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Supplementary Note

Data generation

Genotype data. Genomic DNA isolated from kidney samples was used for genotyping. 271
samples were genotyped using Axiom Tx SNP GWAS array, and 239 samples were genotyped
using Affymetrix Axiom Biobank array (Supplementary Table 8). For each dataset, PLINK
(v1.9)! was utilized for quality control. First, duplicates and variants with genotyping call rate <
95% were removed. Samples with >5% missing values were excluded. Additional samples were
excluded because of ambiguous sex. To identify poor DNA quality or sample contamination,
heterozygosity test was performed to exclude samples with high heterozygosity (extreme
inbreeding coefficient cutoff was determined by heterozygosity rate + 3-fold standard deviations
from the mean). To further identify potential sample contamination, identity-by-descent (IBD) for
each pairwise sample combination was computed and all samples passed PI. HAT < 0.2. In total,
267 individuals remained in the dataset by Axiom Tx SNP GWAS array, and 227 individuals
remained in the dataset by Affymetrix Axiom Biobank genotyping array, respectively. Finally,
variant-level tests were performed, and the following variants were excluded: monomorphic
variants (MAF=0), Hardy-Weinberg equilibrium p < 1x10°6, genotype missingness predicted using
surrounding haplotypes (p < 1x107%), association with chemistry plate batch (p < 1x10%), and

variants on sex chromosomes.

To merge the genotypes from Axiom Tx and Axiom Biobank arrays, we extracted the genotype
calls of an overlapping subset of 327,366 variants between two platforms. This enabled imputation
of the same set of variants in all samples. To ensure inclusion of only high confidence variants,

multiple sample and variant QC steps were performed before imputation. First, we excluded



variants whose reference and alternative alleles did not align between two platforms and those with
a frequency difference larger than 0.15 between two platforms. Two individuals with call rate <95%
were excluded. Then, variant-level tests were performed, and the following variants were excluded:
Hardy-Weinberg equilibrium p < 1x10°, genotype missingness predicted using surrounding
haplotypes (p < 1x10%), association with chemistry plate batch (p < 1x107®). After quality control,
genotypes were phased with SHAPEIT2 (v2.17)? and imputed by IMPUTE2 (v2.3.2)*#, using the
multi-ancestry panel reference from 1,000 Genome Phase 3 (NCBI build 37, released in October
2014). To quantify the population structure, genotype-based principal component analysis (PCA)
was conducted using EIGENSTRAT (v7.2.1)° on 488 individuals, with additional 2,504 samples
from the 1,000 Genomes Project Phase 3 (503 EUR, 661 AFR, 347 AMR, 504 EAS, 489 SAS)S.
This genotype data were used for meQTL mapping (Supplementary Fig. 5), eQTM analysis

(Extended Data Fig. 5) and heritability analysis (Extended Data Fig. 6).

DNA methylation data. DNA methylation at over 850,000 methylation sites was measured in 506
kidney samples using Infinium Methylation EPIC BeadChip. SeSAMe (v1.5.3)” was used for pre-
processing and quality control steps including low intensity-based detection calling achieved by
pOOBAH, bleed-through correction in background subtraction, nonlinear dye bias correction,
stricter non-detection calling and control for bisulfite conversion based on C/T-extension probes.
For each sample, residual incomplete bisulfite conversion was quantified using GCT score based
on C/T-extension probes. Leukocyte fraction was estimated by cell composition deconvolution
using a two-component model. Beta values were defined as methylated signal/(methylated signal
+ unmethylated signal). 56,552 probes with missing values in >20% samples were excluded. We

further masked 107,847 probes: probes with non-unique 30bp 3'-subsequence, low mapping



quality (<40), extension base inconsistent with specified color channel (type I) or CpG (type II)
based on mapping, having a SNP in the extension base that causes a color channel switch, non-
CpG sites, probes on chromosomes X, Y and M, and probes whose 5bp 3'-subsequence (including
extension for type IT) overlap with any of the SNPs with global MAF >1%2. Finally, 701,519 CpG
sites (Supplementary Table 9) were used for further analysis for meQTL mapping
(Supplementary Fig. 5), eQTM analysis (Extended Data Fig. 5) and heritability analysis

(Extended Data Fig. 6).

Gene expression data. RNA was isolated using RNeasy mini kit (Qiagen No. 74106) from tubular
compartment following manual microdissection. RNA quality was assessed by the Agilent
Bioanalyzer 2100, and samples with a minimum 100 ng total RNA and RIN scores above 7 were
used. RNA-Seq libraries were generated from total RNA with polyA+ selection of mRNA using
the TruSeq RNA Sample Prep Kit (Illumina, San Diego, CA). After trimming, low-quality bases
using Trim-galore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), RNA-seq
reads were aligned to the human genome (hg19) using STAR (v2.4.1d)° based on GENCODE v19
annotations'®. RSEM (v1.3.1)!! was used to quantify gene-level read counts which were further
normalized across samples using edgeR (v3.32.1)!2. Gene expression levels were estimated as
transcripts per million (TPM), and only genes with at least 0.1 TPM in at least 20% of the samples
were used for further analysis. CIBERSORTx!3 was used to estimate cell fractions for each tubular
sample, using single cell RNA-seq data a reference expression matrix '4. The expression data were
used for eQTM analysis (Supplementary Fig. 11), heritability analysis (Extended Data Fig. 6)

and gene expression analysis (Supplementary Fig. 10,11,14).



Human kidney single nucleus ATAC seq (snATAC-seq). Six fresh human kidneys were collected
after surgical nephrectomies as described above in the “Sample procurement” section
(Supplementary Table 15). Single nucleus ATAC-seq libraries were generated using the
Chromium Single Cell ATAC Library & Gel Bead Kit according to manufacturer’s manual. After
quality control, the library was sequenced on an Illumina HiSeq 2x50 paired-end kits, resulting a
dataset contained 61,440 high quality cells. Reads were aligned to human genome (hg19) with
SnapATAC (v2.0)!°. After quality control and peak calling, a cell-gene activity score matrix was
built by integrating all fragments overlapping with gene transcripts (in GENCODE v19
annotations)!?. Cluster annotation was performed using a published list of cell-type marker genes!®,
and 13 main clusters were identified (Proximal tubule segment 1, Proximal tubule segment 2,
Proximal tubule segment 3, Loop of Henle, Distal convoluted tubule, Collecting duct principal cell,
Collecting duct intercalated cell, Podocyte, Endothelial, Stroma, Immune, Lymph cell and injured
proximal tubule). The injured proximal tubule cells were not included in further analysis due to its
potential disease status. For each of remained 12 clusters (57,262 cells), we identified cell type-
specific differentially accessible regions (DARs) by one-sided Fisher’s exact test between a given
cell type and each of the other cell types for each of 410,994 peaks!’. Peaks with FDR < 0.05 and
fold change > 1 in at least half of pairwise comparisons were defined as cell type specific DARs,
thus allowing inclusion of DARs shared by closely related cell types (the three segments of
proximal tubules). For species conservation analysis, mouse kidney snATAC-seq data were
obtained from GEO with accession number GSE157079'%. Mouse kidney scRNA-seq data were
obtained from GEO with accession number GSE107585'¢ and cell type-specific expressed genes
were identified as genes with cell type expression specificity weight > 0 quantified by CELLEX

(v1.2.1)!°.



GWAS independent loci comparison with previous studies

In particular, we compared independent loci identified in this study with 424 eGFRcrea GWAS
loci defined by Stanzick et al. using a window-based method based on 1,201,909 cross-ancestry
individuals?®®. Given the differences in locus definition, we applied both our clumping-based
method and their window-based method to both datasets and then compared significant loci
(Supplementary Fig. 1). Further, we identified novel independent signals by comparing with 634
independent signals defined by Stanzick et al. using approximate conditional analyses in 1,004,040
European individuals*® (Supplementary Fig. 2). To explore the contribution of common variants
and rare variants to kidney function, we compared the independent loci with creatinine-associated
exome rare variants identified based on exome-sequencing data (n = 454,787 UK Biobank study
participants)?! or whole-exome imputed SNP-arrays (n = 487,409 UK Biobank study

participants)?? (Supplementary Fig. 3).

Cis-eQTL meta-analysis

To obtain a comprehensive cis-eQTL map, we performed a meta-analysis based on the eQTL
summary statistics obtained from four non-overlapping studies; eQTLs by Sheng et al. using
imputed genotypes in 356 tubule samples®, eQTLs by Ko et al. using imputed genotypes in 91
kidney cortex samples from The Cancer Genome Atlas (TCGA)?**, eQTLs from the Genotype-
Tissue Expression (GTEx v8) study using genotypes by whole genome sequencing in 73 kidney
cortex samples?®, and eQTLs from the Nephrotic Syndrome Study Network (NephQTL) using
genotypes by whole genome sequencing in 166 tubulointerstitial samples®® (see details in
Supplementary Table 3). Four eQTL datasets were pooled by fixed effects inverse-variance

meta-analysis with METAL?’, with genomic control correction for each input study (genomic



control parameter 1.132 for Sheng et al.’s eQTLs, 1.110 for Ko et al.’s eQTLs, 1.050 for GTEx
eQTLs and 1.064 for NephQTL eQTLs, respectively) and assessment of between-study
heterogeneity with the Cochran’s Q-test and F° statistic. After meta-analysis of 281,045,539
associations among 686 individual meta-analysis (72% are of European ancestry), 201,627,059
associations with a MAF > 0.05 in European population based on 1,000 Genomes phase 3
European samples (n = 503) were retained. Association summary statistics were canonicalized to
make sure effect size was always reported with respect to the alternate allele as above. To define
eGenes, we used the Storey approach to calculate q values?® for all associations and q value (<
0.01) was used to identify significant eGenes. The associations from a single study and multiple
studies with between-study heterogeneity (Cochran’s Q-test HetISq > 50 or F statistic HetPVal <
0.05) were selected as significant eQTLs only when they passed significance level (¢ < 0.001) in
the meta-analysis and have been identified as significant eQTLs in at least one original study. In
total, we identified 10,430 eGenes and 1,222,250 significant SNP-gene pairs (Supplementary
Table 4). Novel eGenes were determined if they were not included in any of eGene lists in six

reference studies?3-2629-30,

To further define kidney-specific eGenes, meta-analysis of multiple-tissue eQTL was performed
on 917,902 SNP-gene pairs which were significant in kidney and available in more than 80% of
eQTL datasets mapped in 48 GTEx (v8) non-kidney tissues®. For each SNP-gene pair, the
posterior probability that an eQTL effect exists in a given tissue (called m value) was calculated
using a random effects model in METASOFT (v2.0.1)*!, and high-confidence eQTL was
discovered by a significance cutoff of m > 0.9. Kidney-specific eQTLs were defined as having m >

0.9 in fewer than five tissues including kidney. Further, we performed enrichment analysis of
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kidney-specific eQTL SNPs on GWAS hits of 35 blood and urine biomarkers (including eGFRcrea)
in the UK Biobank (n = 363,228 individuals)*?. For each GWAS trait, significant variants were
determined by genome-wide cutoff p < 5x107®, and number of variants overlapped with kidney-
specific eQTL variants and non-kidney-specific eQTL variants were counted, respectively. y? test

was performed to calculate enrichment significance.

Data processing for Cis-meQTL mapping

Sample filtering for meQTL analysis. From 506 samples with DNA methylation, 488 samples had
high quality genotype data (Supplementary Table 8). To exclude outliers in the methylation data,
we performed Mahalanobis distance measurement using R package ClassDiscovery (v3.3.13)3.
Briefly, methylation based PCA analysis were conducted by SamplePCA function, and then
Mahalanobis distance of each sample from the center of the two-dimensional principal component
space and associated chi-squared p-value were computed by function mahalanobisQC. 45 samples
with chi-squared test p < 0.05 were identified as outliers and excluded (Supplementary Table 9).
In total, 443 kidney samples (78.6% are of European ancestry) with both DNA methylation and

genotype data remained for further analysis.

Variant filtering for meQTL analysis. We extracted imputed genotypes for 443 samples and
performed quality control to exclude variants, including imputation confidence score INFO < 0.4
(estimated by SNPTEST v2.3.0%%), MAF < 5%, Hardy-Weinberg equilibrium p < 1x107%, missing
rate < 95% for best-estimated genotypes at posterior probability > 0.9, indels with a length > 51
bp, and duplicate variants by position (Supplementary Table 8). Finally, 5,743,754 variants with

imputed genotypes remained for the analysis. In addition, genotype based PCA analysis was



conducted again using the final set of kidney samples, and then the first five PCs were used as
covariates. SNP matrix with dosages for alternative allele counts was generated as an input in cis-

meQTL mapping.

PEER factor estimation for meQTL analysis. PEER factors were estimated using PEER (v1.3)
based on DNA methylation with general covariates. The associations between 80 PEER factors
and known clinical and demographics variables are shown in Supplementary Fig. 5a. We
optimized the number of used PEER factors to identify the most SNP-CpG pairs on chromosome

1 (Supplementary Fig. Sb).

Kidney-specific meQTLs

To identify kidney-specific meQTLs, we obtained meQTL summary results from whole blood (n
=473)% and skeletal muscle samples (n=265)*". METASOFT (v2.0.1)*! was applied to 5,613,318
SNP-CpG pairs that were available in all three datasets and significant in at least one dataset based
on the nominal p thresholds above. For each SNP-CpG pair, the posterior probability that an
meQTL effect exists in each study (m-value) was calculated. After excluding meQTLs in the MHC
region, high-confidence tissue-specific meQTLs were identified for each study using a cutoff m-
value > 0.9. To explore the function of tissue-specific mCpGs, we performed enrichment analysis
for enhancers (estimated using histone modifications in human kidney, blood CD3+ cells and
skeletal muscle), known transcription factor motifs and kidney cell type-specific open chromatin
regions. Further, we performed enrichment analysis of kidney-specific meQTL SNPs on GWAS
hits of 35 blood and urine biomarkers (including eGFRcrea) in the UK Biobank (n = 363,228
)2

individuals)’*. For each GWAS trait, significant variants were determined by genome-wide cutoff



p <5x10%, and the number of variants overlapping with kidney-specific meQTL variants and non-
kidney-specific meQTL variants were counted. y? test was performed to calculate enrichment

significance.

Cis-eQTM associations mapping and analysis

To identify associations between methylation of CpG sites and expression of genes within a £+1Mb
window of the queried gene TSS, expression quantitative trait methylation (eQTM) analysis was
performed using a linear regression model implemented in the MatrixeQTL R package®®. We

analyzed 414 human kidney samples used in the meQTL analysis and with available gene
expression data by RNA-seq. We considered the linear model ¥ = Bn + B4M + Ta + & where ¥
is the inverse normalized gene expression TPM values, M the inverse normalized CpG

methylation values, and T the covariates. We examined and compared the following three models
containing: no covariates, general covariates and PEER factors. General covariates included
sample collection site, age, sex, top five genetic PCs, incomplete bisulfite conversion, sample plate,
sentrix position, RNA integrity number, RNA-seq batch, and RNA-seq read types (paired-end or
single-read sequencing). PEER factors were estimated using PEER R package® with general
covariates based on CpG methylation and gene expression, respectively. The associations between
PEER factors and known clinical variables were examined by Spearman’s rank correlation. For
each PEER factor-based model, we included general covariates and equal numbers (1-10, 15, 20,
25 and 30) of CpG methylation PEER factors and gene expression PEER factors®’. For each model,
significant CpG-gene associations were defined based on a global FDR < 0.05 to correct for
multiple testing. The final eQTM model used general covariates and five PEER factors since the

eQTM discovery rate changed little after correcting for more PEER factors (Extended Data Fig.
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5b). To examine the robustness of the kidney eQTM association, we calculated the effect size
correlation using publicly available eQTM associations identified in skeletal muscle®’, placenta’®,

and primary monocytes*.

Functional annotation

Adult human kidney histone modifications (H3K4mel, H3K4me3, H3K9me3, H3K9ac, H3K27ac,
H3K36me3) by ChIP-seq were downloaded from GEO (GSM670025, GSM621648, GSM621651,
GSM772811, GSM1112806, GSM621634 and GSM621638). Chromatin states for human adult
kidneys were generated using ChromHMM (v1.17)*!, by training a 15-state model to capture all
the key interactions between the chromatin marks. We also downloaded chromatin states for 127

tissues or cell types from the Roadmap epigenomics project*?

. Transcription factor enrichment of
meQTL CpGs was performed using HOMER (v4.10.3)*. Functional enrichment analysis was
performed using DAVID Bioinformatics Resources (v6.8)* for genes and Genomic Regions
Enrichment of Annotations Tool (GREAT v4.0.4)* for genome regions. Protein-protein
association network was generated using STRING database (v11.0)*. Bedtools (v2.29.2)* was
used to process overlapping regions and deeptools (v3.5.0)* for quantification and profile plot of

histone modifications. Drug-Gene interactions were identified using the Drug Gene Interaction

Database (DGIdb v4.2.0)%.

GWAS summary statistics data for GWAS heritability analysis
Summary statistic data of kidney function related GWAS traits, including eGFR based on serum
creatinine (eGFRcrea), eGFR based on cystatin C (eGFRcys), and blood urea nitrogen (BUN),

were collected from CKDGen Consortium (https://ckdgen.imbi.uni-freiburg.de/)’*>!, the VA



Million Veteran Program (MVP)*? and Pan-UK Biobank (https://pan.ukbb.broadinstitute.org/).
Summary statistics were converted to the sumstats format using the munge sumstats.py program
included with LDSC (v1.0.1)>. We also obtained independent non-kidney function related traits
based on UKBB GWAS summary statistic data in sumstats format from the Alkes Price lab
(https://alkesgroup.broadinstitute.org/LDSCORE/independent sumstats/)**. Totally, 34 GWAS
traits (including six kidney function traits) with sample size larger than 200,000 were considered

for further analysis (Supplementary Table 14).

Validation of GWAS heritability mediated by DNA methylation and gene expression

To validate the findings based on multi-ancestry datasets, we obtained individual-level genotype,
methylation, and expression data for 323 human kidney samples of European-ancestry from 414
multi-ancestry samples used above. MESC was applied to these data to estimate methylation-
mediated heritability and expression-mediated heritability for each of three kidney function traits
of the European-ancestry GWAS, including eGFRcrea (N=401,867 European individuals from
UKBB), eGFRcys (N=402,043 European individuals from UKBB) and BUN (N=243,029
European individuals from CKDGen)>. LD matrix was estimated using 503 European ancestry
samples from the 1000 genome Phase 3 as matching reference LD panel from the UKBB was not

publicly available.

To test the effect of sample sizes, samples were randomly selected from the 414 kidneys with
individual-level genotypes, methylation, and expression data to estimate methylation- and
expression-mediated heritability for eGFRcrea GWAS trait (N=421,531 individuals across

multiple ancestries from UKBB). We also performed down sampling analysis based on randomly



selected European 323 kidney samples to estimate methylation-mediated heritability and
expression-mediated heritability for eGFRcrea GWAS trait (N=401,867 individuals of European-

ancestry from UKBB).

GWAS heritability enrichment analysis

To prioritize kidney disease relevant CpG sets, we performed methylation-mediated heritability

h? med~m enrichment estimates for regulatory elements (determined by chromatin states in human
kidney) across 34 GWAS traits. In brief, CpG sites used for kidney meQTL mapping was
categorized by adult human kidney chromatin states. For each categorized CpG set, methylation

scores were estimated based on individual-level genotypes and methylation data obtained from
414 kidney samples, and then used to further estimate h? med~m for the corresponding CpG set
based on GWAS summary statistics. Methylation-mediated heritability h? med~m enrichment was
defined as the proportion of h? med~m in a given CpG set divided by the proportion of CpGs in
corresponding CpG set. P values for h? mea~m enrichment was calculated by a two-tailed z test

using jackknife standard errors for h? mea~m enrichment. To adjust p values for multiple testing
(374 CpG set-GWAS trait pairs =11 chromatin state CpG sets x 34 GWAS traits), q values were

calculated using Storey approach?®.

To understand whether "> med~m enrichment is restricted to kidney enhancers, we combined adult
kidney enhancers and enhancers from 127 additional samples from the Roadmap epigenomics

project®?. For each of 128 tissue/cell type, enhancer categorized CpG set was used to estimate

kidney methylation-mediated heritability h? mea~m enrichment and p value for each of the 34



GWAS traits using individual-level genotypes and methylation data from 414 kidney samples. ¢
values were calculated using Storey approach from p values for 4,352 CpG set-GWAS trait pairs

(128 enhancer CpG sets x 34 GWAS traits). To explore the enrichment of heritability mediated by

tissue-specific methylation, similar h? mea~m enrichment analysis was also applied to individual-

level genotypes and methylation data from 473 blood samples for each of the 34 GWAS traits.

To explore the cell type-specificity of h? med~m enrichment, cell type-specific differentiall
ype-sp y

accessible regions identified from human kidney snATAC-seq data were used to annotate CpG

sites. For each cell type CpG set, methylation-mediated heritability h? med~m enrichment and )4
value for each of the 34 GWAS traits were estimated using individual-level genotypes and
methylation data from 414 kidney samples. g values were calculated using Storey approach from

p values for 408 CpG set-GWAS trait pairs (12 cell type CpG sets x 34 GWAS traits).

To further explore kidney disease causing cells, we performed single cell GWAS trait enrichment
using gchromVAR (v0.3.2)%. To this end, statistically fine-mapped regions for 94 complex traits
(sample size up to 361,194 UK Biobank individuals) were downloaded from
https://www.finucanelab.org/data®. For each trait, the causal SNPs included in the 95% credible
sets by SusieR (https://stephenslab.github.io/susieR) and identified as kidney meQTLs were
selected as the causal SNPs driving both CpG methylation and phenotype variations. To reduce
bias, only 63 traits with more than 2,000 causal SNPs were included into the analysis. The bias-
corrected enrichment statistic for 63 traits and a set of 57,262 snATAC-seq cells with 410,994
peaks was calculated by gchromV AR with input of per-variant posterior-probabilities and the peak

by cell count matrix of open chromatin. Briefly, the expected number of fragments per peak per



cell is computed as the proportion of all fragments across all samples mapping to the specific peaks
multiplied by the total number of fragments in peaks for that cell. Similarly, the expected number
of fragments weighted by the fine-mapped variant posterior probabilities was calculated for per
trait per cell. Then the raw weighted accessibility deviation was calculated for each cell and trait
and further 50 sets of background-weighted accessibility deviations matrix to correct for technical
confounders (differential PCR amplification or variable Tn5 tagmentation conditions). For each
cell and trait, the bias-corrected z score was calculated, and natural logarithm of z score (In) was
used to represent the enrichment statistic. For each trait, significance of enrichment z score (In)
variance among all cell types was determined by the Kruskal-Wallis test, and mean z score in each

cell type was calculated for heatmap visualization.

Bayesian colocalization analysis

We performed Bayesian colocalization analysis to identify the variants where the genotype effect
on kidney function, methylation and gene expression were shared. In brief, variants in the MHC
region were excluded first. Significant eGFRcrea GWAS variants identified above were defined
as leading variants. To estimate posterior probability that a leading variant is associated with two
traits (GWAS and meQTL, GWAS and eQTL, meQTL and eQTL), we extracted available variants
within 100kb search window for each leading variant. In particular, the search window was
narrowed (100kb / number of independent signals) for 88 GWAS loci with multiple independent
signals (fine-mapped in 1 million European ancestry individuals?®), to avoid violation to the
assumption of that there is one causal variant per signal. Bayesian colocalization analysis was
implemented using R package coloc (v5.1.0)°7 with default parameters (p1=1x104, p»=1x10* and

pi12 =1x107) and input of summary statistics for eGFRcrea GWAS (p value, MAF, sample size),



meQTL (effect size and squared standard error) and eQTL (effect size and squared standard error).
In the coloc results, H4 represents the posterior probability that both traits are associated and shared
the same causal variants. H4 > 0.8 was used as the threshold to determine colocalization. To further
refine the variants associated with all three traits (GWAS and meQTL and eQTL), we performed
Bayesian multiple-trait-colocalization (moloc) analysis using R package moloc (v0.1.0)°® with
default parameters prior var = ¢(0.01, 0.1, 0.5) and priors = ¢(1x104, 1x10, 1x1077). In moloc
results, PPA.abc represents the posterior probability that three traits are associated with each other
and share the same variant. PPA.abc > 0.8 was considered evidence of colocalization among all

three traits.

Summary-data-based Mendelian Randomization

We performed summary-data-based mendelian randomization (SMR) analysis in three
configurations, eGFRcrea GWAS and kidney meQTL, eGFRcrea GWAS and kidney eQTL,
kidney meQTL and kidney eQTL, using package SMR (v1.03)>°¢, and used heterogeneity in
dependent instruments (HEIDI) to distinguish pleiotropy from linkage. To prepare the input data,
GWAS effect sizes and standard errors were estimated from z statistics of the meta-analysis
following a method proposed by Zhu et al.>’, and meQTL and eQTL summary data in binary
format (BESD) was converted from original summary statistics following SMR data
management>”,

First, we applied SMR&HEIDI approach to summary statistics data of the eGFRcrea GWAS and
meQTL using “--extract-target-snp-probe” to specify SNP-CpG colocalization pairs (H4>0.8)

identified above. To address issues around multiple testing, Bonferroni threshold (1.52x107, i.e.



0.05/3,286) was defined based on the number (3,286) of tested CpGs, and used to identify the
CpGs whose methylation levels are associated with eGFRcrea GWAS trait. To distinguish
pleiotropy from linkage, we used a p value threshold of 0.01 for the HEIDI test, without correcting
for multiple tests®. Similarly, we applied SMR&HEIDI approach to test the colocalizations
(H4>0.8) between GWAS and eQTL using “--extract-target-snp-probe” to specify SNP-gene
colocalization pairs. Bonferroni threshold (1.52x10, i.e. 0.05/330) was determined based on the
number (330) of tested genes, and used to identify the genes whose expression levels are associated
with eGFRcrea GWAS trait. The SMR&HEIDI approach was also applied to test the
colocalizations (H4>0.8) between meQTL and eQTL, using meQTL summary data as the exposure
and eQTL summary data as the outcome. Bonferroni threshold (9.98x10%, i.e. 0.05/5,008) was
determined based on the number (5,008) of CpG~gene pairs was used to identify the significant

CpG~gene pairs in which CpG methylation levels are associated with gene expression levels.

Validation of phenome-wide association study of SLC47A1

As an independent validation, we performed PheWAS analysis based on whole exome sequencing
dataset of 24,016 individuals in the BioMe Biobank
(https://icahn.mssm.edu/research/ipm/programs/biome-biobank), with a loss-of-function variant
annotation using Loss-Of-Function Transcript Effect Estimator (LOFTEE). Phenotypes for each
individual were determined by mapping ICD-10 codes to Phecodes®!, and then phenotypic cases
and controls were defined for each disease phenotype using the same method for UKBB dataset
described above. 262 phenotypes with at least 300 cases, including renal dialysis (514 cases and
23,502), were included for the PheWAS analysis. Association analysis between each disease

phenotype and gene burden of SLC47A41 was implemented using SAIGE (version 0.35)%? with
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covariates including sex, age, and the first 10 principal components of genetic ancestry. Finally,
we also conducted PheWAS analysis for a single variant (rs111653425), which is missense variant

in SLC47A41, in the UKBB and BioMe datasets.

Mouse studies

Slc47al knock out mice was generated by the Yan Shu lab at the University of Maryland
Baltimore®®. All mice used in this study were housed under controlled conditions (12 h/12 h
dark/light cycle, 21 + 2 °C, humidity 60 + 10%) and had free access to food and water. Male 8- to
10-week-old mice and littermates were used for the experiments. Freshly prepared cisplatin
(Cayman Chemical; 15663-27-1) protected from light was dissolved in PBS at Img/kg. Mice were
injected with 7mg/kg (ip) cisplatin weekly for 4 weeks. Kidneys were harvested and preserved at
-80 degrees for RNA and protein and in 10% formalin for histology. All experimental protocols
were approved by the Institutional Animal Care and Use Committee (IACUC) of the School of
Pharmacy, University of Maryland Baltimore. All procedures were carried out in accordance with

NIH guidelines for animal experimentation.

Real time Quantitative PCR

Mouse kidneys were homogenized, and total RNA was extracted using the Trizol method,
according to manufacturer’s protocol (Thermo fisher). Quality and concentration of extracted
RNA was examined using nanodrop. cDNA was generated using Reverse Transcription Kit
(Applied Biosystems) according to the manufacturer’s protocol. Real time quantitative PCR was
performed using Cyber Green Master Mix Reagents (Thermo Fisher) with ViiA 7 System (Life

Technologies) instrument. Primer sequences are listed in Supplementary Table 28.



Histological analysis

Kidneys were fixed in 10% neutral formalin and samples were embedded in paraffin. Kidney
sections were stained with H&E and Sirius Red according to manufacturer’s protocol
(Polysciences, Inc 24901). Tubule injury (hydropic degeneration, hyaline casts, cytoplasmic
vacuolization, loss of the brush border, tubular lumen dilation, and necrosis of tubular cells) were
scored semi-quantitatively in H&E-stained images. We used the following scoring system, Score
0: no tubular injury; Score 1: <10% of tubules injured; Score 2: 10-25% of tubules injured; Score
3: 25-50% of tubules injured; Score 4: 50-74% of tubules injured; Score 5: >75% of tubules
injured. Renal fibrosis was evaluated by Sirius red. Five images were randomly taken from each

mouse kidney and quantified by image J software (v1.53)%,

Immunoblot

Whole kidney lysates were made in SDS buffer (187.5 mM Tris-HCI pH 6.8, 6% SDS, 30%
glycerol and 0.03%bromophenol blue adding DTT (Dithiothreitol). Samples were sonicated using
Bioruptor UCD-300 for 1 minute with high power and boiled at 95 degrees for 5 minutes. Proteins
were separated by SDS-PAGE transferred onto 0.2 pm pore size PVDF membrane. After blocking
with 5% non-fat dry milk, membranes were incubated with anti-RIPK3 (Millipore sigma;
PRS2283;1:1000), anti-NLRP3 (cell signaling; 15101; 1:1000), anti-aSMA (Sigma; A2547;
1:1000) anti-GAPDH antibody (CST, 1:1000) at 4 degrees overnight. Membranes were incubated
with appropriate secondary antibodies conjugated with HRP, and signals were detected using ECL

Western Blotting Substrate (Thermo Fisher). For the quantification, Image J software was used®*.
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Supplementary Fig. 1. Comparison of independent loci defined by meta-analysis eGFRcrea GWAS
of this study and prior CKDGen study.
a. Identification of independent GWAS loci using clumping-based and window-based methods,
respectively, based on summary statistics of eGFRcrea meta-analysis GWAS (N = 1,508,659 individuals

of trans-ancestry) mapped in this study. Window-based method was used by Stanzick et al.
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b. Identification of independent loci using clumping-based and window-based methods, respectively, based
on summary statistics of eGFRcrea meta-analysis GWAS (N = 1,201,909 individuals of trans-ancestry)
obtained from Stanzick et al.

¢. Venn plot for the number of significant variants (GWAS two-sided p < 5x10°®) associated with eGFRcrea
identified by this study and Stanzick et al.

d. Shared and specific GWAS loci defined in two datasets using clumping-based method. In each dataset,
the number of independent loci overlapping and non-overlapping from the other dataset was counted.

e. Shared and specific GWAS loci defined in two datasets using window-based method. In each dataset,
the number of independent loci overlapping and non-overlapping the other dataset was counted.

f. An example of an independent locus (chr10:64,496,603-65,788,921) only identified in the current GWAS.
The top track shows nearby genes including NRBF2 which was prioritized as target gene for this locus by
priority score of seven in this study. The GWAS tracks shows the significant variants (p < 5x10®) at this
locus defined by clumping-based and window-based methods, in this study and Stanzick et al., followed by
tracks showing multiple kidney omics including meQTLs, eQTLs, cell type-specific chromatin accessibility
in human kidneys by single-nucleus ATAC-seq (snATAC-seq), human kidney histone modifications
(H3K4me3, H3k27ac, H3K4mel) by ChIP-seq and chromatin states based on histone modifications. PT-
S1-3; proximal tubule S1-3 segment, LOH, loop of Henle, DCT, distal convoluted tubule, PC, principal cell
of collecting duct, IC, intercalated cell of collecting duct, endo; endothelial cells, immune: immune cell and
stroma.

g. LocusZoom view of an independent locus (chr10:64,496,603-65,788,921) using summary statistics in
this study or Stanzick et al. Y-axis is strength of association -log10(two-sided p value from GWAS studies).
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b. The summary statistics for variants in the 376 novel independent loci were extracted from the two
datasets and common variants were used for the scatter plot. X-axis is the significance of common variants
in this study, and y-axis is significance of common variants in the study by Stanzick et al. Correlation
coefficient was calculated using Spearman's 740 (R) statistic and p value was calculated using asymptotic ¢
approximation.

c. LocusZoom view and functional annotation of shared independent loci/signals (chr14:92,671,432-
94,507,626). For each independent locus, LocusZoom was plotted using summary statistics of meta-
analysis eGFRcrea by this study, and the top variant was highlighted. Y-axis is strength of association -
log10(two-sided p value from GWAS meta-analysis z-statistic). Three of the four independent loci were
prioritized to different target genes (rs1075472 targeting RIN3, rs12588550 targeting MOAPI, rs12883201
targeting /TPK1, and 1576446292 targeting UNC79) in later analyses of this study.

d. LocusZoom view and functional annotation of multiple independent loci only separated by clumping-
based method (chr14:92,671,432-94,507,626). For each independent locus, LocusZoom was plotted using
summary statistics of meta-analysis eGFRcrea by this study, and top variant was highlighted. Y-axis is
strength of association -logl0(two-sided p value from GWAS meta-analysis z-statistic). Two different
target genes (rs1042752 targeting COLCA2, and rs10891290 targeting DIXDC1) were prioritized in later
analysis of this study (priority score > 3).
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a Creatinine-associated exome rare variants and eGFR GWAS independent loci

39 rare variants associated with creatinine
based on exome-sequencing data
(N=454,787 individuals) by Backman et al.
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C 9 rare variants associated with creatinine identified by both Backman et al. and Barton et al.

*: LD between WES variant and GWAS variant was calculated using Ldpair (https://ldlink.nci.nih.gov/?tab=Idpair) based on European individuals of 1000G reference panel.

NA: Rare variant is not available in 1000G reference panel.

Creatinine-associated rare variant identified by both WES studies The cl eGFR GWAS locus LD (R?)
between
WES
variant and
P.value P.value Effect Lead Distance GWS
RSID Chr__ Position Ref Alt MAF Backman Barton Gene type Chr__ Start End variant MAF _ P.value (bp) variant *
= rs8177505 chré6 160679656 A AT 0.0013 2.10E-63 2.60E-73 SLC22A2 frameshift —chr6 160363006 161086716 rs3127575 0.1155 9.00E-119 0 0.0151
: rs80308492 chr6 43267663 G A 0.0009 4.82E-33 6.80E-35 SLC22A7 missense chr6 43148051 43680896 rs113990079 0.0782 2.10E-30 0 0.0001
I rs141572615 chr17 19459205 T A 0.0019 2.04E-19 1.00E-22 SLC47A1 missense chr17 18915262 19612945 rs111653425 0.0113 1.04E-79 0 0
: rs147768037 chr17 19470502 G A 0.0007 6.80E-16 7.20E-11  SLC47A7 missense chr17 18915262 19612945 rs111653425 0.0113 1.04E-79 0 NA|T
I rs149617956 chr3 70014091 G A 0.0041 1.74E-11  1.90E-11  MITF missense chr3 69774170 70200450 rs34297927 0.3975 4.62E-12 0 0.0014
: rs201194276 chr19 36332622 C T 0.0004 9.60E-12 3.60E-12 NPHST  missense chr19 36342211 37024018 rs3814995 0.3401 8.84E-15 9,590 NA
: rs150841256 chr9 140127380 G A 0.0005 2.51E-12 3.70E-15 SLC34A3 splice_donor chr9 140085029 140105550 rs6606564  0.1548 1.40E-08 21,830 NA
| rs36095412 chr1 20141060 G A 0.0010 1.59E-23 1.30E-20 RNF186 stop_gained chr1 19786018 19792553 rs7515104 0.0368 9.01E-09 348,507 NA
: rs1800546 chr9 104189856 C G 0.0055 1.61E-13 1.80E-10 ALDOB  missense chr9 103331404 103356112 rs1226591 0.3991 2.09E-11 833,744
1
1
1
1
1
1
1

----------------------------- - chr6:160,535,545-160,829,190

chr17:18,627,316-20,291,092 < === == == === !
1,6

d 1,226 kb 663 kb
o 1602000 160,400k 160000 1608000 161000k waok| b 1m0k o0k a0k 1040k 160K 180K 20000k 20200k
| 1 1 1 1 ] 1} 1 1 1 1 1 1 1 1 1 1 1 1 ] 1 1 1
1L
Genel -+ HiHEm  H H— [IHEEH BH JERE CHE-H M-I H ] —HEH ] 14HH
sob2 MAST IGF2R  SLC22A2 LPAL2 LPA PLG SLC5A10 EPN2  SLC47A1 ULK2 SPECCT
o 9| signif . I UM l OO O e
i < | Significant variants), .oms  aosssso miossse meozur asisess mresssrers noaerrsss mazsaoss 138749087 17232220 raodss2 33207 57222403
% z Loci by clumpin -
8 o y ping 5184089815 5662138 153127575 rs9295131 5111653425 5166840
£ ) 14 "
£ O Rare variants by Backman
=W
[ ; Rare variants by Barton ! I
S 1s8177505 rs141572615
o-a = A
Kidney meQTL i BEA A A . oI —— .
082
Kidney eQTL P S N—— el
> PTS1 . . ..1 n a 1 1 ST L o
2 PT-S2| , 411l =i N L L S
2 PT-S3|__ 11.1 Lasoal. I " A L L u L
- LOH L1 Nl 1 L
- DCT| L L oy Ll e 1
& PC L1 i Lok L 1
P IC| PV 1 L L
2 Podol Ll L
= Endo Bl f N P P L
E Immune| Ial] o
» Stroma| 1 L. L .
©-25 ©-25
Hakame3| | ||| L Lo i & PR I Lol VT T
0-25 ©-25
H3K27ac
= oo
H3K4me1 e I T ) gy Wilasdiszsdil Gitilie: oo s
; i 1R R " 1 = s N e T T S I L
Kidney HMM state prPCWk 15 Quies 7 Enh 7 Enh 7 Enh 7 Enh 9 Het 15 Quie] [Quies 7 Enh 1.TssA 7._Enh 15 Quies 4 Tx 15 Quies 10_TssBiv

Supplementary Fig. 3. The overlap of exome rare variants associated with creatinine-levels and

meta-analysis eGFRcrea GWAS loci.

a. Number of creatinine-associated exome rare variants overlapping with independent loci defined by meta-
analysis eGFRcrea GWAS. Creatinine-associated exome rare variants were obtained from two whole-
exome association studies by Backman et al. and Barton et al. For each creatinine-associated exome rare
variant, the overlapping or the closest GWAS loci were identified.
b. Number of eGFRcrea GWAS independent loci overlapping with creatinine-associated exome rare
variants identified by Backman et al. or Barton et al.
c. Nine rare variants associated with creatinine identified by both Backman et al. and Barton et al.

d. Two examples of genomic loci where both rare variants and common variants were associated with

kidney function markers.
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eQTL genes shared with previously published studies

This study

This study This study
(N=686

(N=686 (N=686

Qiu et al.
(N=121)
2

Sheng et al.
(N=356)
05

This study

This study This study
(N=686 (N=686 (N=686
Eales et al. NephQTL
(N=430) (N=166)
7 8

Supplementary Fig. 4. Comparison of eGenes identified by meta-analysis kidney eQTL of this study
and previous studies. Reported eGenes were obtained from each previous study and compared with
eGenes identified by meta-analysis kidney eQTL of this study. N represents the number of individuals

used for eQTL mapping in each study.
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Supplementary Fig. 5. PEER factors estimation and meQTL mapping.
a. Correlation of PEER factors and clinal, technical variables, estimated cell fraction, and genotyping PCA.
Heatmap of Spearman’s rank correlation coefficient (rho) was calculated and shown in blue (negative
correlation) and red (positive correlation).
b. The effect of the number of included PEER factor on the meQTL discovery rate. The number of identified
features (CpG~SNP pairs, CpGs, SNPs on chromosome 1) (y-axis) vs. the number of PEER factors (x-axis)

included in the linear regression model.
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c. The relationship between significant meQTLs and the distance between SNPs and mCpGs.

d. The strength of association (y-axis) (-logl0(p value calculated using linear regression meQTL model))
of the best mSNPs (the lead meQTL) decreases with the increasing distance (x-axis) from the CpG site to
transcription start site (TSS) and from the SNP to TSS.
e. Chromatin state (human kidney ChromHMM) based functional annotation of meQTL significant CpGs.
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Supplementary Fig. 6. Comparison of kidney meQTLs identified in this study and prior study.

a. Venn plot of kidney meQTL CpGs identified in this study and a recently published study by Eales et al.
N represents the number of individuals used for eQTL mapping in each study.

b. Correlation of meQTL significance between the two studies. Publicly accessible top variants and their
association with meQTL CpGs were obtained from supplementary table of study by Eales et al., and then
overlapped with meQTLs identified in this study. The shared meQTLs were used for the scatter plot of
meQTL signification (-log10(p)) in this study (x-axis) and Eales et al. (y-axis). Correlation coefficient was
calculated using Spearman's rho (R) statistic and two-sided p value was calculated using asymptotic ¢
approximation.

c. Correlation of meQTL effect sizes between the two studies. Similarly, the shared meQTLs were used for
the scatter plot of effect sizes in this study (x-axis) and Eales et al. Correlation coefficient was calculated
using Spearman's 70 (R) statistic and two-sided p value was calculated using asymptotic ¢ approximation.
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Supplementary Fig. 7. Kidney methylation-mediated heritability enrichment of kidney chromatin
states for GWAS traits.

The x-axis shows the GWAS traits, while the y-axis shows the kidney chromatin states estimated by
ChromHMM. Gray; non-significant. White to red indicates 4.4 enrichment (nominal two-sided p < 0.05
calculated by MESC). Asterisk indicates /%, enrichment passing FDR q < 0.05 (accounting for 374 tests
for 11 chromatin state CpG sets and 34 GWAS traits).
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by MESC). Asterisk indicates /47,,.s enrichment passing FDR q < 0.05 (accounting for 408 tests for 12 cell
type CpG sets and 34 GWAS traits).

b. Single cell GWAS enrichment in human kidney cell type-specific accessible regions by gchromVAR.
The x-axis shows the 63 fine-mapped GWAS traits, the y-axis the cell types clustered in the snATAC-seq.
For each trait, gchromVAR was used to estimate the enrichment (z-score) of fine-mapped loci to the open
chromatin peaks in each cell from the snATAC-seq. Then In transformed z-scores of cells in the same
cluster of given cell type was averaged for the heatmap plot. The single cell GWAS enrichment z-score
mean values in each cell type for each trait is represented in color blue (low) to red (high). The two-sided
p value was calculated by Kruskal-Wallis test.

¢. Number of genome-wide significant eGFRcrea GWAS SNPs localized in cell type-specific accessible
regions. This figure was plotted using R package UpSetR (https://github.com/hms-dbmi/UpSetR/) to show
the number of genome-wide significant eGFRcrea GWAS SNPs overlapping with cell type-specific
differentially accessible regions (DARs). As some cell type specific DARs are shared between cells,
therefore a SNP may be overlapped with DARs identified in different cells. Y-axis is the number of SNPs
overlapped with DARs in different cell types (dots connected by black line), while the x-axis lists all
available combinations of cell types.
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Supplementary Fig. 9. Colocalization analysis among eGFRcrea GWAS, kidney meQTL and eQTL.
a. Schematic representation of multiple trait colocalization analysis of eGFRcrea GWAS, meQTL and
eQTL.

b. Number of significant eGFRcrea GWAS variants showing colocalization across eGFRcrea GWAS,
meQTL and eQTL.

c. Fraction of known and novel of colocalization of eGenes for eGFRcrea GWAS and kidney eQTL.

d. Venn plot of colocalization eGenes identified in this study and previous studies.
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e. Number of independent loci and genes showing colocalization between GWAS and eQTL (left panel),
and colocalization among GWAS, meQTL and eQTL (right panel).

f. Protein-protein associations of 236 moloc prioritized genes using the STRING database. The line between
two dots represents the association between two proteins. The thickness indicates interaction score of
associations quantified based on experiments, text mining and functional databases. The size of dot
indicates the expression level of the gene in kidney, the color of dot represents gene family. The protein-
protein interaction (PPI) enrichment p-value was calculated by hypergeometric test. Cytoscape file for this
plot is available at github
(https://github.com/hbliu/Kidney Epi_ Pri/blob/main/Gene_prioritization/Interaction_network of moloc
Genes.cys)
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Supplementary Fig. 10. Contribution of co-expression and multiple GWAS signals to 110 loci with
multiple targe genes.

a. Venn plot of loci prioritized to multiple target genes with co-expression and multiple GWAS signals.

b. Locuszoom of GWAS locus (chr20:32,502,400-34,613,567) with 12 prioritized target genes. Top variant
152076668 was highlighted. Y-axis is strength of association -log10(two-sided p value from GWAS meta-
analysis z-statistic).

c. Co-expression of 12 prioritized target genes at this locus (chr20:32,502,400-34,613,567). For each gene,
the normalized expression (INT transformed TPM) values in 470 kidney samples were used for the
scatterplot (bottom panel). Correlation coefficient was calculated using Spearman's 70 (R) statistic and
two-sided p value was calculated using asymptotic ¢ approximation. Significance of correlation was showed
using “***” if the p-value is < 0.001, “**” if the p-value is < 0.01, “*” if the p-value is < 0.05 and # is FDR
<0.05.
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Supplementary Fig. 11. Regional methylation data and gene expression at the SLC47A41 locus
a. Correlation between local CpG methylation and SLC4741 expression in human kidneys. X-axis shows
normalized methylation, y-axis normalized expression data. Correlation coefficient was calculated using
Spearman's ko (R) statistic and two-sided p value was calculated using asymptotic ¢ approximation.
b. Correlation between local CpG methylation and SLC47A41 expression and kidney functions in human
kidneys. X-axis eGFRcrea (ml/min/1.73m?) or fibrosis (%). Correlation coefficient was calculated using
Spearman's ko (R) statistic and two-sided p value was calculated using asymptotic ¢ approximation.
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Supplementary Fig. 12. Epigenetic annotation of in
SLC47A41 locus

a. LocusZoom plots of GWAS (genotype and eGFRcrea
association, N = 1,508,659), kidney CpG cgl15971010
meQTL (genotype and c¢gl15971010 methylation
association n = 443) and kidney tubule SLC47Al
eQTLs (genotype and SLC47A41 expression association
n = 356). The y axis shows -log10(p value) calculated
from GWAS, meQTL, and eQTL. Epigenetic landscape
of eGFRcrea GWAS significant region in human
kidney samples, including meQTLs, eQTLs, cell type-
specific chromatin accessibility in human kidneys by
single-nucleus ATAC-seq (snATAC-seq), human
kidney histone modifications (H3K4me3, H3k27ac,
H3K4mel) by ChIP-seq, DNA methylation by WGBS,
and RNA sequencing in healthy (normal) and diabetic
kidney disease (DKD) samples. PT-S1-3; proximal
tubule S1-3 segment, LOH, loop of Henle, DCT, distal
convoluted tubule, PC, principal cell of collecting duct,
IC, intercalated cell of collecting duct, endo; endothelial
cells, immune: immune cell and stroma.

b. Chromatin accessibility at the SLC4741 locus in
human kidney analyzed by snATAC-seq. Each dot
represents a cell, dark blue indicates lower and bright
green higher expression.
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loop of Henle; CNT, connecting tubule; DCT,
distal convoluted tubule; PC, principal cell of collecting duct; IC, intercalated cell of collecting duct, Endo,
endothelial cells; Podo, podocytes; Immune, immune cell; NP, nephron progenitors; and stroma.

b. Cell type-specific chromatin accessibility at the Slc47al gene promoter in mouse kidneys (PO and 8
weeks). Each dot represents a cell, with green color indicates accessible and grey not-accessible region in
denoted cells. Proximal tubule cells represented by two clusters: proximal straight tubule (PST), proximal
convoluted tubule (PCT).

c. Cell type specific expression of Slc47al in mouse kidneys (PO and 8 weeks GSE157079). Each dot
represents a cell, dark blue indicates lower and bright green higher expression.
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Supplementary Fig. 14. Expression of SLC4741 and markers of kidney injury, fibrosis, and
inflammation in human kidneys.

From top to bottom (and left to right), the genes are solute carrier family 47 member 1 (SLC47A41), Lipocalin
2 (LCN2), Collagen 1 (COL1A1I), Collagen3 (COL3A41), Vimentin (VIM), Actin alpha 2 (ACTA2),
Chemokine ligand 2 (CCL2), Tumor necrosis factor (7NF), Interleukin 1beta (/L1B), Adhesion G protein-
coupled receptor E1 (ADGRETI), Receptor interacting serine/threonine kinase 3 (RIPK3), Mixed Lineage
Kinase Domain Like Pseudokinase (MLKL), and NLR family pyrin domain containing 3 (NLRP3).

For each gene, the normalized expression (INT transformed TPM) values were used for scatterplot (bottom
panel). Correlation coefficient was calculated using Spearman's 740 (R) statistic and two-sided p value was
calculated using asymptotic ¢ approximation. Significance of correlation was showed using “***” if the p-
value is < 0.001, “**” if the p-value is < 0.01 and “*” if the p-value is < 0.05.
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Supplementary Fig. 15. Validation of eGFRcrea GWAS in SLC47A1 locus using eGFRcys GWAS
and BUN GWAS.

a. Scatter plot of effect sizes between eGFRcrea GWAS (N=1,508,659 individuals) and eGFRcys GWAS
(N=421,714 individuals) in SLC47A1 locus. Significant eGFRcrea GWAS variants passing two-sided p <
5x10® in SLC47A41 locus were used for the plot. Red dots represent validated variants showing nominally
significant (two-sided GWAS p < 0.05) association with eGFRcys in the same effect direction. Correlation
coefficient was calculated using Spearman's tho (R) statistic and two-sided p value was calculated using
asymptotic t approximation.

b. Scatter plot of effect sizes between eGFRcrea GWAS (N=1,508,659 individuals) and BUN GWAS
(N=852,678 individuals) in SLC47A1 locus. Significant eGFRcrea GWAS variants passing two-sided p <
5x10® in SLC47A1 locus were used for plot. Blue dots represent validated variants showing nominally
significant (two-sided GWAS p < 0.05) association with BUN in the opposite effect direction. Correlation
coefficient was calculated using Spearman's tho (R) statistic and two-sided p value was calculated using
asymptotic t approximation.

c. Locuszoom of eGFRcrea GWAS (n = 1,508,659 individuals) and eGFRcys GWAS (n = 421,714
individuals) GWAS in SLC47A1 locus. The top SNP for eGFRcrea GWAS in SLC47A41 locus was
highlighted in two Locuszoom plots.

40



