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The version of the Genome Aggregation Database (gnomAD) v3 presented in this manuscript is a 

catalog containing 759,302,267 short nuclear variants (644,267,978 passing stringent variant quality 

control [QC]) based on whole-genome sequencing of 76,156 samples (passing QC from an initial collection 

of 153,030 samples) mapped to the GRCh38 build of the human reference genome. In this release, we 

have included more than 3,000 new samples specifically chosen to increase the ancestral diversity of the 

resource, and for the first time, we provide individual genotypes in addition to variant calls for a subset of 

gnomAD, which includes new data from >60 distinct populations from Africa, Europe, the Middle East, 

South and Central Asia, East Asia, Oceania, and the Americas. Many of the processing, quality control, and 

analysis procedures closely resemble those from the 15,748 genomes from the gnomAD v2 manuscript 

(Karczewski et al. 2020). In this supplement, we highlight the differences where applicable. 

Data processing and variant calling 

Whole genome sequences were mapped using bwa mem 0.7.15.r1140 against the GRCh38 

version hs38DH, which includes decoy contigs and HLA genes (FASTA located at 

https://console.cloud.google.com/storage/browser/gcp-public-data--broad-references/hg38/v0/). 

Reads were then processed using the GATK best practices using GATK4 for BQSR and GATK3.5 for 

HaplotypeCaller to produce gVCFs. 

Previous approaches (e.g. gnomAD v2) have typically involved the joint calling of the full cohort 

using GATK to produce a VCF file with a genotype for each sample at every position where at least one 

sample contains a non-reference allele. However, this approach would not scale to 150,000 samples, due 

to time and memory limitations, as well as storage: the output would require about 900TB and be 

prohibitively expensive to store and compute over. 

Instead, we implemented and used a novel combiner within Hail (described in detail in 

(Karczewski et al. 2021)), which combines gVCFs into a sparse MatrixTable (MT). gVCFs are single-sample 
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files, which contain one row for each genomic position where a non-reference allele is found in the sample 

and, unlike VCFs, a row for each reference block start. Reference blocks are contiguous bases where the 

sample is homozygous reference within certain confidence boundaries. In gnomAD v3, we used the 

following three confidence bins: No coverage / evidence; Genotype quality < Q20; and Genotype 

quality >= Q20. For each of these bins, the reference block stores the minimum and median coverage, and 

the minimum genotype quality for the bases residing in the block. 

Using this new sparse data format, the full gnomAD v3 MT only requires 20TB of storage 

(Supplementary Figure 1). This new format scales linearly with the number of samples and is lossless with 

respect to the input sample gVCFs. Importantly, much more granular QC metrics, previously collapsed into 

the INFO field across samples, are preserved at each non-reference genotype in the data, such as strand 

balance, read position metrics (ReadPosRankSum), etc. Thus, new data can be appended to existing data 

without re-processing of the previously processed samples. We demonstrated the power of this data 

format by adding 4,598 genomes to our original gnomAD v3 release of 71,702 genomes. Finally, while not 

currently implemented, it is possible to re-export a gVCF from this format, removing the need for storing 

the gVCFs. 

 

Supplementary Figure 1 | Growth of data size with number of samples.  
The dense representation (VCF) grows super-linearly, while the aggregate gVCF size and the SparseMT 
representation grow linearly. The final gnomAD v3 sparse dataset was smaller still (20TiB) due to increased 
compression from broader reference block confidence bins. 
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Sample QC 

The sample QC process was similar to that of gnomAD v2 (Karczewski et al. 2020). Briefly, hard 

filters were applied to remove samples of poor quality as well as samples that did not have permissions 

for public release of aggregate data. Next, we inferred sex for each sample and removed samples with sex 

chromosome aneuploidies or ambiguous sex assignment: here, we modified the original pipeline by using 

normalized coverage on both X and Y in order to infer sample sex. We defined and used a set of high 

quality sites to infer relatedness between samples, allowing us to filter to a set of unrelated individuals, 

and assign ancestry to each sample. Finally, we filtered samples that were determined to be outliers based 

on sample QC metrics, using a novel regression-based method. All quality control and processing steps 

were performed using Hail 0.2.62 (Hail Team. Hail 0.2.62-84fa81b9ea3d. https://github.com/hail-

is/hail/commit/84fa81b9ea3d.). 

Hard filtering 

We computed sample QC metrics using the Hail ‘sample_qc’ module on all autosomal bi-allelic 

single nucleotide variants (SNVs). We removed samples that were clear outliers for the number of SNVs 

(< 2.4 million or > 3.75 million), number of singletons (> 100,000), ratio of heterozygous to homozygous 

variants > 3.3, and a mean coverage on chromosome 20 of < 15X. Additionally, for 87,756 of the 92,306 

releasable samples where BAM-level metrics were available, we removed samples that were outliers for 

percent contamination (> 5%), percent chimeras: (> 5%), and median insert size (< 250bp). 

Sex inference 

To infer sex, we computed the mean coverage on non-pseudoautosomal (non-PAR) regions of 

chromosome X and Y and normalized these values using the mean coverage on chromosome 20. In 

addition, we ran the Hail ‘impute_sex’ function on the non-PAR regions of chromosome X to compute the 
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inbreeding coefficient F-stat. Based on these three metrics, we assigned a number of X chromosomes 

based on normalized X coverage 0-1.2913 (1 X), 1.4477-2.3961 (2 X), or 2.4909+ (3 X), and a number of Y 

chromosomes based on normalized Y coverage 0-0.1 (no Y), 0.1-1.1645 (1 Y), 1.2381+ (2 Y). The final 

assignments are shown in Supplementary Table 1 and Supplementary Figure 2. 

Supplementary Table 1 | Sex chromosome inference.  
The coverages for normalized X and Y coverages are shown for each sex chromosome inference assignment, 
alongside total number of releasable samples that pass QC to this point. 

   
X chromosome coverage 

 
Y chromosome coverage 

Inferred sex 
chromosomes Total Lower cutoff Upper cutoff Lower cutoff Upper cutoff 

XX 46,361 1.4477 2.3961 0 0.1 
XY 45,129 0 1.2913 0.1 1.1645 
XO 425 0 1.2913 0 0.1 
XXY 107 1.4477 2.3961 1.2381 1.1645 
XXX 34 2.4909 - 0 0.1 
XYY 31 0 1.2913 1.2381 - 
XXXY 4 2.4909 - 0.1 1.1645 
XXYY 3 1.4477 2.3961 1.2381 - 
ambiguous 212 All others All others 
    
    

 

Supplementary Figure 2 | Sex inference.  
A scatter plot of ploidy on chromosomes X and Y is shown for each individual in the dataset. Points are colored by 
inferred sex haplotype. 
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Defining a high quality set of sites for QC 

In order to perform relatedness and ancestry inference, we first selected a set of high quality QC 

sites as follows: 

1. We took all sites that were used for gnomAD v2.1 and lifted them over to GRCh38 

2. We added ~5k sites widely used for quality control of GWAS data (Purcell et al. 2014) and lifted 

these sites over to GRCh38 

3. From these two sets of sites, we then selected all bi-allelic SNVs with an Inbreeding coefficient > 

-0.25 (no excess of heterozygotes) 

In total, we ended up with 76,419 high quality variants for relatedness and ancestry inference. 

Relatedness inference 

We used PC-Relate (implemented in Hail ‘pc_relate’) (Conomos et al. 2016) to compute 

relatedness, followed by Hail’s ‘maximal_independent_set’ in order to select as many samples as possible, 

while asserting that the final dataset includes no pairs of first and second degree relatives. When multiple 

samples could be selected, we kept the sample with the highest coverage as a tie-breaker. 

Ancestry assignment 

We used principal component analysis (PCA; using the ‘hwe_normalized_pca’ function in Hail) on 

the set of high quality variants in our unrelated samples, and selected the first 16 PCs to assign ancestry. 

We then trained a random forest classifier using 22,054 samples with known ancestry and 14,828 samples 

for which we had a population label from gnomAD v2 as training samples and using the PCs as features. 

We assigned ancestry to all samples for which the probability of that ancestry was > 75% according to the 

random forest model. All other samples were unassigned (labeled oth). A UMAP embedding of the first 
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PCs is shown in Supplementary Figure 3 (Diaz-Papkovich, Anderson-Trocme, and Gravel 2018; McInnes et 

al. 2018). 

 

Supplementary Figure 3 | UMAP embedding of PCA results (PCs 1-6 and 8-16) of all individuals in the gnomAD 
release.  
This embedding is an illustration of the structure present in the dataset: note that long-range distances in this 
projection do not reflect genetic distance between populations. 
 

Filtering based on QC metrics 

In gnomAD v2, we grouped samples based on their ancestry assignments and filtered outliers 

within each ancestry based on various quality metrics such as number of SNPs. Here, we built a single 

model for each metric across all individuals, regressing out the PCs computed during the ancestry 

assignment, and filtered samples based on the residuals for each of the QC metrics. This strategy allowed 

us to consider the samples’ ancestry as a continuous spectrum and was particularly beneficial for admixed 

samples and samples that did not get an ancestry assignment (assigned as oth; previously, we lumped all 

these samples together even though they were drawn from multiple populations). An illustration of the 

improvement from this new method is shown in Supplementary Figure 4. 
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Clustering-based approach Regression-based approach 

  

Supplementary Figure 4 | The distribution of the number of SNPs for the African ancestry samples using the 
clustering-based and regression-based approach. 
 

We used the sample QC metrics computed using the Hail ‘sample_qc’ module on all autosomal 

bi-allelic SNVs and filtered samples that were 4 median absolute deviations (MADs) from the median for 

the following metrics: n_snp, r_ti_tv, r_insertion_deletion, n_insertion, n_deletion, r_het_hom_var, 

n_het, n_hom_var, n_transition and n_transversion. In addition, we filtered samples that fell outside 8 

MADs above the median n_singleton metric and over 4 MADs above the median r_het_hom_var metric. 

The number of samples filtered by different QC metrics is summarized in Supplementary Table 2 and the 

final set of samples is shown in Supplementary Table 3. 

After some downstream analysis, we noted that this regression approach removes samples from 

populations with extreme diversity, such as individuals from the San, Papuan, and Pygmy populations in 

HGDP. We have adjusted this filter for future releases and provide the data for all these individuals in a 
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joint-called subset of gnomAD under release v3.1.2. However, we note that this current dataset excludes 

these individuals, as newly computing the frequency metrics was prohibitively expensive. 

Supplementary Table 2 | Number of individuals filtered by different QC metrics. 
QC filter QC metrics Number of genomes filtered 

Hard filter 

hardfilter_TCGA_tumor_sample 
hardfilter_exlcuded_cf_enrichment 

hardfilter_failed_fingerprinting 
hardfilter_r_het_hom_var 
hardfilter_contamination 

hardfilter_coverage 
hardfilter_n_snp 

hardfilter_insert_size 
hardfilter_n_singleton 

hardfilter_chimera 

2,750 

Sex filter sex_ambiguous 
sex_aneuploidy 224 

Outlier filter 

outlier_n_snp_residual 
outlier_n_singleton_residual 

outlier_r_ti_tv_residual 
outlier_r_insertion_deletion_residual 

outlier_n_insertion_residual 
outlier_n_deletion_residual 

outlier_r_het_hom_var_residual 
outlier_n_transition_residual 

outlier_n_transversion_residual 

5,120 

Related filter related 8,056 

 
 
Supplementary Table 3 | Final number of individuals for each population. 

Population code Description Number of genomes 

afr African/African American 20,744 

ami Amish 456 

amr Latino/Admixed American 7,647 

asj Ashkenazi Jewish 1,736 

eas East Asian 2,604 

fin Finnish 5,316 

nfe Non-Finnish European 34,029 

mid Middle Eastern 158 

sas South Asian 2,419 

oth Other (population not assigned) 1,047 

Total  76,156 
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Variant QC and annotation 

Because the new sparse MatrixTable format contains all the information encoded in the gVCFs, 

we computed all variant QC metrics within Hail, which enabled the separate computation for each allele 

(rather than site-level as was typically done previously). The code to compute these metrics is available at 

https://github.com/broadinstitute/gnomad_methods/blob/master/gnomad/utils/sparse_mt.py. We 

then used the allele-specific version of GATK Variant Quality Score Recalibration (VQSR) to compute a 

confidence score for each allele in the dataset. We used the following allele-specific features: FS, SOR, 

ReadPosRankSum, MQRankSum, and QD for SNPs and indels, as well as MQ for SNPs. 

In addition to the GATK bundle training resources (HapMap, Omni, 1000 Genomes, and Mills 

indels), we also used a set of ~19M transmitted singletons (alleles observed exactly twice in the dataset, 

only in a parent/child duo) from 6,743 trios present in our raw data. 

We assessed the results of the filtering by plotting, as a function of quality tranche, the number 

of potential de novo mutations in the 6,743 trios, the Ti/Tv ratio, proportion singletons, proportion bi-

allelic variants, and variants in ClinVar, as well as precision and recall in two truth samples present in our 

data: NA12878 and a pseudo-diploid sample (A mixture of DNA [est. 50.7% / 49.3%] from two haploid 

CHM cell lines). 

In gnomAD v3 (prior to the addition of 4,598 new samples), we assessed the performance of the 

classic site-level VQSR, to a new algorithm, the allele-specific VQSR (AS_VQSR), as well as one with 

transmitted singletons included (AS_VQSR_TS). Supplementary Figure 5 illustrates the superior 

performance of the allele-specific approach by precision-recall curves of gold standard SNVs and indels 

from one sample, NA12878. 

 

 



12  

NA12878 SNVs NA12878 Indels 

  

Supplementary Figure 5 | Precision-recall curves for the previous site-level (VQSR), allele-specific (AS_VQSR) and 
allele-specific with transmitted singletons (AS_VQSR_TS) approaches.  
Both allele-specific approaches outperform VQSR, while AS_VQSR_TS shows a slight improvement for SNVs. 
 

In addition to VQSR, we also applied the following hard filters: 

● AC0: No sample had a high quality genotype at this variant site (GQ>=20, DP>=10 and allele 

balance > 0.2 for heterozygotes) 

● InbreedingCoeff: there was an excess of heterozygotes at the site compared to Hardy-Weinberg 

expectations using a threshold of -0.3 on the InbreedingCoefficient metric. 

In total, 12.2% of SNVs and 32.5% of indels were filtered, resulting in 569,860,911 SNVs and 74,407,067 

indels that passed all filters in our release. 

Functional annotation 

All variants are annotated using version 101 of the Variant Effect Predictor (VEP) based on the 

gene models from Gencode v35, with the LOFTEE plugin as described previously (Karczewski et al. 2020). 

For GRCh38, LOFTEE is similar to the previous implementation, without the extended splice predictions. 
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Constraint modeling and assessment 

Estimation of trinucleotide context-specific mutation rates 

To calculate the baseline mutation rate for each substitution in a trinucleotide context (XY1Z -> 

XY2Z), we count the instances of each trinucleotide context in the autosomes of the human genome, 

excluding sites where 1) a low-quality variant is called in gnomAD v3 (INFO/FILTER does not equal to 

‘PASS’), 2) the mean coverage in the gnomAD genomes is <30X or >32X, or 3) the region is marked as 

‘blacklisted regions’ (ENCODE https://www.encodeproject.org/files/ENCFF356LFX/) or ‘gaps’ (telomeres 

and centromeres). This resulted in 6,079,733,538 possible variants at 2,026,577,846 autosomal sites. 

Using this dataset, we compute the proportion of possible variants observed (hereafter referred to as 

‘proportion observed’) for each substitution and context, using rare variants observed in gnomAD with an 

allele frequency (AF) ≤0.1%. Our estimates are well-correlated with the mutation rates reported by 

Carlson et al using an independent dataset (the Bipolar Research in Deep Genome and Epigenome 

Sequencing [BRIDGES] study; Supplementary Figure 6a) and are highly stable across different AF 

thresholds (0.01%-1%; Supplementary Figure 6b). 
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            a                                                                                  b 

                   

Supplementary Figure 6 | Trinucleotide context-specific mutation rate estimates.  
The mutation rates estimated and used in this study are well-correlated with previous estimates from Carson et al 
using an independent dataset (a) and are highly stable across different AF thresholds (b).  
 

Comparison of Gnocchi and other metrics  

Benchmarking on various validation datasets, we show that Gnocchi outperforms other 

constraint/conservation metrics – Orion, CDTS, gwRVIS, DR, phyloP, phastCons, and GERP – in identifying 

putative functional non-coding variants (Fig. 3 and Extended Fig. 4). We note that all evaluations were 

performed within the non-coding genome for explicitly comparing the metrics in prioritizing non-coding 

variants. We further eliminate potential bias from nearby genes by recapitulating the results within 

regions >10kb away from any protein-coding exons (Supplementary Fig. 7).  
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Supplementary Figure 7 | Performance of different metrics in identifying putative functional variants in stringent 
non-coding regions.  
As described in Methods, the stringent non-coding variant sets include 4,379 GWAS Catalog variants, 967 GWAS 
fine-mapping variants, a high-confidence subset of 59 fine-mapped variants, and 45 ClinVar pathogenic variants. 
Analyses were not performed for the latter two due to small sample sizes. 
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Analysis of constraint for chromosome X  

Due to the lack of DNM data on chromosome X, we built our mutational model using autosomal 

regions and extrapolated it to construct the Gnocchi metric for chromosome X. Consistent with the results 

in autosomes, protein-coding sequences overall show a significantly higher Gnocchi score than non-coding 

regions (median=1.72 versus 0.36, Wilcoxon P<10-200; Supplementary Fig. 8a), and constrained non-

coding regions are significantly enriched for regulatory elements (e.g., ENCODE cCREs; Supplementary Fig. 

8b). 

     a 

 

      b 

                            

Supplementary Figure 8 | Distribution of Gnocchi scores on chromosome X.  
a, Windows overlapping coding regions (N=2,647 with ≥ 1bp coding sequence; red) overall exhibit a higher Gnocchi 
score (stronger negative selection) than windows that are exclusively non-coding (N=55,055; blue). Dashed lines 
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indicate the medians. b, Constrained non-coding regions are enriched for regulatory elements. Enrichment was 
evaluated by comparing the proportion of non-coding 1kb windows, binned by Gnocchi, that overlap with a given 
functional annotation to the genome-wide average. Error bars indicate 95% confidence intervals of the odds ratios. 
cCRE, candidate cis-regulatory element: N=1,049 with a promoter-like signature (PLS), N=3,319 with a 
proximal enhancer-like signature (pELS), N=15,969 with a distal enhancer-like signature (dELS), N=1,807 
bound by CTCF without a regulatory signature (CTCF-only); Super enhancers: N=3,655; FANTOM 
enhancers: N=1,412; FANTOM lncRNAs: N=1,688. See Methods for details on data collection. 
 

The gnomAD browser 

Support for multiple reference genomes 

Alongside the release of gnomAD v3, we wanted to retain information from previous releases 

(gnomAD v2) in the browser for reproducibility. To do so, we added support for multiple reference 

genomes to the browser – see below an example of the same gene viewed in gnomAD v2 (left) and v3 

(right). 

 

Additionally, to make it easier to transition between reference builds and gnomAD versions, we 

added a liftover function for all variants – see below an example of Liftover section on a gnomAD v2 (left) 

and v3 (right) variant page. 
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HGDP and 1000 Genomes population frequencies 

For variants found in the HGDP / 1000 Genomes subset, the browser now includes population 

frequencies based on known populations from the HGDP / 1000 Genomes sample metadata – see below 

an example of the detailed population frequencies; here, we show the frequency table for the 1000 

Genomes project. 

 

Read data in non-coding regions 

In previous releases, we provide short read data for exonic variants at the bottom of the variant 

page to enable detailed quality assessment. In this release, we provide short read data for all variants, 

including those in non-coding regions. 
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Supplementary Datasets 

Supplementary Dataset 1 | Variant counts in gnomAD genomes and mutation rates. The number of 

possible and observed rare (AF≤0.1%) SNVs in the 76,156 gnomAD genomes, along with the estimated 

mutation rate (‘fitted_proportion_observed’) for each trinucleotide context, reference, and alternate 

allele, stratified by methylation levels for CpG transitions. 

 

Supplementary Dataset 2 | Genome-wide Gnocchi scores at 1kb scale. A .bed file containing Gnocchi 

scores for 1,984,900 1kb autosomal windows (passing all quality controls). Coordinates are on GRCh38. 

 

Supplementary Dataset 3 | Genome-wide Gnocchi scores at 1kb sliding by 100bp scale. A .bed file 

containing Gnocchi scores for 19,834,726 1kb sliding windows (passing all quality controls). Coordinates 

are on GRCh38. 

 

Supplementary Dataset 4 | Gnocchi scores of copy number variants (CNVs) in individuals with 

developmental delay (DD). A total of 7,239 DD CNVs affecting the most constrained 1% of non-coding 

regions (Gnocchi≥4) are listed. For each CNV, the highest Gnocchi score among its overlapping 1kb 

windows was used in analysis and is annotated.  

 

Supplementary Dataset 5 | Functionally informed fine-mapping results using Gnocchi as a prior. The 

increase in posterior inclusion probability (PIP) when incorporating Gnocchi score as a functional prior 

into previous fine-mapping results (that used a uniform prior; denoted as PIPGnocchi and PIPunif, respectively) 

are listed for 13,069 variant-trait pairs. 
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Supplementary Dataset 6 | Gnocchi scores of enhancers linked to specific genes. Enhancer-gene links 

were obtained from the Roadmap Epigenomics Enhancer-Gene Linking database. For each gene, the 

enhancer with the highest Gnocchi score was selected for analysis, and the membership of each gene in 

gene lists analyzed in Fig. 5b is annotated. 
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