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S1 Waterfall Plot
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Figure S1: Example of a waterfall plot used to identify the global optimum of the parameters for the dose-dependent
RTF of the fits shown in Fig. 2. The parameter optimization initializes n = 100 times, each time starting
with a random parameter vector within specified boundaries. In the waterfall plot, the objective function
value of each of the n optimization runs corresponds to the y-axis value, ordered from smallest to largest
objective function value. This results in a visualization of different merit levels, each level corresponding
to a local optimum. The lowest level is assumed to be the global optimum.
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S2 Motivation of Hill functions for describing dose dependencies

Hill functions provide a convenient and intuitive way to describe how the steady-state response of a biochemical system
depends on the concentration of an input (like a drug or substrate). This relationship is rooted in the underlying
ODEs that describe the system’s dynamics as shown in the following. The formation of a complex C by binding of
an activator A to a substrate S translates to

˙[C] = kf [A][S]− kb[C] (1)

using the law of mass action for the forward and backward reaction with two rate constants kf and kb. For the

steady state ˙[C] = 0, the equation becomes

[C] =
kf
kb

[A][S] . (2)

By substituting A = Atotal − C the equation yields

[C] =
kf
kb

(Atotal − C)[S] (3)

and after solving for C we obtain

[C] =
kf

1 +
kf

kb

[S] (4)

=

kb
kf

kf [S]

kb
kf

+ kb
kf

kf

kb
[S]

(5)

=
Vmax[S]

KD + [S]
(6)

with KD := kb/kf and Vmax = kb. This result corresponds to a Hill function

H([S]) =
Vmax[S]

h

Kh
D + [S]h

(7)

with Hill coefficient h = 1.
The steady state of the RTF is represented by the amplitude A of the sustained component. In the dose-dependent

formulation, the Hill function A(d), which describes how the amplitude A depends on the dose, follows the steady-
state relationship typically derived from simple complex formation. More complex processes, as seen in biochemical
systems, can also be described by Hill coefficients h ̸= 1.”

In more complex biochemical networks, also other parameters of the RTF can be described by Hill functions. Let’s
assume that the complex C regulates another target T via

˙[T ] = kt[C][T ] . (8)

For the immediate effect on the target T , Taylor expansion of [T ](t) around time point t = 0 yields

˙[T ](t) ≈ kt[C](t)([T ](t = 0) + t ˙[T ](t = 0) + . . . ) (9)

≈ kt[C](t)[T ](t = 0) for t ≈ 0 . (10)

Thus, when [C] has a dose-dependency that is described by a Hill function, the immediate effect on targets of C,
described by rate α for the sustained component and β for the transient component also have a Hill dose-dependency
described by a Hill function α(d) and β(d).

In more complex regulation networks and for downstream targets, this effect might be delayed and is accordingly
described by the retarded RTF and the time shift parameter τ . The dose-dependent RTF also has the flexibility to
describe the dose-dependency of such a delayed response by the sigmoidal Hill function τ(d).

In strict mathematical terms, it cannot be shown that in complex signalling processes, all compounds can be
described by Hill function of the RTF parameters. After all, the dose-dependent RTF approach is a phenomenological
model.
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S3 Illustration of Parameters

S3.1 Single-Dose RTF

As specified in Equations (1) and (3), the single-dose RTF is given by

R(treal, θ
R(t)) = A

(
1− e−αt(treal,τ)

)
+B

(
1− e−βt(treal,τ)

)
e−γt(treal,τ) + b ,

where
t(treal, τ) = log10(10

treal×10/T + 10τ )− log10(1 + 10τ ) .

Table S1 shows how the single-dose RTF is affected by its parameters.

Table S1: Parameters of the single-dose Retarded Transient Function (RTF) and their effects. For each described
parameter, an example plot is provided, where the respective parameter is varied from low (blue) to high
(red). Next to the example plots the used parameter values are listed.

Parameter Explanation Illustration of the Effect on the RTF

A
Amplitude of the sustained response. For
clarity, in this example, B = 0 i.e., only
the sustained part remains.
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B

Amplitude of the transient response. For
illustration purposes, in this example is
A = 0, i.e., only the transient part remains.
Note that B is reached only if β ≫ γ since
the transient response approaches ampli-
tude B with rate β and, at the same time,
decays with rate γ.
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The rate constant of the sustained response
α controls how fast amplitude A of the sus-
tained part is approached and, thus, corre-
sponds to the steepness of slope of the sus-
tained part. In this example B = 0, i.e.,
only the sustained part remains.
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β

The rate constant of the transient response
β describes how fast the transient part
approaches amplitude B. As B is only
reached if β ≫ γ, β and γ indirectly im-
pact the strength of the transient part.
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The rate constant of the transient decay
γ escribes how fast the transient part de-
cays. Increasing γ also reduced the maxi-
mum value of the RTF.
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S3.2 Hill Function

As specified in Equation (4), the Hill equation is given by

H(d) = M
dh

Kh + dh
.

Table S2 shows how the Hill equation is affected by its parameters.

Table S2: Parameters of the Hill equation and their effect. For each described parameter, an example plot is provided,
where the respective parameter is varied from low (blue) to high (red). Next to the example plots the used
parameter values are listed.

Parameter Explanation Illustration of the Effect on the Hill Function
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The maximum value M of the Hill func-
tion is asymptotically approached for large
doses d.
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S3.3 Dose-Dependent RTF

As specified in Equations (1), and (3) to (11) the dose-dependent RTF is given by

R(treal, θ
R(t)) = MA

dhA

KhA
A + dhA

(
1− e

−Mα
dhα

K
hα
α +dhα

t(treal,τ)

)

+MB
dhB

KhB
B + dhB

1− e

−Mβ
d
hβ

K
hβ
β

+d
hβ

t(treal,τ)

 e
−Mγ

d
hγ

K
hγ
γ +d

hγ
t(treal,τ)

+ b ,

with

t(treal, τ) = log10

10treal×10/T + 10
Mτ

(
1− dhτ

K
hτ
τ +dhτ

)− log10

1 + 10
Mτ

(
1− dhτ

K
hτ
τ +dhτ

) .

Table S3 shows how the dose-dependent RTF is affected by its parameters.

Table S3: Parameters of the dose-dependent Retarded Transient Function (RTF) and their corresponding Hill func-
tions. In each row, one parameter is varied. For selected doses, the corresponding RTFs are plotted, where
the colors (blue, red, or yellow) of the RTF plots are equal to the corresponding dots in the Hill graphs.

Parameter Explanation Effect on Hill function Effect on the RTF

MA

Maximum value or satura-
tion of the Hill function for
amplitude A of the sustained
RTF part, reached for high
doses. In this example B =
0, i.e., only the sustained
part is set to 0.
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The so-called half maximum
quantityKA of the Hill func-
tion specifies the dose for
which the amplitude A of
the sustained RTF part is
50% of the maximal ampli-
tude MA.
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Hill coefficient h of the
Hill function for amplitude
A of the transient RTF
part. Increasing hA en-
hances the sigmoidality of
the Hill curve, making it
steeper. This steepening ef-
fect leads to a sudden in-
crease of amplitude A of the
transient RTF part, particu-
larly for doses near K.

0 1 2 3 4 5

dose d

0

1

2

3

4

5

A

M K

h = 0.2
h = 1
h = 5

M = 5

K = 2.5

h =

0.2, 1, 5
0 2 4 6 8 10

time t

0

1

2

3

4

5

R
T
F

A = 0.5

α = 10

β = 10

γ = 1

τ = 2

b = 0

VII



MB

Maximum value of the am-
plitude B of the transient
RTF part, reached for high
doses. Note that B is typi-
cally not reached as the sig-
nal decays with rate γ. In
the example plot the tran-
sient part has nearly van-
ished for t = 6 and the re-
sponse is determined by the
amplitude of the sustained
part A.
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The half maximum quantity
KB of the Hill function spec-
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Hill coefficient h of the
Hill function for amplitude
B of the transient RTF
part. Increasing hB en-
hances the sigmoidality of
the Hill curve, making it
steeper. This steepening ef-
fect leads to a sudden in-
crease of amplitude B of the
transient RTF part, particu-
larly for doses near K.
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Maximum value for the rate
constant α of the sustained
RTF part, reached for high
doses. For the example plot,
the transient part is set to 0.
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Kα

The half maximum quan-
tity Kα of the Hill func-
tion specifies the dose for
which the rate constant α
of the sustained RTF part
is 50% of the maximal rate
Mα. Roughly speaking, Kα

indicates the dose at which
the “velocity” is 50% of the
maximum velocity of the
sustained part.
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The Hill coefficient hα con-
trols how non-linear the rate
constant α depends on the
dose. Increasing hα en-
hances the sigmoidality of
the Hill curve, making it
steeper. Large values of h
leads to a sudden increase
of the “velocity” α for doses
close to Kα.
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Maximum value for the rate
constant β of the sustained
RTF part, reached for high
doses. For the example plot,
the sustained part is set to
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The half maximum quantity
Kβ of the Hill function spec-
ifies the dose for which the
rate constant β of the tran-
sient RTF part is 50% of the
maximal rate Mβ . Roughly
speaking, Kβ indicates the
dose at which the “velocity”
is 50% of the maximum ve-
locity of the increase of the
transient part.
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hβ

The Hill coefficient hβ con-
trols how non-linear the rate
constant β depends on the
dose. Increasing hβ en-
hances the sigmoidality of
the Hill curve, making it
steeper. Large values of h
leads to a sudden increase
of the “velocity” β for doses
close to Kβ .
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Maximum value for the Hill
function for decay rate γ
of the transient RTF part,
which is reached for high
doses. For the example plot,
the sustained part is set to
0.
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The half maximum quantity
Kγ of the Hill function spec-
ifies the dose for which the
decay constant γ of the tran-
sient RTF part is 50% of the
maximal rate Mγ . Roughly
speaking, Kγ indicates the
dose at which the “velocity”
is 50% of the maximum ve-
locity of the decay of the
transient part.
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The Hill coefficient hγ con-
trols how non-linear the de-
cay constant γ depends on
the dose. Increasing hγ en-
hances the sigmoidality of
the Hill curve, making it
steeper. Large values of h
leads to a sudden increase
of the “velocity” γ for doses
close to Kγ .
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Mτ

The Hill function of re-
sponse time τ is decreas-
ing for increasing doses, with
the maximum value M be-
ing reached for dose 0. Mτ

corresponds to the time de-
lay that is reached for small
doses. For high doses the de-
lay τ becomes 0 for all Mτ .
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Hill coefficient h for the
dose-dependency of the re-
sponse time τ . Increasing
hτ enhances the sigmoidal-
ity of the Hill curve, making
it steeper. Large values of h
leads to a sudden decrease of
the response time τ for doses
close to Kτ .
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S4 Boundaries and Confidence Intervals for all Scenarios

S4.1 Modelling doses individually

S4.1.1 Dose 1

Table S4: Single dose RTF: Bounds and Confidence intervals for modeled parameters for dose d = 0µM

Parameter Lower bound Estimated value Upper bound Confidence interval

A 0.00 0.01 15.64 [-Inf, 1.06]

α -0.82 0.22 0.68 [-Inf, Inf]

b -5.00 -5.00 -1.63 [-Inf, Inf]

σ -0.34 -0.34 -0.34 [NaN, NaN]

τ -1.92 4.79 4.79 [-Inf, Inf]

S4.1.2 Dose 2

Table S5: Single dose RTF: Bounds and Confidence intervals for modeled parameters for dose d = 1µM

Parameter Lower bound Estimated value Upper bound Confidence interval

A 0.00 3.53 15.64 [2.22, 6.23]

α -0.82 -0.53 0.68 [-Inf, -0.10]

b -5.00 -5.00 -1.63 [-Inf, Inf]

σ -0.34 -0.34 -0.34 [NaN, NaN]

τ -1.92 4.79 4.79 [3.45, Inf]

S4.1.3 Dose 3

Table S6: Single dose RTF: Bounds and Confidence intervals for modeled parameters for dose d = 2µM

Parameter Lower bound Estimated value Upper bound Confidence interval

A 0.00 4.81 15.64 [4.30, 5.40]

α -0.82 0.14 0.68 [-0.22, Inf]

b -5.00 -5.00 -1.63 [-Inf, Inf]

σ -0.34 -0.34 -0.34 [NaN, NaN]

τ -1.92 3.71 4.79 [3.04, Inf]

S4.1.4 Dose 4
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Table S7: Single dose RTF: Bounds and Confidence intervals for modeled parameters for dose d = 3µM

Parameter Lower bound Estimated value Upper bound Confidence interval

A 0.00 6.14 15.64 [5.62, 6.72]

α -0.82 -0.01 0.68 [-0.25, 0.41]

b -5.00 -5.00 -1.63 [-Inf, Inf]

σ -0.34 -0.34 -0.34 [NaN, NaN]

τ -1.92 2.97 4.79 [2.50, 3.54]

S4.1.5 Dose 5

Table S8: Single dose RTF: Bounds and Confidence intervals for modeled parameters for dose d = 4µM

Parameter Lower bound Estimated value Upper bound Confidence interval

A 0.00 5.20 15.64 [4.83, 5.55]

α -0.82 0.68 0.68 [-0.01, Inf]

b -5.00 -5.00 -1.63 [-Inf, Inf]

σ -0.34 -0.34 -0.34 [NaN, NaN]

τ -1.92 3.40 4.79 [2.49, 3.56]

S4.1.6 Dose 6

Table S9: Single dose RTF: Bounds and Confidence intervals for modeled parameters for dose d = 5µM

Parameter Lower bound Estimated value Upper bound Confidence interval

A 0.00 6.57 15.64 [6.21, 6.95]

α -0.82 0.68 0.68 [0.35, Inf]

b -3.08 -1.63 -1.63 [-Inf, Inf]

σ -0.34 -0.34 -0.34 [NaN, NaN]

τ -1.92 3.51 4.79 [3.05, 3.64]

S4.1.7 Dose 7
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Table S10: Single dose RTF: Bounds and Confidence intervals for modeled parameters for dose d = 6 µM

Parameter Lower bound Estimated value Upper bound Confidence interval

A 0.00 5.91 15.64 [5.57, 6.27]

α -0.82 0.68 0.68 [0.53, Inf]

b -2.50 -1.63 -1.63 [-Inf, Inf]

σ -0.34 -0.34 -0.34 [NaN, NaN]

τ -1.92 3.16 4.79 [2.95, 3.29]

S4.2 Modelling dose-dependent dynamics

Table S11: Dose Dependencies: Bounds and Confidence intervals for modeled parameters

Parameter Lower bound Estimated value Upper bound Confidence interval

KA -6.00 -0.07 1.78 [-0.61, 0.20]

Kα -6.00 0.38 1.78 [0.09, 0.62]

Kτ -6.00 1.26 1.78 [0.97, Inf]

MA 0.00 7.01 15.64 [5.87, 8.11]

Mα -1.28 0.68 0.68 [0.47, Inf]

Mτ -1.92 4.22 4.79 [3.13, Inf]

b -5.00 -5.00 0.89 [-Inf, Inf]

hA 0.00 0.00 1.00 [-Inf, 0.46]

hα 0.00 0.56 1.00 [0.32, Inf]

hτ 0.00 0.00 1.00 [-Inf, Inf]

σ -3.11 -0.32 0.40 [NaN, NaN]
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S4.3 Modelling condition-dependencies

Table S12: Condition Dependencies: Bounds and Confidence interval for modeled parameters

Parameter Lower bound Estimated value Upper bound Confidence interval

KA -6.00 -0.37 1.78 [-2.46, 0.04]

Kα -6.00 0.56 1.78 [0.44, 0.64]

Kτ -6.00 0.91 1.78 [0.87, Inf]

MA 0.00 6.55 15.64 [5.82, 7.48]

Mα -1.28 0.68 0.68 [0.53, Inf]

Mτ -1.92 4.79 4.79 [4.63, Inf]

b -5.00 -5.00 0.89 [-Inf, -1.15]

∆KA -3.00 1.76 3.00 [0.47, Inf]

∆Kα -3.00 -0.24 3.00 [-Inf, Inf]

∆Kτ -3.00 0.12 3.00 [-0.98, 0.85]

∆MA -3.00 3.00 3.00 [0.82, Inf]

∆Mα -3.00 1.80 3.00 [0.13, Inf]

∆Mτ -3.00 2.00 3.00 [1.35, Inf]

∆hA -3.00 -0.11 3.00 [-1.17, 0.30]

∆hα -3.00 0.59 3.00 [0.14, Inf]

∆hτ -3.00 -0.51 3.00 [-Inf, 1.39]

hA 0.00 0.00 1.00 [-Inf, Inf]

hα 0.00 0.40 1.00 [0.28, 0.48]

hτ 0.00 1.00 1.00 [0.08, Inf]

σ -3.11 -0.36 0.40 [-0.42, -0.30]
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