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Nitrogen-starved purple non-sulphur bacteria have an active unregulated form of
nitrogenase (nitrogenase A); however, the nitrogenase of a glutamine synthetase-negative
mutant of Rhodopseudomonas capsulata, when nitrogen-starved, was predominantly
inactive and required activation by Mn2+ and activating-factor protein. This regulatory
form of nitrogenase has been called nitrogenase R. Treatment of wild-type cells (con-
taining nitrogenase A) with methionine sulphoximine, an inhibitor of glutamine syn-
thetase, converted the enzyme into nitrogenase R. Glutamine synthetase thus appears to
control the intracellular concentrations of nitrogenase A and R and in this way regulates
nitrogenase activity in the photosynthetic bacterium.

Nitrogenase in the phototrophs Rhodospirillum
rubrum and Rhodopseudomonas capsulata exists in
two enzymic forms (Carithers et al., 1979; Yoch,
1979a). Nitrogenase A, found only in N-starved
cells, is identical with that of the other N2-fixers and
can be converted into a second low-molecular-
weight form, nitrogenase R, by the addition of either
NH4+ or glutamate to an N-starved culture. Nitro-
genase R (whose Fe protein is inactive) can be
distinguished from nitrogenase A in vitro by its need
for activation by an Mn2+-(and ATP)-dependent
activating-factor protein (Ludden & Burris, 1976,
1978; Nordlund et al., 1977). The rapid conversion
of nitrogenase A into nitrogenase R in response to
N2, amino acids and NH4+ represents a new
dimension in the regulation of nitrogenase activity
(Carithers et al., 1979; Yoch, 1979a). Isolation of an
R. capsulata glutamine auxotroph deficient in
glutamine synthetase activity (Wall & Gest, 1979)
provided an opportunity to determine if this enzyme
had a role in nitrogenase A = nitrogenase R conver-
sions. Evidence from work with this mutant, together
with effects of methionine sulphoximine on wild-type
cells, strongly suggests that glutamine synthetase is
involved in converting nitrogenase A into nitro-
genase R and therefore involved in regulating
nitrogenase activity in these photosynthetic bacteria.

Materials and Methods

Organism and growth conditions
Rhodopseudomonas capsulata strain G29 (a

glutamine auxotroph) and the wild-type strain B 10

were kindly provided by Dr. Judy Wall, Department
of Biochemistry, University of Missouri, Columbia,
MO, U.S.A. Both R. capsulata and R. rubrum were
grown photosynthetically in a medium described by
Ormerod et al. (1961), which was modified by
deleting the glutamate and replacing biotin with
thiamin (300,ug/litre) for growth of R. capsulata.
Growth of the auxotroph (strain G29) further
required that the NH4C1 be replaced with glutamine.
Wild-type cells (which contain nitrogenase A) were
obtained by growing them on low NH4+ (2.5 mM) to
ensure eventual N-starvation, which is identified by
the vigorous photoevolution of H2 from the culture.
N-starvation of the auxotroph (strain G29) was
achieved by growing it on 1.5 mM-glutamine. To
obtain wild-type cells that contain nitrogenase R,
glutamate (0.75 mM) was added to N-starved cul-
tures, which could then be harvested at any time
from 6 to 24 h later, and the nitrogenase activity was
predominantly Mn2+-dependent (indicative of nitro-
genase R). Similar results are obtained by adding
NH4+ to the culture.
The glutamine auxotroph (strain G29) was

induced to revert to prototrophy by replacing
glutamine in the medium with NH4+, which allowed
the naturally occurring revertants to grow. Although
initial growth was slow, it increased on subsequent
transfers; after three such transfers the proto-
troph-enriched culture was plated on NH4+-contain-
ing medium and several isolates were selected. One
G29 revertant isolate (G29-R 1), which grew well on
NH4+, was selected and used for the nitrogenase
experiments.
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Preparation of nitrogenase extracts and activating
factor

Cells were harvested and disrupted by sonic
oscillation by using the method previously described
for R. rubrum (Yoch, 1979a). The nitrogenase-con-
taining extracts were the supernatant fluid resulting
from centrifugation for 10min at 30000g (Table 1
and Fig. 2 below). An additional centrifugation for
60min at 250000g removed the chromatophores
(and activating factor); this extract was used to
determine the activating-factor requirement of R.
capsulata nitrogenase (Fig. 1 below). Activating
factor from R. rubrum was prepared as described by
Ludden & Burris (1976). Chromatophores (30ml)
were washed once with 0.5 M-NaCl and the washings
treated with poly(ethylene glycol) 4000. The protein
precipitating from these washings between 10 and
30% (w/v) poly(ethylene glycol) was used as the
activating-factor preparation.

Nitrogenase assays
Crude extracts containing either nitrogenase A or

nitrogenase R were assayed for nitrogenase activity
(with the acetylene technique) by methods pre-
viously described for R. rubrum (Yoch, 1979a). The
basic nitrogenase reaction mixture contained, in a
total volume of 1.5 ml: 50mM-Hepes [4-(2-hydroxy-
ethyl)-l-piperazine-ethanesulphonic acid] buffer,
pH 7.4, 25 mM-phosphocreatine, 20ug of creatine
kinase, 15 mM-MgCl2, 2.9mM-ATP, 8mM-sodium
dithionite (Na2S204) (33 mM-Na2S204 was used
in R. rubrum nitrogenase assays). This reaction
mixture (non-activating) is complete for nitrogenase
A; to assay for nitrogenase R (i.e., activating
conditions) 0.5 mM-MnCl2 and activating factor are
also required. Previous work with R. rubrum
(Carithers et al., 1979; Yoch, 1979a) showed that
nitrogenase R can be distinguished from nitro-
genase A in crude extracts (which contain chroma-
tophores and therefore bound activating factor) by
the absolute requirement of nitrogenase R for Mn +.
The percentage of nitrogenase A and nitrogenase R
in any extract can be determined by assaying for
nitrogenase in the absence (nitrogenase A) and
presence (nitrogenase A plus nitrogenase R) of
added Mn2+.

In the absence of added Mn2+, the endogenous
Mn2+ in the crude extract is probably insufficient to
allow expression of any nitrogenase R. This
assumption is based on the fact that the Km for Mn2+
in the nitrogenase-R-activation process is 0.2mM
(Yoch, 1979a), and crude extracts used here contain
less than one-tenth this concentration of Mni+.

Results
Previous kinetic data suggested that the nitro-

genase of R. capsulata (strain B 10) was similar to

that of R. rubrum, because Mn2+ greatly stimulated
the nitrogenase obtained from cells grown on
glutamate (Yoch, 1979a). The presence of nitro-
genase R in R. capsulata is confirmed here by
showing its requirement for activating factor and
Mn2+. The nitrogenase activity with saturating
amounts of activating factor prepared from R.
rubrum is shown in Fig. 1. The nitrogenase activity
is approximately twice that attained with endo-
genous (chromatophore-bound) activating factor.
The Mn2+-dependence of this system is shown in
Fig. 1(b).
To determine if active glutamine synthetase was

essential for the control of intracellular amounts
of nitrogenase A and nitrogenase R, as suggested
from previous observations of R. rubrum (Yoch,
1979b), a glutamine synthetase-negative mutant of
R. capsulata (strain G29) was cultured photo-
synthetically on low concentrations of glutamine and
allowed to reach a state of N-starvation. Under these
conditions the wild-type R. capsulata and R. rubrum
would produce almost 100% nitrogenase A. As
Table 1 shows, the nitrogenase of the R. capsulata
glutamine auxotroph (G29), was predominantly
(65%) in the R-form. When wild-type cells (strain
B 10 were grown on either glutamine or NH4+,
N-starvation resulted in the production of a nitro-
genase whose activity could not be enhanced by
Mn2+ (i.e. nitrogenase A). This result indicates that
glutamine itself played no part in the auxotroph's
production of nitrogenase R under these conditions.
A revertant of strain G29 (strain G29-Ri) having
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Fig. 1. Requirement of Rhodopseudomonas capsulata
(B1O) nitrogenase R for activatingfactor andMn2+
(a) The basic reaction mixture (see the Materials
and Methods section) was supplemented with
0.5mM-Mn2+ and the concentration of R. rubrum
activating factor indicated on the Figure. R. capsul-
ata nitrogenase (1.02mg of protein) was supplied as
a chromatophore-free extract. (b) The basic re-
action mixture was supplemented with activating
factor (0.4mg of protein) and Mn2+ at the concen-
tration indicated.
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Table 1. Characterization ofnitrogenasefrom the R. capsulata glutamine synthetase-negative mutant (strain G29)
The nitrogenase activity is expressed as nmol of ethylene/min per mg of protein; the initial velocity was determined
by averaging the activity over a 20-min period. Assay methods are described in the Materials and Methods section.

Nitrogenase activity

Strain
R. capsulata G29 (glutamine auxotroph)
R. capsulata B 10 (wild-type)
R. capsulata G29-R 1 (revertant)

Nitrogen source
before

N starvation
Glutamine
Glutamine
NH4+
Glutamine

Activating Non-activating
conditions conditions

13.1 4.5
13.9 13.7
13.5 15.7
9.0 9.3

Nitrogenase R
(% of total
nitrogenase)

65.5
1.6
0
0

normal glutamine synthetase activity was again
identical with the wild-type in that it had no
nitrogenase R activity under these conditions. Thus
glutamine synthetase is implicated in controlling the
concentrations of nitrogenase A and R in the purple
non-sulphur bacteria.

Additional evidence that glutamine synthetase is
involved in the control of nitrogenase A and
nitrogenase R comes from experiments in which
illuminated N-starved wild-type R. capsulata
cultures (A660-0.3) were treated for 18h with
methionine sulphoximine, an inhibitor of glutamine
synthetase. The addition of 15 mM-methionine
sulphoximine directly to the N-starved culture
resulted in cells whose nitrogenase activity in
extracts could be stimulated by the addition of Mn2+
and R. rubrum activating factor (Fig. 2). Thus
inhibition of glutamine synthetase activity by meth-
ionine sulphoximine results in the cells converting
nitrogenase A into nitrogenase R. Control extracts
derived from untreated N-starved cells showed
nitrogenase kinetics (in the absence of Mn2+)
indicative of nitrogenase A (Fig. 2). Similar results
were obtained with R. rubrum (Yoch, 1979b).

Although nitrogenase A in these photosynthetic
bacteria was converted into nitrogenase R by adding
methionine sulphoximine to N-starved cultures,
considerable variation was noted in the results. This
variation ranged from observing no effect (i.e., Mn2+
added to crude extracts had no stimulating effect on
nitrogenase) to cases where activity in the presence
of Mn2+ was three times that in its absence. Neither
the concentration of methionine sulphoximine used
(5-15 mM) nor the time of exposure (0.5-24h) added
to the reproductibility of this process. The vari-
ability in the amount of nitrogenase R produced by
methionine might be related to previous obser-
vations that inhibition of whole-cell nitrogenase
activity by this inhibitor required an actively
growing culture (Hillmer & Fahlbush, 1979). In the
experiments reported here, N-starved and therefore
non-growing cultures had, by necessity, to be used in
order to have cells that contained nitrogenase A. The
fact that N-starved cells are not growing may,
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Fig. 2. Requirement ofR. capsulata (BJO) nitrogenasefor
Mn2+ after treatment of the cells with methionine

sulphoximine
The basic nitrogenase assay mixture is described in
the Materials and Methods section. The crude
nitrogenase extract from the methionine sulphoxi-
mine-treated cells was supplemented with activating
factor (0.3 mg of protein) and assayed with (-) and
without (0) Mn2+. The nitrogenase extract from
the cells not treated with methionine sulphoximine
(control) was assayed without Mn2+ (A).

therefore, explain the variation observed in the
concentration of nitrogenase R produced in response
to this inhibitor. In conclusion, it appears that

275



276 D. C. YOCH

inhibition of glutamine synthetase in vivo causes (or
permits) the conversion of a substantial amount of
nitrogenase A into the R-form.

Discussion

The inhibition in the purple non-sulphur bacteria
of both glutamine synthetase (Weare & Shan-
mugam, 1976; Johnasson & Gest, 1977) and
nitrogenase activity (Gest et al., 1950; Schick, 197 1;
Neilson & Nordlund, 1975; Hillmer & Gest, 1977)
by NH4+ has suggested that a regulatory rela-
tionship might exist between these two enzymes. The
strong correlation between NH4+-induced glutamine
synthetase adenylylation (inactivation) and nitro-
genase inhibition in R. capsulata and the reversal of
this pattern when NH4+ was depleted from the
culture medium, prompted Hillmer & Fahlbush
(1979) to postulate that the adenylylation state of
glutamine synthetase acts as a signal in turning on
and off the nitrogenase activity in response to NH4+.
However, these workers also found that methionine
sulphoximine inhibits nitrogenase activity, but unlike
NH4+, it has no effect on the adenylylation state of
glutamine synthetase. The latter observation, al-
though strongly suggesting that glutamine syn-
thetase plays a role in inhibiting nitrogenase activity,
indicates that it must occur by a mechanism not
related to the adenylylation state of glutamine
synthetase.

In the present paper, evidence is provided that
shows that nitrogenase R (the form of nitrogenase
that is normally produced in response to an NH4+
shock) is present 'constitutively' in R. capsulata
mutants that have little or no glutamine synthetase
activity. Furthermore, nitrogenase R arises from
nitrogenase A in cells treated with methionine
sulphoximine. These two lines of evidence argue
strongly that glutamine synthetase is involved in the
control of the nitrogenase A = nitrogenase R
equilibrium.
The observation that cultural conditions such as

the simultaneous starvation of cells for both N and
C also resulted in the formation of nitrogenase R
from nitrogenase A (D. C. Yoch, unpublished work)
and this conversion, unlike that induced by NH4,
was not accomplished by a change in the adenylyl-

ation state of glutamine synthetase, further suggests
that the correlation between nitrogenase activity and
glutamine synthetase adenylylation state (Hillmer &
Fahlbush, 1979) is coincidental. In conclusion, an
active glutamine synthetase (the adenylylation state
seems to be irrelevant) appears to control nitro-
genase activity (nitrogenase A=nitrogenase R) in
the purple non-sulphur bacteria. This enzyme may
regulate nitrogenase activity directly or it may act by
controlling the concentration of some essential
metabolite involved in this process.
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