which were gram- 
matically incorrect, to a fixed set of controlled-vocab- 
ulary terms suggests that the method is suitable for 
supporting the integration of speech interfaces into 
applications that depend on entry of such terms. The 
approach described here was expanded and used 
successfully by other projects in our laboratory.17,18 

Construction of the Dictionary 

A key problem we encountered in this project was 
the development of the dictionary to be used in the 
matching process (translation of sentences into ca- 
nonical forms) and in the programmatic grammar- 
generation process (substitution of synonyms). We 
experimented with automatic collection of synonyms 
for concepts from an on-line general (nonmedical) 
dictionary. The on-line dictionary was set up as a 
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database, which included for each entry correspond- 
ing definitions, senses, and a list of synonyms, an- 
tonyms, and related words. We extracted program- 
matically for each word its morphologic variants, 
senses, synonyms, and related words from the gen- 
eral on-line dictionary. We informally evaluated the 
usefulness of the resulting dictionary by using it to 
support the programmatic construction of grammars. 
The resulting grammars were extremely large, some 
even failed to compile by the SSI system. For the 
grammars that did compile, the recognition rate they 
produced was very poor. With these results, and 
after realizing that most of the words that we ob- 
tained from the general dictionary were not medically 
relevant, we abandoned our attempts to extract words 
programmatically from the general dictionary and used 
synonyms from a medical dictionary that was pro- 
vided to us by the creators of QMR. 

Comparison of Grammars 

The evaluation experiment? demonstrated that when 
the SSI system used manually generated grammars, 
speech-recognition accuracy was greater and the 
matcher recognized more terms in QMR correctly 
than when the system used programmatically gen- 
erated grammars. The most likely explanation for this 
difference relates to the accuracy of specification and 
to the expressiveness provided by the different gram- 
mars. 

The manually constructed grammars were tailored 
more accurately than the programmatically con- 
structed grammars to what one of us (WMD) per- 
ceived as the expected target language. Although the 
programmatically constructed grammars were inde- 
pendent of idiosyncratic expressions for findings, they 
allowed production of many sentences physicians 
would never say. For example, a physician would 
never say the artery is carotid under a continuous bruit 
to describe a bruit in the carotid artery, but this sen- 
tence was generated by the programmatically con- 
structed grammar for findings related to the neck. 
The programmatically constructed grammars placed 
a heavy load on the speech-recognition system be- 
cause the number of competing sentences that the 
system had to check was much larger than was re- 
quired for interacting with the diagnostic system. 

M&recognition could partly be explained by the lim- 
ited scope of the language covered by both gram- 
mars. First, for both grammars it was easy to find 
sentences that were likely inputs but that were not 
represented by the grammar. Second, both grammars 
did not represent nonlexical sounds that are com- 
monly part of speech, such as pauses, coughs, and 

repetitions. Any effort to enlarge the scope of gram- 
mars must balance the need to include more valid 
sentences with the need to limit the number of pos- 
sible matches to support good recognition accuracy. 
Expansion of grammars to include nonlexical words 
is currently not possible with the SSI system because 
the vocabulary recognized by the system does not 
include nonlexical sounds. 

The performance gain from using manually gener- 
ated grammars needs to be weighed against the time 
and training required to construct these grammars. 
On average, it took a medically trained developer 
five hours to construct a grammar that represented 
the QMR physical examination findings for a partic- 
ular body part such as the chest. This time included 
defining the target language for that body part, en- 
tering grammar rules into the speech system, and 
testing whether common utterances would be cap- 
tured by the grammar. For this experiment, we cre- 
ated grammars for seven body parts, so the total time 
required to produce the grammars approached 40 
hours. Building grammars for all possible body parts 
would have taken two or three times as long. 

In contrast, it took a software engineer approximately 
80 hours to develop and implement the automated 
methods for grammar construction, but once the 
methods were developed, it took negligible time to 
generate a grammar. Although this approach took 
more preparation time for this experiment, it will be 
more time efficient in the long run because new, 
modified, or expanded grammars could be generated 
programmatically. Thus, as such systems are scaled 
up and are used for domains with changing voca- 
bularies, the time to construct grammars would not 
increase dramatically. 

Our conclusion from this experience with grammar 
construction is that manually generated grammars 
are superior when used for small domains that have 
stable vocabularies. However, for systems that re- 
quire a large number of grammars or that need to 
represent languages that are constantly changing, an 
automated method may be preferable, especially if 
performance can be improved. One area for future 
research is devising ways to improve the precision 
of these automated grammars. 

We believe that we can improve the identification 
accuracy by expanding the synonym dictionary to 
include more synonyms, and by extending the lin- 
guistic forms that are represented in the grammars. 
The addition of more synonyms would support cor- 
rect identification of matches between input utter- 
ances and their corresponding controlled-vocabulary 
terms. Both modifications would promote accurate 
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representations of what users might say to the pro- 
gram and would increase the likelihood of accurate 
speech recognition. 

3. 

4. 
Summary 

Detmer WM, Shiffman S, Wyatt JC, Friedman CP, Lane CD, 
Fagan LM. A continuous-speech interface to a decision sup- 
port system: II. An evaluation using a Wizard-of-Oz experi- 
mental paradigm. J Am Med Informatics Assoc. 1995;2:46-57. 
Shiffman S, Wu AW, Poon AD, et al. Building a speech in- 
terface to a medical diagnostic system. IEEE Expert. 1990;6:41- 
50. 

Our program demonstrated the feasibility of spoken 
entry of terms into a medical application. However, 
the identification of QMR terms from spoken utter- 
ances was not sufficiently accurate to allow for use 
of our interface in a clinical setting. The large number 
of recognition errors we observed in the evaluation 
indicates that the grammars we constructed were too 
large despite the fact that we partitioned the domain 
of physical examination findings into the smaller sub-, 
domains of body parts. The errors also indicated that 
the grammars did not represent the spoken sentences 
accurately enough. We could produce more accurate 
grammars manually by collecting data systematically 
from a large number of potential users. We might be 
able to improve the programmatically generated 
grammars by having the program generate grammar 
rules and then testing the rules for semantic appro- 
priateness to eliminate implausible sentences. 

5. Wulfman CE, Rua M, Lane CD, Shortliffe EH, Fagan LM. 
Graphical access to medical expert systems: V. Integration with 
continuous-speech recognition. Methods Inf Med. 1993;32:33- 
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9. 

10. 

Improvements in speech-recognition technology are 
crucial for the development of speech interfaces that 
could be used reliably outside the laboratory. We 
expect that as speech-recognition technology im- 
proves so that less-restricted languages can be rec- 
ognized, our pattern-matching approach to the inter- 
pretation of input utterances will still be effective to 
support interactions with knowledge-based decision 
support systems. 
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