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Functional genomics implicates natural killer
cells in the pathogenesis
of ankylosing spondylitis
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Summary
Multiple lines of evidence indicate that ankylosing spondylitis (AS) is a lymphocyte-driven disease. However, which lymphocyte pop-

ulations are critical in AS pathogenesis is not known. In this study, we aimed to identify the key cell typesmediating the genetic risk in AS

using an unbiased functional genomics approach. We integrated genome-wide association study (GWAS) data with epigenomic and

transcriptomic datasets of human immune cells. To quantify enrichment of cell type-specific open chromatin or gene expression in

AS risk loci, we used three published methods—LDSC-SEG, SNPsea, and scDRS—that have successfully identified relevant cell types

in other diseases. Natural killer (NK) cell-specific open chromatin regions are significantly enriched in heritability for AS, compared

to other immune cell types such as T cells, B cells, and monocytes. This finding was consistent between two AS GWAS. Using RNA

sequencing data, we validated that genes in AS risk loci are enriched in NK cell-specific gene expression. Using the human Space-

Time Gut Cell Atlas, we also found significant upregulation of AS-associated genes predominantly in NK cells. We performed co-local-

ization analyses between GWAS risk loci and genetic variants associated with gene expression (eQTL) to find putative target genes. This

revealed four AS risk loci affecting regulation of candidate target genes in NK cells: two known loci, ERAP1 and TNFRSF1A, and two

understudied loci, ENTR1 (SDCCAG3) and B3GNT2. Our findings suggest that NK cells may play a crucial role in AS development

and highlight four putative target genes for functional follow-up in NK cells.
Introduction

Axial spondyloarthritis (axSpA) is a chronic inflammatory

rheumatic disease characterized by inflammation of the

spine and sacroiliac joints, with a proportion of persons

with axSpA also presenting with arthritis in peripheral

joints, uveitis, psoriasis (MIM: 177900), or inflammatory

bowel disease (MIM: 266600).1 Historically, most genetic

and pathogenetic studies in axSpA have been carried out

in ankylosing spondylitis (AS [MIM: 106300]), a severe

and well-characterized subtype of axSpA. The heritability

of AS is high, with estimates ranging from between 40%

and >90%.2 Two independent twin studies report herita-

bility of >90%.3,4 The International Genetics of Anky-

losing Spondylitis (IGAS) Consortium performed a genetic

association study using the Immunochip, which ascertains

a subset of risk loci in the genome that are relevant to im-

mune-mediated diseases.5 IGAS reports a SNP-based herita-

bility for AS of 32.7%, which is 1.6–2.4 greater than that for

Crohn disease and psoriasis.6 In the genome-wide associa-

tion study (GWAS) performed with UK Biobank data, in

which an Affymetrix chip with genome-wide coverage

was used, the SNP-based heritability for AS is estimated

to be 69.1%, 3.3–3.8 greater than that for Crohn disease
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and psoriasis.7,8 Hence, AS has a strong genetic compo-

nent, especially compared to other inflammatory diseases.

Human leukocyte antigen B27 (HLA-B27) is the major risk

allele for AS (odds ratio¼ 21.4).9 Additionally, GWASs have

revealed >100 non-major histocompatibility complex

(MHC) risk loci for AS, most of them implicating non-cod-

ing variants.5,6

Many immune cell types have been associated with ax-

SpA. However, which ones are ‘‘driver’’ cell types actively

contributing to the pathogenesis of the disease, as opposed

to ‘‘bystanders’’ that become involved as a consequence of

the disease, remain unclear. Studies leveraging genetic

risk variants and their overlap with epigenomic and

transcriptomic features variably suggested CD8þ T cells,

CD4þ T cells, NK (natural killer) cells, monocytes, and

gastrointestinal cells as potential mediators of AS genetic

risk.10–12 However, these studies did not apply the new

functional genomics datasets generated from human cells

or the latest methodologies designed to integrate func-

tional genomics with GWAS data. This new generation of

methods takes advantage of the full range of SNPs exam-

ined in a GWAS (not just those surpassing the genome-

wide significance threshold) and robustly control for

genomic and linkage disequilibrium (LD) biases.13,14
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For several immune-mediated diseases, these integrative

functional genomics methods have successfully identified

specific cell types as drivers of disease development. For

example, for rheumatoid arthritis (RA [MIM: 180300]),

multiple studies have found a significant enrichment of ge-

netic risk in open or active chromatin regions (marking

regulatory elements) specific for T cells.15–17 Both mouse

and human studies corroborate the role of T cells as central

players in RA pathogenesis.18,19 Similarly, for systemic

lupus erythematosus (SLE [MIM: 152700]), studies have

identified an enrichment of B cell-specific putative regula-

tory elements and gene expression in SLE risk loci,16,17

consistent with the well-established role of B cells in SLE

pathogenesis.20 Hence, there is precedence that the inte-

gration of GWAS with functional genomics datasets can

identify cellular drivers in inflammatory diseases with

complex pathogenesis.

Here, we sought to investigate which immune cell

populations could be drivers of AS development. We in-

tegrated GWAS summary statistics from two different AS

cohorts with epigenomic and transcriptomic datasets

of human leukocytes from peripheral blood and tissue

using established methods that control for biases in

genomic enrichment analyses. Our results bring forward

NK cells as potential key drivers in the pathogenesis

of AS.
Material and methods

GWASs
We used the GWAS Immunochip summary statistics from the

IGAS Consortium. The IGAS study, led by Cortes et al.,5 performed

high-density genotyping of 9,069 AS cases and 13,578 healthy

controls. In addition, we used the GWAS summary statistics

from the UK Biobank, which involved a case-control design with

1,185 AS cases and 419,276 controls, providing genome-wide

coverage for AS susceptibility loci.21

We lifted the genomic positions of the genetic variants to

genome build hg19 or hg38 according to the version compatible

with subsequent analyses. Given the complexity and strong ge-

netic association signals within the MHC region, we excluded var-

iants located on chr6: 25 Mb–34 Mb.

We additionally used GWAS summary statistics for RA, Alz-

heimer disease, and SLE as positive control traits for which we

know the disease-relevant immune cell types, and height as a

negative control trait for which we do not expect immune cells

to be relevant. The summary statistics for control traits were

preprocessed by the Alkes Price laboratory. They included

HapMap 3 (HM3) SNPs and SNPs that are in the 1000 Genomes

Project, and they excluded the MHC region (chr6: 25 Mb–34

Mb). These summary statistics are available at https://alkesgroup.

broadinstitute.org/.
Epigenomic and transcriptomic datasets
To identify cell-type-specific open chromatin regions in different

immune cell types, we used the Calderon et al. study,16 in which

the authors collected blood from four healthy subjects, sorted im-

mune cell types, and generated chromatin accessibility profiles us-
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ing assay for transposase accessible chromatin sequencing (ATAC-

seq; GEO: GSE118189).

To find AS risk enrichment for cell-type-specific expression, we

incorporated data from the study conducted by Gutierrez-

Arcelus et al.,22 which involved low-input mRNA-seq data from

sorted NK cells and six T cell subsets isolated from six healthy sub-

jects (each with two replicates per cell type; GEO: GSE124731).

We used the Space-Time Gut Cell Atlas to identify cells exhibit-

ing significant upregulation of disease-associated genes. This data-

set includes single-cell (sc)RNA-seq profiling of 428,000 intestinal

cells obtained from fetal (N ¼ 16), pediatric (N ¼ 8), and adult do-

nors (N ¼ 13). The dataset covers 11 different intestinal regions23

(https://www.gutcellatlas.org/).
Differential accessibility analysis
We used the counts of open chromatin consensus peaks called by

Calderon et al.16 First, we transformed counts into reads per kilo-

base per million mapped reads (RPKM), then normalized by quan-

tiles using the preprocess Core R package, and finally scaled to

their log2 (normalized RPKMþ1); thus, we account for differences

in library size across samples and peak length variability. We

pooled sorted samples into seven main immune cell types, aiming

for a similar number of samples per cell type to avoid biases in the

differential accessibility analyses: T cells (stimulated and unstimu-

lated CD8þ T, unstimulated naive CD4 T, and memory CD4 T), B

cells (stimulated and unstimulated bulk B cells, unstimulated

memory and naive B cells), NK cells (stimulated and unstimulated

mature NKs, unstimulated memory NKs, and immature NKs),

monocytes (stimulated and unstimulated monocytes), plasma-

blasts (unstimulated plasmablasts), dendritic cells (DCs; unstimu-

lated myeloid cells), and plasmacytoid DCs (unstimulated plasma-

cytoid DCs). The latter three cell types had fewer samples

available; however, this did not impede our control trait Alzheimer

disease to show significant heritability enrichment for myeloid

DC-specific open chromatin regions, as expected.

Next, we employed linearmixed-model regression to identify re-

gions that exhibited differential accessibility between each cell

type and the rest of the cell types. To account for potential

donor-specific effects, we incorporated the donor ID variable as a

random effect in our analysis.

For each cell type comparison, we tested peaks that had counts

greater than the mean for that cell type in at least half of the sam-

ples. This yielded between 400,000 and 600,000 tested peaks de-

pending on the cell type. To select the cell-type-specific open chro-

matin peaks for each cell type, we sorted open chromatin peaks by

their t statistic and chose the positive top 10%.
Partitioned heritability enrichment analysis with

LDSC-SEG
The LD score regression applied to specifically expressed genes

(LDSC-SEG) version 1.0.1 method13 was applied to determine dis-

ease-relevant cell types for AS. Cell-type-specific open chromatin

peaks were extended by 225 bp to each side to match the genomic

coverage recommended by the LDSC-SEG authors. These annota-

tions were then utilized as input for the partitioned heritability

enrichment analysis by LDSC-SEG. To test whether the coefficient

exceeds zero, LDSC-SEG utilizes a one-sided t test for computing

regression p values. We used the baseline annotation version 1.2

provided by the Alkes Price lab for LDSC-SEG, comprising 75 back-

ground annotations. Additionally, we used all consensus peaks

(N ¼ 829,942) of Calderon et al. as the control annotation. Using
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other baselines or controls did not affect our results. We utilized

SNP weight files derived from the HM3 project European

population.

Analysis of cell-type-specific gene expression

enrichment in risk loci using SNPsea
SNPsea analysis aimed to assess the association between risk SNPs

and genes expressed specifically for a given cell type.24 We incor-

porated a curated list of risk SNPs for AS, compiled by Brown

and Wordsworth,8 which includes genetic variants that have

been associated with AS susceptibility. This list was derived from

multiple AS studies conducted until 2017.

We utilized the expression data obtained fromGutierrez-Arcelus

et al.22 The gene expression counts in this dataset were normalized

to transcripts per million (TPM) and transformed to log2(TPMþ1)

values. To identify the genes with meaningful expression levels,

we included those with log2(TPMþ1) > 2 in at least 10 samples.

SNPsea was then run for the normalized expression matrix

and AS risk SNPs, using recombination intervals from Myers

et al.,25 null SNPs from Lango Allen et al.,26 and the following

parameters: –score single –slop 10000 –threads 2 –null-snpsets

0 –min-observations 100 –max-iterations 10000000.

Integration of GWAS with scRNA-seq with scDRS
We used the single-cell disease relevance score (scDRS) by

combining scRNA-seq and GWAS to identify cells with significant

upregulation of disease-associated genes, which are scored based

on their strength of association with disease and are compared

with null sets of genes present in the dataset.

As recommended by the scDRS authors, we first created disease-

relevant gene sets using Multi-marker Analysis of GenoMic Anno-

tation (MAGMA) version 1.10.27 We generated gene annotations

with MAGMA, setting a window of 10 kb using the following

parameters: –annotate window ¼ 10,10 –snp-loc./g1000_eur/

g1000_eur.bim –gene-loc./NCBI37.3/NCBI37.3.gene.loc. Then,

we ran MAGMA using GWAS summary statistics for traits of

interest with the following parameters: –bfile./magma_v1.10/

g1000_eur/g1000_eur –pval GWAS.pval use ¼ ‘SNP,P’ ncol ¼ ‘N’

–gene-annot./magma_v1.10/out/step1.genes.annot.

We ran scDRS using the disease-relevant gene sets fromMAGMA

and the expression data obtained from the Space-Time Gut Cell

Atlas23 and corrected for biases by adding as covariates the number

of genes expressed per cell and sample batch. Next, for visualiza-

tion purposes and downstream analysis, we processed the single-

cell dataset using Seurat,28 we performed integration across

batches with Harmony,29 and we visualized cells in two dimen-

sions with uniform manifold approximation and projection

(UMAP). We labeled cells plotted in UMAP by the annotations

defined by the Space-Time Gut Cell Atlas. Additionally, we colored

cells by their scDRS score when cells passed the 0.20 false discov-

ery rate (FDR) threshold.

Differential expression analyses
We used two differential expression analyses: low-input mRNA-

seq and scRNA-seq. For the low-input mRNA-seq, data from

Gutierrez-Arcelus et al.22 were analyzed to compare NK cells and

T cell subsets from the peripheral blood of six healthy donors

(each cell subset per donor in duplicate). The data were normalized

using TPM and then log2 transformed. We tested genes with

log2(TPMþ1) > 2 in at least 10 samples. Linear mixed models

(LMMs) were applied using the lme4 package in R, controlling
Huma
for donor as a random effect. p values were adjusted for multiple

testing using the FDR calculated by the qvalue R package. We

then filtered significant genes within AS risk loci and used heat-

maps to visualize the expression patterns.

For the scRNA-seq, pseudobulk expression data were generated

by aggregating scRNA-seq data from NK cells and other immune

cell types per donor. Counts per million normalization and log2

transformation were applied to the data before differential expres-

sion analysis. We tested genes with at least 5 counts in at least 20

donors. LMM was used, with donors included as a random effect.

The analysis was conducted using the lme4 package in R, with p

values adjusted for multiple testing using FDR calculated by the

qvalue R package.
eQTL co-localization analysis
To select genomic loci for colocalization analysis, GWAS summary

statistics were sorted by p values. Then, starting from the variant

with the smallest p value, variants within a 50-kb window were

removed. The process was repeated with the next most significant

variant among the remaining variants until no variant with a p

value below 5 3 10�5 was left. We performed colocalization anal-

ysis for GWAS studies against the eQTL (expression quantitative

trait loci) Catalogue.30 We imported eQTL summary statistics

from RNA-seq and microarray from Schmiedel et al.31 and Gil-

christ et al.32 We fetched the summary statistics data using the ta-

bix method with the seqminer R package (version 8.5). For each

region tested, we included all biallelic SNPs that were ascertained

in both the GWAS and eQTL study and performed the analysis

only for genes within a window of 5500,000 bp from the GWAS

top variant, and for which there was at least one eQTL passing

the 5 3 10�5 p value threshold. Before merging GWAS and QTL

data, the variant coordinates of the GWAS were lifted to the

GRCh38 version of the reference genome using liftOver with the

UCSC chain file. We used the coloc version 5.1.0.1 package33 in

R version 4.1.0 to test for colocalization at each gene and dataset.

Each locus was plotted using plotgardener,34 and we recovered

the LD of the top SNP in a given region in the GWAS dataset using

the locuscomparer package.35 Then, we used plotgardener func-

tions to display the regions near the lead variant and colored the

genes tested using the posterior probability that the two traits

share a causal variant (PP4).
Results

To assess which immune cell types might be mediating the

genetic susceptibility to AS, we utilized a dataset of open

chromatin profiles of immune cell subsets from peripheral

blood of four healthy subjects16 (Figure 1A). Sorted cell

subsets were analyzed using ATAC-seq with or without

prior in vitro stimulation. For our study, we grouped the

cells analyzed by Calderon et al. into seven main immune

cell types: T cells, B cells, NK cells, plasmablasts, DCs, plas-

macytoid DCs, and monocytes. We identified cell-type-

specific open chromatin regions and assessed whether

these were significantly enriched in AS genetic risk. We

used the LDSC-SEG method13 to quantify enrichment of

partitioned heritability in each of these cell-type-specific

annotations (conceptual scheme in Figure 1B, data in

Figure 1C) compared to baseline and control annotations,
n Genetics and Genomics Advances 6, 100375, January 9, 2025 3



Figure 1. Human NK cell-specific open chromatin regions are enriched in AS genetic risk
(A) Calderon et al. study design. Peripheral blood cells from four healthy subjects were sorted into immune cell populations that we
grouped in silico into seven cell types (see material and methods). Assay for transposase accessible chromatin using sequencing
(ATAC-seq) was performed with and without prior in vitro activation.
(B) Graphical representation of LDSC-SEG analysis: identification of cell-type-specific annotations (in our case, open chromatin regions),
followed by the integration with GWAS summary statistics to obtain a risk enrichment coefficient b and p value.
(C) Volcano plots showing results of differential accessibility analyses for each cell type compared to the other cell types. Colored dots
indicate open chromatin peaks in the top decile of the t statistic for each cell type, which were used for LDSC-SEG analysis.
(D and E) Bar graphs displaying the AS genetic risk enrichment coefficient b and block jackknife SE for cell-type-specific open chromatin
accounting for control peaks and baseline annotations. Summary statistics from the International Genetics of Ankylosing Spondylitis
(IGAS) Consortium (D) and UK Biobank (E) GWASs were used.
*p < 0.05.
while taking into account the effects of LD. We excluded

the MHC region from our analyses given the unusually

high LD in this region and the fact that genetic associa-

tions with this locus are driven mostly by coding variants

of the HLA-B gene. Using the Immunochip association

study summary statistics from the IGAS Consortium,5 we

found that NK cell-specific open chromatin regions were

significantly enriched in genetic risk for AS (p ¼ 0.026),

while this was not the case for the other six immune cell

types (Figure 1D).

We validated this finding in a GWAS with genome-wide

genotyping using the summary statistics for AS from the

UK Biobank. With this GWAS, we confirmed that open

chromatin regions specific for NK cells were significantly
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enriched in AS heritability (p ¼ 0.034; Figure 1E). To eval-

uate the reliability of our results, we included four

control traits that have been extensively examined in

similar studies integrating GWAS with functional geno-

mics.13,15–17 As expected, RA presented the highest enrich-

ment for T cell-specific open chromatin regions (p ¼
0.0018), Alzheimer disease (MIM: 104300) for myeloid

DC (p ¼ 0.00018), and SLE for B cells (p ¼ 0.0015). We

selected body height as a negative control trait, antici-

pating no significant enrichment for immune cells, a pre-

diction that was confirmed by our data (all p > 0.1,

Figure S1). The AS heritability enrichment results did not

change for any of the two GWAS when cell-type-specific

open chromatin regions were identified by controlling
25



Figure 2. NK cells show enrichment of cell-type-specific expression of AS-associated genes
(A) Gutierrez-Arcelus et al. study design. Peripheral blood cells from six healthy subjects were sorted into NK cells (orange) and six T cell
populations (purple): CD4þ T, CD8þ T, MAIT, iNKT, and two gd T cell populations. Bulk RNA-seq was performed on two replicates per
sample.
(B) Graphical representation of the SNPsea method illustrating the integration of gene expression profiles with risk loci obtained from
GWAS.
(C) Bar graphs showing �log10(p value) for enrichment of cell-type-specific expression of genes in AS risk loci using SNPsea. **p < 0.01.
(D) Heatmap showing expression levels for genes in AS risk loci that were significantly upregulated in NK cells compared to six T cells
subsets. Expression levels are scaled by row.
for stimulation status (Figure S2). Collectively, these epige-

nomic analyses suggest that AS risk alleles are preferen-

tially located in regions that may influence gene regulation

in NK cells.

To corroborate these findings using an alternative exper-

imental approach, we used our previously published RNA-

seq dataset of sorted peripheral CD4þ T cells, CD8þ T cells,

mucosal-associated invariant T cells (MAIT), invariant NK

T cells (iNKT), gd T cells expressing Vd1 T cell receptor

(TCR) chain (Vd1), gd T cells expressing Vd2 TCR chain

(Vd2), and NK cells (each in duplicate from six healthy do-

nors; Figure 2A).22We also applied an alternative computa-

tional method to validate our findings, SNPsea, which

quantifies enrichment of cell-type-specific gene expression

in risk loci for a given trait (conceptual scheme in

Figure 2B) by employing a non-parametric statistical

method to calculate empirical p values through compari-

son with sets of null SNPs.24 We used SNPsea as an

independent method that only uses risk loci that pass

the genome-wide significance threshold, as opposed to
Huma
LDSC-SEG, which uses all the summary statistics for a

given GWAS and hence also incorporates information

from genetic variants that do not pass the genome-wide

significance threshold. For this analysis, we used the AS

risk SNPs reported by Brown and Wordsworth in 2017,

which were curated from multiple AS genetic studies

(Table S1).8 This list includes the lead SNPs from AS risk

loci that reached genome-wide significance in the IGAS

and/or UK Biobank studies. SNPsea analysis revealed a sig-

nificant enrichment of NK cell-specific gene expression in

AS risk loci (p¼ 0.01), which was not observed in the other

lymphocyte subsets included in the dataset (Figure 2C).

We then performed a differential expression analysis

comparing NK cells with the six T cell subsets (Table S2).

Genes in AS risk loci with significant upregulation in NK

cells are presented in Figure 2D. Two of these genes,

RUNX3 (MIM: 600210) and TBX21 (MIM: 604895), encode

transcription factors with important roles in lymphocytes.

TNFRSF1A (MIM: 191190) encoding tumor necrosis factor

(TNF) receptor 1 has a well-established association with AS
n Genetics and Genomics Advances 6, 100375, January 9, 2025 5



Figure 3. Human gut single-cell atlas reveals significant upregulation of AS-associated genes in NK cells
(A) Generation of the Space-Time Gut Cell Atlas, with samples from fetal, pediatric, and adult subjects.
(B) Graphical representation of the scDRS method, which integrates GWAS risk genes with single-cell data to identify disease-relevant
cells.
(C) Visualization of the Space-Time Gut Cell Atlas data using UMAP on the top 20 principal components from 1,997 variable genes from
the scRNA-seq expression matrix.
(D) Same UMAP visualization as in (C). Cells with significant scDRS score (20% FDR) are colored in red.

(legend continued on next page)
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that has been validated by multiple studies.36–38 FCGR2A

(MIM: 146790) codes for the low-affinity Fcg receptor

IIA, an activating receptor involved in orchestrating

immune response. Less-studied genes included NPEPPS

(MIM: 606793), which encodes a puromycin-sensitive

aminopeptidase, and LNPEP (MIM: 151300), which en-

codes a zinc-dependent aminopeptidase. Both genes are

paralogs of ERAP1 (MIM: 606832) and belong to the

MHC class I antigen processing and presentation pathway,

along with other known AS risk genes.39 Collectively, the

results of our second integrative analysis indicate that

several genes within AS risk loci are highly expressed in

NK cells relative to T cells, providing additional support

for the emerging hypothesis that AS risk alleles exert their

effects, at least in part, via NK cells.

The transcriptomic phenotype of immune cells

commonly differs between blood and tissue.40,41 Hence,

in addition to analyzing peripheral blood as in the previ-

ous analyses, we sought to evaluate disease-relevant cell

subsets from a tissue relevant for AS. We used the human

Space-Time Gut Cell Atlas,23 which includes scRNA-seq

data for samples from various locations of fetal (N ¼ 16),

pediatric (N ¼ 8), and adult (N ¼ 13, including 6 healthy

subjects and 7 subjects with Crohn disease) intestine

(Figure 3A). We applied the scDRS method,14 which iden-

tifies cells that overexpress a significant proportion of

genes implicated by GWAS, weighted on their strength of

association with disease, compared to null sets of control

genes in the dataset (conceptual scheme in Figure 3B).

This method is similar to LDSC-SEG in that it uses informa-

tion from both risk loci that pass the genome-wide signif-

icance threshold and those that do not. The Space-Time

Gut Cell Atlas investigators identified the following broad

cell types: mesenchymal, epithelial, endothelial, neuronal,

myeloid, red blood cells, B cells, plasmablasts, T cells, NK

cells, and other innate lymphoid cells (ILCs) (Figure 3C).

scDRS identified 1,852 cells with significantly enriched

expression of AS GWAS genes (20% FDR; Figure 3D). Of

these, 765 were T cells, 264 were myeloid cells, 320 were

NK cells and 319 were other ILCs. Normalized for cell

type abundance in the dataset, NK cells showed the high-

est enrichment (39-fold), followed by other ILCs (34-fold),

T cells (5-fold), and myeloid cells (5-fold; Figure 3E). In

contrast, non-immune cell types exhibited a depletion of

disease-relevant cells relative to their abundance in the

entire dataset (Figure S3). We then used the fine-grained

annotations of the Space-Time Gut Cell Atlas to identify

the particular cell subsets that had significant expression

enrichment of AS-associated genes. This revealed NK cells

as the most abundant (N ¼ 320), followed by LTi-like nat-
(E) Bar graph showing enrichment of scDRS significant cells per cell
type percentage in whole dataset).
(F) Bar graph showing the number of significant scDRS cells for each
Gut Cell Atlas. Cell populations with at least 15 significant scDRS ce
(G) Scaled average expression levels and percentage of cells expressin
upregulation (5% FDR) in NK cells compared to the other cell types.
association with AS) by their average level of expression in NK cells.

Huma
ural cytotoxicity receptor-positive (NCRþ) ILC3 cells (N ¼
147), activated CD8þ T cells (N ¼ 132), macrophages

(N ¼ 130), LTi-like NCR� ILC3 cells (N ¼ 112), gd T cells

(N ¼ 94), and other T cells, ILCs, and myeloid subsets

(Figure 3F). At lower FDR thresholds, few cells had a signif-

icant disease-relevant score (457 at 10% FDR and 20 at 5%

FDR), but NK cells remained the top-enriched cell type

(Figure S4). Genes in AS risk loci with high expression in

gut NK cells include GNLY (MIM: 188855), CCL4 (MIM:

182284), and CCL3 (MIM: 182283) (Figure 3G). In addi-

tion, by comparing the MAGMA-scored genes used for

scDRS analysis with the genes within 250 kb of the risk

SNPs used in the SNPsea analysis, we identified eight

AS-associated genes that are upregulated in NK cells at

5% FDR in both peripheral blood lymphocytes and

immune cell types from the gut (Table S3). These genes

are FCGR3A (MIM: 146740), SLAMF7 (MIM: 606625),

TBX21, APOBR (MIM: 605220), NOTCH1 (MIM: 190198),

RUNX3, IL18R1 (MIM: 604494), and GPR65 (MIM:

604620). Using the control traits specified earlier, we

confirmed T cells as the main disease-relevant cell type

for RA and monocytes for Alzheimer disease (Figure S2).

No significant disease-relevant cells were identified for

height (as expected) and for SLE, which could mean that

B cells in the gut are in a state not pertinent to SLE or

that the dataset lacked sufficient power to detect an associ-

ation for this disease (Figure S2). In summary, our analyses

indicate that tissue-resident NK cells exhibit significant

expression of AS-associated genes.

Lastly, we sought to find putative target genes for AS

risk variants in NK cells. To this end, we performed co-

localization analyses between AS GWAS risk loci and ge-

netic variants associated with gene expression (eQTLs) us-

ing coloc.33 We leveraged eQTL summary statistics from

the eQTL Catalogue,30 drawing upon data from a study

on the transcriptomic profiling of peripheral NK cells

from 91 genotyped individuals,31 as well as a microarray

QTL study that profiled NK cells from 245 genotyped in-

dividuals.32 We found four AS risk loci with genome-

wide significance (p < 5 3 10�8) and a high posterior

probability (>0.8) of sharing a causal variant with an

NK cell eQTL (PP4, Table 1; Figure 4). An additional 10

loci with suggestive AS association p values (3.56 3

10�5 < p < 5.40 3 10�8) showed evidence of co-localiza-

tion with NK cell eQTLs for 18 genes (PP4 > 0.75; Table 1).

Within the genome-wide significant loci we identified the

established target genes ERAP1 and TNFRSF1A, as well as

the putative target genes ENTR1 (MIM: 618289)(also

known as SDCCAG3) and B3GNT2 (MIM: 605581), which

have been studied less.
type (cell-type percentage within scDRS significant cells over cell-

cell type using the fine-grained annotations from the Space-Time
lls are shown.
g a given gene for 50 genes associated with AS that had significant
Genes are sorted by multiplying their MAGMA score (strength of
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Table 1. Putative target genes identified by co-localization analysis between AS-associated loci and eQTLs in NK cells

Lead GWAS
variant p value GWAS

Putative
target gene

Posterior probability of
shared causal variant

Quantification
method eQTL study

rs27529 1.24E�40 IGAS ERAP1 0.99186 microarray Gilchrist et al. (2021)32

rs6759298 2.07E�38 IGAS B3GNT2 0.97245 RNA-seq Schmiedel et al. (2018)31

rs1128905 3.17E�10 IGAS ENTR1 0.8207 microarray Gilchrist et al. (2021)32

rs1860545 8.66E�10 IGAS TNFRSF1A 0.99673 RNA-seq Schmiedel et al. (2018)31

rs11065898 5.41E�8 IGAS TMEM116 0.87563 microarray Gilchrist et al. (2021)32

rs9619386 4.42E�7 IGAS UBE2L3 0.96397 microarray Gilchrist et al. (2021)32

rs1250542 2.07E�6 IGAS ZMIZ1 0.87272 microarray Gilchrist et al. (2021)32

rs1250542 2.07E�6 IGAS ZMIZ1 0.83268 RNA-seq Schmiedel et al. (2018)31

rs952594 2.08E�6 IGAS APEH 0.75689 microarray Gilchrist et al. (2021)32

rs952594 2.08E�6 IGAS RBM6 0.91981 RNA-seq Schmiedel et al. (2018)31

rs952594 2.08E�6 IGAS UBA7 0.94237 microarray Gilchrist et al. (2021)32

rs952594 2.08E�6 IGAS UBA7 0.8851 RNA-seq Schmiedel et al. (2018)31

rs6565217 2.82E�6 IGAS AC135050.3 0.91556 RNA-seq Schmiedel et al. (2018)31

rs6565217 2.82E�6 IGAS STX4 0.94653 RNA-seq Schmiedel et al. (2018)31

rs7191548 3.13E�6 IGAS EIF3CL 0.7822 microarray Gilchrist et al. (2021)32

rs7191548 3.13E�6 IGAS NPIPB8 0.97545 microarray Gilchrist et al. (2021)32

rs7191548 3.13E�6 IGAS SGF29 0.85225 microarray Gilchrist et al. (2021)32

rs7191548 3.13E�6 IGAS TUFM 0.82246 microarray Gilchrist et al. (2021)32

rs7191548 3.13E�6 IGAS TUFM 0.95694 RNA-seq Schmiedel et al. (2018)31

rs6583441 3.84E�6 IGAS IKZF1 0.96244 RNA-seq Schmiedel et al. (2018)31

rs4690326 6.49E�6 IGAS DGKQ 0.91883 microarray Gilchrist et al. (2021)32

rs4690326 6.49E�6 IGAS DGKQ 0.89989 RNA-seq Schmiedel et al. (2018)31

rs4690326 6.49E�6 IGAS IDUA 0.98988 microarray Gilchrist et al. (2021)32

rs4690326 6.49E�6 IGAS SLC49A3 0.801 RNA-seq Schmiedel et al. (2018)31

rs26481 9.17E�6 UK Biobank CAST 0.95638 microarray Gilchrist et al. (2021)32

rs26481 9.17E�6 UK Biobank ERAP1 0.95565 microarray Gilchrist et al. (2021)32

rs2236167 3.57E�5 IGAS PPP2R3C 0.9491 microarray Gilchrist et al. (2021)32
Discussion

In this study, we integrated epigenomic and transcriptomic

datasets with AS genetic risk data to find candidate cellular

drivers of AS pathogenesis. Our unbiased approach,

applying three different methods to datasets from both pe-

ripheral blood and tissue, consistently identified NK cells

as the dominant disease-relevant cell type. Specifically,

we found that NK-specific open chromatin regions and

NK-specific gene expression were significantly enriched

for non-MHC AS genetic risk. This suggests that a signifi-

cant portion of AS risk variants affects gene regulation in

NK cells, pointing to NK cells as potential key mediators

of AS pathogenesis.

NK cells have the ability to directly destroy target cells

through cell lysis and in addition play a significant role

in shaping immune responses by releasing cytokines.
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Previous studies support a role for NK cells in AS. Per-

sons with AS with chronic subclinical intestinal inflam-

mation were found to have an increased abundance of

NKp44þ NK cells in their gut, and these cells were the

major producers of interleukin-22 (IL-22) in the lamina

propria, suggesting a possible role in tissue protection.42

One could speculate that dysfunctional NK cells ‘‘drive’’

AS development by contributing to intestinal inflamma-

tion, which is in line with the gut-joint axis hypothe-

sis.43 Alternatively, NK cells may play a critical role

through activities in spinal tissues. Cuthbert et al. stud-

ied entheseal immunology using discarded surgical spec-

imens from persons with back pain (not axSpA) under-

going laminectomy and reported that NK cells are

present in both entheseal soft tissue and peri-entheseal

bone.44 We are not aware of any data assessing the pres-

ence of NK cells at spinal enthesis in subjects with AS or
25



Figure 4. Co-localization of AS risk loci and NK cell eQTLs points to putative target genes for AS risk variants
(A–D) Manhattan plots showing AS GWAS and NK cell eQTL �log10(p values) for SNPs within 500 kb of a lead GWAS SNP. The color of
each SNP indicates its level of linkage disequilibrium (LD) between with the lead GWAS SNP (purple diamond). Genes in the region are
colored according to their posterior probability of hypothesis four (PP4) (i.e., that the same causal variant is shared between AS and the
eQTL for that gene).
(A) Manhattan plots identifying putative target gene ERAP1 using AS IGAS GWAS (top) and NK microarray gene eQTL data obtained
from Gilchrist et al.32 (bottom).
(B) Manhattan plots identifying putative target gene TNFRSF1A using AS IGAS GWAS (top) and NK gene eQTL data obtained from
Schmiedel et al.31 (bottom).
(C) Manhattan plots identifying putative target gene ENTR1 using AS IGAS GWAS (top) and NK microarray gene eQTL data obtained
from Gilchrist et al.32 (bottom).
(D) Manhattan plots identifying putative target gene B3GNT2 using AS IGAS GWAS (top) and NK gene expression QTL (eQTL) data ob-
tained from Schmiedel et al.31 (bottom). All QTL summary statistics taken from eQTL Catalog.
in the subchondral bone marrow in subjects with

sacroiliitis.

HLA-B27 can bind to the killer cell immunoglobulin-like

receptor (KIR) KIR3DL1 and affect the function of NK cells,

including their ability to lyse cells.45,46 HLA-B27 homo-

dimers can also bind KIR3DL2.47 Chan and colleagues

showed an expansion of KIR3DL2þ NK and CD4þ

T cells in persons with AS.48 Subsequent studies by the

same group focused on CD4þ T cells demonstrating that

KIR3DL2þ CD4þ T cells were major IL-17A producers.49

However, an expansion of KIR3DL2þ NK and T cells has

not been observed in other axSpA cohorts.50,51 Multiple

risk loci for AS include genes relevant for NK cell function,
Huma
including KIR3DL1 (MIM: 604946), KIR2DS5 (MIM:

604956), KIR3DS1 (MIM: 620778), and KIR2DL5 (MIM:

605305).52,53 In another study, investigators co-cultured

endoplasmic reticulum aminopeptidase 1 (ERAP1)-in-

hibited M1 macrophages with NK cells from persons

with AS and found that the ERAP1 protective alleles in in-

dividuals led to decreased CD69 and CD107a on NK cells

and a lower number of interferon-gþ NK cells as compared

to persons carrying non-protective alleles.54

Our findings do not rule out the involvement of other

cell types in AS pathogenesis. Indeed, in the human

Space-Time Gut Cell Atlas, we identified significant expres-

sion of AS-associated genes in Tcell subsets and ILC subsets
n Genetics and Genomics Advances 6, 100375, January 9, 2025 9



(Figures 3D–3F), which share transcriptional programs

with NK cells.22,55 Indeed, it is likely that genetic risk to

AS is mediated through multiple cell types, as is the case

for other complex diseases such as multiple sclerosis, for

which studies have found risk enrichment in open/active

chromatin regions specific to both T and B cells.17 We

and others have shown that eQTLs often exhibit impact

in multiple cell types.56,57 Hence, determining the specific

cell type through which a disease risk variant is exerting its

pathogenic effects can be challenging.

Our co-localization analyses using two eQTL NK cell da-

tasets identified four putative target genes for AS risk vari-

ants: ERAP1, TNFRSF1A, ENTR1 (also known as SDCCAG3)

and B3GNT2. The importance of ERAP1 in AS risk is well

established, and polymorphisms affecting its expression

have been reported for multiple cell types, including mac-

rophages, monocytes, T cells, induced pluripotent stem

cells, fibroblasts, and immortalized B cells.30 Similarly,

multiple studies have found significant associations be-

tween non-coding polymorphisms at or near TNFRSF1A

and AS, including in European and east Asian popula-

tions.36,37 While there are multiple genes in this genomic

locus, including PLEKHG6 (MIM: 611743), SCNN1A

(MIM: 600228), and LTBR (MIM: 600979), our co-localiza-

tion results suggest that TNFRSF1A, which encodes TNFR1,

is the target gene of the causal variant in this locus, and its

dysregulation can occur in NK cells. This is consistent with

the therapeutic efficacy of TNF inhibitors in AS and the

known function of TNF as a booster of the cytolytic capac-

ity of NK cells.58 Interestingly, TNFRSF1A has been func-

tionally linked to ENTR1, a less extensively studied puta-

tive target gene identified in this study. ENTR1, which

encodes an endosome-associated trafficking regulator,

is needed for TNFR expression on the cell surface.59

Lastly, B3GNT2 encodes an acetylglucosaminyltransferase

enzyme that is a type II transmembrane protein. A recent

study in a Taiwanese cohort demonstrated that a non-cod-

ing genetic variant near B3GNT2 is associated with AS sus-

ceptibility, and that B3GNT2 blood mRNA levels were

negatively correlated with C-reactive protein, erythrocyte

sedimentation rate, syndesmophyte formation, and the

Bath AS functional index.60

While the four putative target genes identified here

make sense in the context of AS and potential impact on

NK cell function, they are not as numerous as we would

have expected given the 32 genome-wide significant risk

loci included in the co-localization analyses. However,

similar challenges have been encountered with non-cod-

ing risk variants in other complex diseases, where only

20%–47% of risk variants co-localized with eQTLs.61,62

Our research, along with that of others, suggests that

many regulatory effects might remain undetected due to

their presence in cell states of activation or differentiation

that have not been thoroughly explored.63–65 Moreover,

the sample size of typical eQTL studies is likely insufficient

to find the regulatory effects of most risk variants identified

by GWAS.66 Hence, we believe that better-powered eQTL
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studies ascertaining multiple activation states in NK cells

are needed to find additional target genes for AS risk

variants.

Our study has several limitations. Due to a lack of pub-

lished data we have an incomplete assessment of the spec-

trum of potentially relevant immune cell subsets and

states, particularly those present in inflamed sacroiliac

joints and spine. Consequently, if the real driver for AS

pathogenesis is a cell subset or state that was not present

in the analyzed datasets but has transcriptomic and epige-

nomic similarities to NK cells, then our results may suffer

from a ‘‘guilt-by-association’’ bias. To our knowledge, cur-

rent transcriptomic datasets profiling multiple immune

cell types from persons with AS are limited to peripheral

blood. When we applied scDRS to a recently published

scRNA-seq dataset of 98,884 peripheral blood mononu-

clear cells from 10 subjects with AS and 29 healthy con-

trols,67 we found no significant cells for the disease-rele-

vant gene expression score (data not shown), possibly

due to lack of power in the study for this type of analysis.

Another limitation is that the reported nominal p values in

the LDSC-SEG and SNPsea analyses would not have been

significant if we had applied FDR correction, accounting

for the seven tests performed per analysis. However, NK

cells consistently showed marginal significance (defined

as nominal p < 0.05) for heritability enrichment in cell-

type-specific open chromatin regions across two indepen-

dent GWAS and in the cell-type-specific expression anal-

ysis where NK cells were compared with Tcell subsets using

a curated list of genome-wide significant loci for AS. Addi-

tionally, the results from the Gut Cell Atlas confirmed NK

cells as the top enriched expressors of AS-associated genes.

Our study encompassed a broad spectrum of immune cell

states within the gastrointestinal tract and peripheral blood

of healthy subjects and consistently pointed to NK cells.

Since GWASs pinpoint genetic regions implicated in the

onset of disease, including early stages when future patients

are still asymptomatic, the study of samples from healthy

subjects is relevant, despite the possibility that not all cell

states are represented. Future investigations, particularly

larger-scale studies of samples from blood and inflamed tis-

sue from persons with AS including untreated subjects in

the early phases of the disease, will be key to establish

whether NK cells are indeed drivers of AS pathogenesis.
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Supplemental figures

Figure S1. Heritability enrichment results for control traits. (A) Bar graphs display the
genetic risk enrichment coefficient (y-axis) and standard error for cell-type specific open
chromatin accounting for control peaks and baseline annotations. Open chromatin data were
taken from the Calderon et al. study. Risk enrichment was assessed using GWAS summary
statistics for the positive control traits rheumatoid arthritis, Alzheimer's disease, systemic lupus
erythematosus, and the negative control trait height. Bars marked with “*” indicate P < 0.05, “**”
indicates P < 0.01, “***” indicates P < 0.001.



Figure S2. Heritability enrichment results for cell type-specific open chromatin
controlling for stimulation status. (A) Bar graphs displaying the AS genetic risk enrichment
coefficient β and block jackknife standard error for cell type-specific open chromatin accounting
for control peaks and baseline annotations. Here differentially accessibility analysis was
performed controlling for donor as a random effect and stimulation status as a fixed effect.
Summary statistics from the International Genetics of Ankylosing Spondylitis Consortium (IGAS)
(left) and UK Biobank (right) GWAS were used. (B) Same as (A) but for control traits. Bars
marked with “*” indicate P < 0.05, “**” indicates P < 0.01, “***” indicates P < 0.001.



Figure S3. Single-cell disease relevant score results for control traits. (A) Visualization of
the Space-Time Gut Cell Atlas using   Uniform Manifold Approximation and Projection (UMAP) on
the top 20 principal components from 1,997 variable genes from the single-cell RNA-seq
expression matrix. Cells are colored based on the coarse cell type annotations from the
Space-Time Gut Cell Atlas. (B) Barplots shows the cell type proportions within the whole
Space-Time Gut Cell Atlas and within cells with significant disease relevant score (20% FDR)
for AS (using IGAS GWAS), Alzheimer's disease (AD) and rheumatoid arthritis (RA). (C) Same
UMAP visualization as in A, where cells with significant scDRS score (20% FDR) are colored in
red and non-significant cells are colored in gray, for each control trait.



Figure S4. Single-cell disease relevant score results at different FDR thresholds. Bar
graph showing the number of significant scDRS cells for each cell type using the fine-grained
annotations from the Space-Time Gut Cell Atlas, at 10% FDR (A) and 5% FDR (B). (C) Bar
graph showing enrichment of scDRS significant cells per cell type (cell-type percent within
scDRS significant cells over cell-type percent in whole dataset) at different FDR thresholds.



Supplemental tables

GENE_ID GENE_NAME beta Std x1_t p_value fdr

ENSG00000178562.17 CD28 -3.512 0.276 -12.724 1.19E-20 2.98E-18

ENSG00000106952.7 TNFSF8 -2.796 0.219 -12.751 3.26E-20 7.35E-18

ENSG00000122224.17 LY9 -0.903 0.090 -10.088 1.16E-15 9.98E-14

ENSG00000180871.7 CXCR2 2.997 0.297 10.079 1.70E-15 1.41E-13

ENSG00000148400.9 NOTCH1 1.435 0.145 9.915 4.27E-15 3.20E-13

ENSG00000143226.13 FCGR2A 1.987 0.246 8.065 7.93E-12 2.64E-10

ENSG00000122223.12 CD244 2.742 0.338 8.124 8.58E-12 2.83E-10

ENSG00000005844.17 ITGAL 1.064 0.134 7.916 2.07E-11 6.30E-10

ENSG00000163297.16 ANTXR2 -1.222 0.201 -6.066 3.88E-08 5.07E-07

ENSG00000185651.14 UBE2L3 0.553 0.093 5.967 7.65E-08 9.25E-07

ENSG00000197536.10 C5orf56 0.914 0.156 5.869 1.18E-07 1.36E-06

ENSG00000187118.12 CMC1 2.431 0.438 5.551 3.38E-07 3.42E-06

ENSG00000020633.18 RUNX3 1.367 0.246 5.556 3.51E-07 3.54E-06

ENSG00000108622.10 ICAM2 0.476 0.088 5.391 7.65E-07 6.99E-06

ENSG00000100376.11 FAM118A -0.669 0.125 -5.362 8.62E-07 7.76E-06

ENSG00000067182.7 TNFRSF1A 0.845 0.170 4.965 4.14E-06 3.07E-05

ENSG00000175354.18 PTPN2 0.356 0.076 4.689 1.06E-05 7.07E-05

ENSG00000160791.13 CCR5 -2.094 0.449 -4.665 1.18E-05 7.75E-05

ENSG00000118503.14 TNFAIP3 -1.143 0.296 -3.867 2.30E-04 1.00E-03

ENSG00000141279.15 NPEPPS 0.378 0.099 3.827 2.62E-04 1.12E-03

ENSG00000140030.5 GPR65 1.179 0.311 3.788 2.82E-04 1.19E-03

ENSG00000164307.12 ERAP1 0.364 0.096 3.795 2.94E-04 1.24E-03

ENSG00000163599.14 CTLA4 -1.556 0.414 -3.760 3.49E-04 1.44E-03

ENSG00000105397.13 TYK2 0.490 0.137 3.583 5.63E-04 2.17E-03

ENSG00000111252.10 SH2B3 0.450 0.134 3.360 1.16E-03 4.00E-03

ENSG00000128604.18 IRF5 1.055 0.326 3.238 1.71E-03 5.48E-03

ENSG00000145996.11 CDKAL1 0.241 0.074 3.262 1.81E-03 5.72E-03

ENSG00000065675.14 PRKCQ 0.288 0.094 3.075 2.82E-03 8.31E-03

ENSG00000143365.16 RORC -1.342 0.442 -3.037 3.15E-03 9.09E-03

ENSG00000119772.16 DNMT3A -0.508 0.169 -3.009 3.46E-03 9.82E-03

ENSG00000138311.15 ZNF365 0.453 0.156 2.906 4.98E-03 1.32E-02

ENSG00000160712.12 IL6R -0.846 0.301 -2.809 6.10E-03 1.56E-02



ENSG00000161847.13 RAVER1 0.448 0.176 2.550 1.26E-02 2.83E-02

ENSG00000164308.16 ERAP2 0.210 0.083 2.535 1.31E-02 2.93E-02

ENSG00000112182.14 BACH2 -0.723 0.292 -2.476 1.57E-02 3.37E-02

Table S2. Differential expression analysis comparing NK cells with the six T cell subsets



Gene

beta_NK
vsTcells_
bulkRNA
-seq

Std_NKvs
Tcells_bulk
RNA-seq

p_value_N
KvsTcells_
bulkRNA-s
eq

fdr_NKvsT
cells_bulk
RNA-seq

beta_NKvs
ImmuneGu
tCells_scR
NA-seq

Std_NKvsI
mmuneGut
Cells_scR
NA-seq

p_value_N
KvsImmun
eGutCells_
scRNA-se
q

fdr_NKvsIm
muneGutCe
lls_scRNA-
seq

FCGR
3A 5.5295 0.7807 7.14E-10 1.47E-08 3.7205 0.4759 4.49E-13 1.62E-12

SLAM
F7 2.0193 0.5281 2.78E-04 1.18E-03 1.2402 0.3299 2.33E-04 4.02E-05

TBX21 1.9179 0.3242 9.77E-08 1.16E-06 3.3621 0.2877 9.41E-24 3.06E-22

APOB
R 1.5098 0.1518 3.37E-15 2.61E-13 1.9559 0.3863 1.00E-06 2.83E-07

NOTC
H1 1.4352 0.1448 4.27E-15 3.20E-13 1.4507 0.2324 2.99E-09 1.79E-09

RUNX
3 1.3674 0.2461 3.51E-07 3.54E-06 1.9215 0.3934 2.26E-06 5.87E-07

IL18R
1 1.3058 0.4360 3.56E-03 1.01E-02 2.3512 0.4063 3.46E-08 1.45E-08

GPR6
5 1.1787 0.3111 2.82E-04 1.19E-03 2.1500 0.3862 9.21E-08 3.40E-08

Table S3. AS-associated genes that are upregulated in NK cells at 5% FDR in peripheral
blood lymphocytes and immune cell types from the gut.
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