

A novel *in vitro* tubular model to recapitulate features of distal airways: the bronchioid

Elise Maurat, Katharina Raasch, Alexander M. Leipold, Pauline Henrot, Maeva Zysman, Renaud Prevel, Thomas Trian, Tobias Krammer, Vanessa Bergeron, Matthieu Thumerel ^(D), Pierre Nassoy, Patrick Berger ^(D), Antoine-Emmanuel Saliba, Laetitia Andrique, Gaëlle Recher and Isabelle Dupin ^(D)

GRAPHICAL ABSTRACT Overview of the study: the bronchioid model.

A novel *in vitro* tubular model to recapitulate features of distal airways: the bronchioid

Elise Maurat^{1,2,9}, Katharina Raasch^{1,2,9}, Alexander M. Leipold^{3,7}, Pauline Henrot^{1,2,4}, Maeva Zysman^{1,2,4}, Renaud Prevel^{1,2,4}, Thomas Trian^{1,2}, Tobias Krammer³, Vanessa Bergeron⁵, Matthieu Thumerel ^{1,2,4}, Pierre Nassoy⁶, Patrick Berger ^{1,2,4}, Antoine-Emmanuel Saliba^{3,7}, Laetitia Andrique⁵, Gaëlle Recher⁶ and Isabelle Dupin ^{1,2,8}

¹Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France. ²INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France. ³Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany. ⁴CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de réanimation, Service de chirurgie thoracique, Bordeaux, France. ⁵VoxCell Facility, TBMcore UAR CNRS 3427, INSERM US 005, Univ-Bordeaux, Bordeaux, France. ⁶Laboratoire Photonique, Numérique et Nanosciences, UMR 5298 CNRS, Univ-Bordeaux, Bordeaux, France. ⁷University of Würzburg, Faculty of Medicine, Institute of Molecular Infection Biology (IMIB), Würzburg, Germany. ⁸Institut Universitaire de France (IUF), Paris, France. ⁹Equal contribution as joint first authors.

Corresponding author: Isabelle Dupin (isabelle.dupin@u-bordeaux.fr)

Check for updates	Shareable abstract (@ERSpublications) A novel tubular engineered lung model called a "bronchioid" exhibits mucociliary function and is compatible with the establishment of an air-liquid interface https://bit.ly/3LMdnkx Cite this article as: Maurat E, Raasch K, Leipold AM, <i>et al.</i> A novel <i>in vitro</i> tubular model to recapitulate features of distal airways: the bronchioid. <i>Eur Respir J</i> 2024; 64: 2400562 [DOI: 10.1183/
	13993003.00562-2024]. This extracted version can be shared freely online.
Copyright ©The authors 2024. This version is distributed under the terms of the Creative Commons Attribution Non- Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org This article has an editorial commentary: https://doi.org/10.1183/ 13993003.01531-2024 Received: 9 May 2023 Accepted: 21 July 2024	Abstract Background Airflow limitation is the hallmark of obstructive pulmonary diseases, with the distal airways representing a major site of obstruction. Although numerous <i>in vitro</i> models of bronchi already exist, there is currently no culture system for obstructive diseases that reproduces the architecture and function of small airways. Here, we aimed to engineer a model of distal airways to overcome the limitations of current culture systems. Methods We developed a so-called bronchioid model by encapsulating human bronchial adult stem cells derived from clinical samples in a tubular scaffold made of alginate gel. <i>Results</i> This template drives the spontaneous self-organisation of epithelial cells into a tubular structure. Fine control of the level of contraction is required to establish a model of the bronchiole, which has a physiologically relevant shape and size. Three-dimensional imaging, gene expression and single-cell RNA-sequencing analysis of bronchioids made of cells from COPD patients. The bronchioid could be infected by rhinovirus. An air-liquid interface was introduced that modulated gene expression. <i>Conclusion</i> Here, we provide a proof of concept of a perfusable bronchioid with proper mucociliary and contractile functions. The key advantages of our approach, such as the air-liquid interface, lumen accessibility, recapitulation of pathological features and possible assessment of clinically relevant end-points, will make our pulmonary organoid-like model a powerful tool for preclinical studies.

