Calibration verification for stochastic agent-based disease spread models

Maya Horii¹, Aidan Gould¹, Zachary Yun¹, Jaideep Ray², Cosmin Safta², Tarek Zohdi¹

1 Mechanical Engineering Department, University of California, Berkeley, Berkeley, California, United States

2 Data Sciences and Computing Department, Sandia National Laboratories, Livermore, CA, United States

* mjhorii@berkeley.edu

S2 Appendix: AMCMC details

The proposal distribution is a Gaussian centered at the current chain value with covariance C_i . The algorithm has two phases: During the non-adaptive period (prior to ν iterations), C_i is adjusted if the fraction of (rejections since last scaled)/(total samples since last scaled) is greater than 0.95 or less than 0.05, in which case the proposal standard deviation is scaled down or up respectively by a chosen scale factor value. During the adaptive period, C_i is updated intermittently (every n_a iterations) using a recursive update shown below in Eqs. 1 and 2,

$$cov(\theta_0, ..., \theta_i) = \frac{i-1}{i} cov(\theta_0, ..., \theta_{i-1}) + \frac{i+1}{i^2} (\theta_i - \bar{\theta_i}) (\theta_i - \bar{\theta_i})^T$$
(1)

$$C_{i} = \begin{cases} s_{d} \operatorname{cov}(\theta_{0}, \dots, \theta_{i-1}), & \text{if } i \geq \nu \text{ AND } \operatorname{cov}(\theta_{0}, \dots, \theta_{i-1}) \text{ is non-singular} \\ s_{d} \operatorname{cov}(\theta_{0}, \dots, \theta_{i-1}) + s_{d} \epsilon_{c} I_{d}, & \text{if } i \geq \nu \end{cases}$$
(2)

where s_d is a parameter, I_d is the identity matrix with dimension d, and ϵ_c is a chosen small value.

We use $s_d = 2.4^2/d$ [1] and $\epsilon_c = 1 \times 10^{-10}$. Initial covariance for the one-parameter case was $C_0 = 0.001$, and for the two-parameter case was $C_0 = 0.001I_d$. The covariance is updated every $n_a = 100$ iterations during the adaptive period.

Algorithm 1 AMCMC Algorithm

_	· · · · · · · · · · · · · · · · · · ·
1:	$\texttt{samples[0]} \leftarrow \texttt{init_theta}$
2:	rej=0,n=0,
3:	for $k = 0$ to n_steps-1 do
4:	$\mathbf{if} \ k = 0 \ \mathbf{then}$
5:	$\texttt{cov} \leftarrow \texttt{init_cov}$
6:	$\texttt{proposal_cov} \leftarrow \texttt{init_cov}$
7:	$\texttt{last_update} \gets 1$
8:	else
9:	${f if}$ freq_adapt > 0 & $(k+1)\%$ freq_adapt $= 0$ & ${f then}$
10:	${f if}\;k<{ t na_{ extsf{-}}}{ extsf{period}}\;{ extsf{then}}$
11:	${f if rej/n} > 0.95 {f then}$
12:	Scale down proposal standard deviation by scale_factor
13:	else if rej/n < 0.05 then
14:	Scale up proposal standard deviation by scale_factor
15:	end if
16:	rej = 0, n = 0
17:	else
18:	Recompute covariance matrix recursively with data from
19:	samples[last_update:last_update+freq_adapt]
20:	$\texttt{last_update} \gets \texttt{last_update+freq_adapt}$
21:	if cov is singular then
22:	<pre>cov += (identity matrix)*cov_eps</pre>
23:	end if
24:	Scale proposal covariance by s_d
25:	end if
26:	end if
27:	end if
28:	Generate proposal theta.
29:	if theta is within bounds then
30:	Calculate likelihood, accept or reject based on Metropolis procedure.
31:	else
32:	Reject proposal.
33:	end if
34:	if Proposed theta is accepted then
35:	<pre>samples[k+1]=theta</pre>
36:	else
37:	<pre>samples[k+1]=samples[k]</pre>
38:	rej += 1
39:	end if
40:	n += 1
41:	end for

References

1. Haario H, Saksman E, Tamminen J. An Adaptive Metropolis Algorithm. Bernoulli. 2001;7(2):223. doi:10.2307/3318737.