
Schlögel et al.

RESEARCH

Optimizing Bioprocessing Efficiency with OptFed:
Dynamic Nonlinear Modeling Improves
Product-to-Biomass Yield
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S1 Supplementery Methods

S1.1 Spline fit

In Section 2.1.2, the fitting of the rates g, γµ, and γπ is described. Here we go into

more detail about how they are calculated for our specific experimental setup.

The following variables are measured during the processes of the training data

(see Section 2.4.1):

T Temperature

V̂ Volume (as reactor mass)

fG
cum cumulative substrate feed (mass of the feed flask)

fB
cum cumulative base feed for control pH (mass of the feed flask)

GG
f feed concentration in the substrate feed

X̂ biomass concentration

P̂ product concentration

Ĝ free substrate in the media

The first 4 values are measured continuously, and the last 3 every 2 hours.

To get continuous functions for the biomass, product, and substrate concentra-

tions and derivatives for the cumulative feeds, spline fitting is used:
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f = ˙fG
cum + ˙fB

cum (S1a)

Gf = ˙fG
cum GG

f f−1 (S1b)

µ̂ =
˙̂
X X̂−1 +

f

V̂
(S1c)

π̂ =

(
˙̂
P +

f

V̂
P̂

)
X̂−1 (S1d)

γ̂ =

(
f

V̂

(
Gf − Ĝ

)
− ˙̂
G

)
X̂−1 (S1e)

γ̂◦ = γ̂

(
1− P̂

X̂

)−1

(S1f)

γ̂π =
π̂

YP
G

(
1− P̂

X̂

)−1

(S1g)

γ̂µ =
(
µ̂− π̂ YP

G

)
YXr

G

−1

(
1− P̂

X̂

)−1

(S1h)

γ̂α = γ̂◦ − γ̂µ − γ̂π (S1i)

γ̂◦ can only be estimated if the substrate concentration is above the limit of quan-

tification.

To negate the effect of sampling we transform the feed and the volume by the

sampling factor s. This creates an equivalent process without sampling where all

concentrations (X̂, P̂ , Ĝ) and the specific feed (f/V̂ ) are equal.

s(t) =
∏

ti∈S,ti<t

(
1− Vsample

V̂ (ti)

)
(S2a)

Vcorr(t) =
V̂ (t)

s(t)
(S2b)

fcorr(t) =
f̂(t)

s(t)
(S2c)

S is the set of all sample times and Vsample the sampling volume. Fitting and

optimization are done for this corrected, unsampled process, and the results are

transformed back to the sampled process.

S1.2 Cross validation and hyperparameter selection

In Section 2.1.2 the significance level α is treated as a hyperparameter and has to

be defined by cross-validation, e.g., it depends on the sampling regime, more sam-

pling points will require a lower α. For cross-validation, the leave-one-out strategy

estimates each run in the training data with the 11 other training runs. For these

prediction, R2 is calculated according to (12).

We repeat the model fit and cross-validation for different levels of significance

(0.0001, 0,0002, 0.0005, 0,001, 0,002, 0,005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4) and
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select the α with the highest R2 for P/X to determine the simplified model. For

the case study an α of 0.02 is selected (Supplementary Figure S2).

S1.3 Validation Simulations

In addition to the experimental validation, we add additional validation with sim-

ulated data.

S1.3.1 Simulate experiments

For the validation simulations, we generated 400 randomly reduced model equations

(initial models). Although this meant that some parameters of the general model

were randomly missing, certain parameters are always present as they comprise the

simplest viable process model:

• γ◦
max and K◦

m to describe the uptake solely dependent on the substrate con-

centration without inhibition,

• γα
min and Kα

g to describe a linear maintenance function dependent on the

uptake rate, and

• γπ
max and Kπ

m to describe the production, dependent on the available substrate

flux without inhibition.

In addition to these 6 necessary parameters, the model can include up to 15 addi-

tional terms, 4 inhibiting uptake, 4 inhibiting production, 4 increasing maintenance,

and 3 adding temperature dependence. Each temperature dependence adds three

additional model parameters while other terms add one model parameter (see Ta-

ble S1). For each possible number of additional terms (i = 0 to 15), we randomly

select 25 sets of parameters (choosing i terms from the 15 available terms) and

generate random values for these parameters. To get a reasonable range for in-

hibition and activation, the parameter value distribution was defined such that its

median halves the product or uptake rate and doubles the maintenance requirement

(detailed ranges are listed in Supplementary Table S5).

Subsequently, for all these initial models values for X, P , G, and V are calculated

for all runs and all measurement points according to the DoE, used for the training

data, with the model equations (1-4). The initial biomass was set to 30 gL−1, i.e.,

the mean of the center point experiments. Parameterized models that do not reach

a product concentration of at least 3 g L−1 in any process of the DoE are discarded

and replaced by new equations created in the same way.

Next, we added randomly sampled errors to the biomass and product concentra-

tions, mimicking measurement data with biological variance, sampling, and mea-

surement errors.

X̂ = X(1 + ϵX), ϵX ∼ N (0, σX), P̂ = P (1 + ϵP ) ϵP ∼ N (0, σP ) (S3)

where N (0, σ) is the normal distribution and σX ∈ {0, 0.015, 0.03, 0.06} and σP ∈
{0, 0.02, 0.04, 0.08, 0.16, 0.32}. 0.03 and 0.08 are the observed errors in the training

data (see S1.3.3). Other values are added to explore the effect of errors on the

OptFed results.
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S1.3.2 Compare OptFed results with initial models

For all simulated experimental datasets we use OptFed to fit the model, including

selecting relevant parameters. For each initial model, we calculate the optimal feed

rate and temperature with OptFed and with RSM (exponential feeds are used to

reduce the computational effort and make OptFed results comparable to RSM re-

sults). This gives us three sets of control variables (µf and T ), and for each one,

we calculate the final product-to-biomass yield using the initial model. The ratio

between the optimum achieved by using the model prediction and the real optimum

for the initial model is used as the performance indicator for the RSM and OptFed.

rOptFed
opt =

YP
X

(
µOptFed
f,opt , TOptFed

opt

)
YP
X
(µf,opt, Topt)

rRSM
opt =

YP
X

(
µRSM
f,opt, T

RSM
opt

)
YP
X
(µf,opt, Topt)

(S4)

A ratio close to 1 means we get very close to the optimum regarding the target

variable P/X.

S1.3.3 Estimating Variance in the training data

We require sensible estimates of the expected errors to simulate meaningful experi-

mental data. This is done using the four center point runs of the training data. These

runs have identical uptake rates (feed rate is adapted to biomass concentration and

volume) but different initial biomass concentrations and volumes. We compensate

for this by calculating adjusted product and biomass concentrations for the process

i (Xi
adj and P i

adj, i ∈ P) independent of the initial biomass concentration (X0) and

the initial volume (V0). For x ∈ {X,P} we caclulate

xi
adj(t) =

xi(t)V i(t)

Xi
0V

i
0

(S5a)

and based on this the relative deviation from the mean at each time-point

xi
err(t) =

xadj(t)− 1
|P|
∑

i∈P xi
adj(t)

1
|P|
∑

i∈P xi
adj(t)

(S5b)

for each process the mean error and the variance are calculated over all measure-

ments points M

xi
err =

1

|M|
∑

tj∈M
xi
err(tj) (S5c)

s2(xi
err) =

1

|M| − 1

∑
tj∈M

(Xi
err(tj))

2 (S5d)
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and use the mean of the variance to characterize the random error expected within

a process.

s2(xerr) =
1

|P|
∑
i∈P

s2(Xi
err) (S5e)

The expected random error within one process in (S5e) is critical to fit the uptake,

growth, and production rates and the model equations. We use this to assess the

simulated validation results.

S1.4 Temperature stability

To estimate the stability of our temperature optimum we use a strategy based on

the Monte Carlo method [64–66], using the estimated relative errors of our data

determined in Section S1.3.3 (3% for biomass and 8% for product). We create

1000 disturbed datasets according to Eq. (S3) and fit each set’s model for γπ.

For each model, we calculate the optimal temperature and intervals where p % of

the maximum is reached (0 < p < 100). We now search for the maximal ratio

and the corresponding temperature we can guarantee statistically significant (α =

0.05). To do this, we determine the temperature for each ratio p where the least

number of models is outside the temperature ratio. We search for the highest ratio

(γπ(T )/γπ(topt)) where more than 95% of all processes reach this ratio at the

optimal temperature. This temperature is the stable optimum.
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S2 Supplementary Tables

Supplementary Table S1: List of parameters used throughout the manuscript. Val-

ues shows the parameter values identified by OptFed. Where no value is given, this

parameter was removed during model simplification. Increased error gives the addi-

tional fitting error (calculated as RSS, see (12)) if this parameter would be removed

as well.

Name Unit Value increased error

Parameters (fitted using training data)

Parameters of base model

cγ◦
max

maximal uptake rate g g−1 h−1 0.49

K◦
m dependence on substrate concentration g 1.0 × 10−3

cγα
min

maintenance requirement without growth g g−1 h−1 2.4 × 10−5

Kα
g growth dependent maintenance g g−1 h−1 1.0 × 10−4 142%

cγπ
max

maximal production rate g g−1 h−1 -

Kπ
m production dependence on available substrate g g−1 h−1 0.62 188%

inhibition parameter for γ◦

K◦
G substrate inhibition g L−1 89 119%

K◦
n inhibition through no. of generations -

K◦
P product inhibition g L−1 -

K◦
X biomass inhibition g g−1 -

parameters for increased γα

Kα
G increase caused by free substrate g L−1 -

Kα
n increase with increasing no. of generations -

Kα
P increase caused by product g L−1 0.11 37%

Kα
X increase caused by biomass g g−1 -

inhibition parameters for γπ

Kπ
G effect of available substrate on production g L−1 -

Kπ
n inhibition for higher no. of generations 1.5 50%

Kπ
P Product inhibition g g−1 -

Kπ
X Biomass inhibition g L−1 -

Temperature dependence for γ◦

∆G◦
cat catalytic activation energy Jmol−1 -

∆H◦
eq enthalpic (conversion of active to inactive enzyme) Jmol−1 -

T ◦
eq temperature where half the enzyme is active K -

E◦
0 hypothetical enzyme concentration K -

Temperature dependence for γα

∆Gα
cat catalytic activation energy Jmol−1 -

∆Hα
eq enthalpic (conversion of active to inactive enzyme) Jmol−1 -

Tα
eq temperature where half the enzyme is active K -

Eα
0 hypothetical enzyme concentration K -

Temperature dependence for γπ

∆Gπ
cat catalytic activation energy Jmol−1 5.2 × 104

38 %
∆Hπ

eq enthalpic (conversion of active to inactive enzyme) Jmol−1 4.8 × 106

Tπ
eq temperature where half the enzyme is active K 310

Eπ
0 hypothetical enzyme concentration K 9.8 × 10−9

Constants (physical constants and yield determined by metabolomic model

YXr
G

biomass yield per substrate g g−1 0.627

YP
G

product yield per substrate g g−1 0.652

kB Boltzmann constant JK−1 1.38 × 10−23

R Gas constant Jmol−1 K−1 8.314

h Plank constant J h 2.39 × 10−30
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Supplementary Table S2: Maximal and minimal values for all fitted parameters.

Parameter min max

K◦
m 1 × 10−15 1 × 102

K◦
X 0 1 × 104

K◦
P 0 1 × 104

K◦
n 0 1 × 104

K◦
G 1 × 10−5 1 × 104

cγ◦
max

0 1

E◦
0 0 1 × 10−5

∆G◦
cat 1 × 104 1 × 105

∆H◦
eq 1 × 105 1 × 107

T ◦
eq 300 315

Kα
g 1 × 10−6 ∞

Kα
X 1 × 10−6 ∞

Kα
P 1 × 10−6 ∞

Kα
n 1 × 10−6 ∞

Kα
G 1 × 10−6 ∞

cγα
min

0 1

Eα
0 0 1 × 10−5

∆Gα
cat 1 × 104 1 × 105

∆Hα
eq 1 × 105 1 × 107

Tα
eq 300 315

Kπ
m 0 1 × 102

Kπ
X 0 1 × 104

Kπ
P 0 1 × 104

Kπ
n 0 1 × 104

Kπ
G 0 1 × 104

cγπ
max

0 1

Eπ
0 0 1 × 10−5

∆Gπ
cat 1 × 104 1 × 105

∆Hπ
eq 1 × 105 1 × 107

Tπ
eq 300 315

Supplementary Table S3: Estimated parameters for the response surface methodol-

ogy (RSM) model according to Eqn. (11).

Parameter c cf cT cfT cf2 cT2

Value −2.11 × 102 −16.7 1.39 0.0607 −7.45 −2.30 × 10−3

p-Value 0.20 0.54 0.20 0.50 0.055 0.20
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Supplementary Table S4: Performance summary of all processes (identified by ID)

designed and analyzed in this work. For 3 temperatures, 31.0 °C (center point of

training data), 33.5 °C, and 35.8 °C (optimal temperature) the optimum was calcu-

lated with linear feed function (opt. process) and free feed function.

ID comment feed rate, f [L h−1] P [g L−1] ∆P [%] P/X [g g−1] ∆P/X [%] Xend [g L−1] V/V0

0 reference - 7.76 0.00 0.14 0.00 57.11 1.42

1 measurements - 7.67 −0.01 0.13 −0.04 58.47 1.29

T = 31.0 ◦C

2 opt process 0.02208 + 0.00377t 7.51 −3.24 0.14 0.34 55.07 1.35

5 free feed - 7.51 −3.23 0.14 0.34 55.07 1.35

T = 33.5 ◦C

3 opt process 0.02190 + 0.00443t 8.65 11.47 0.16 18.99 53.50 1.38

6 free feed - 8.65 11.48 0.16 18.99 53.50 1.38

T = 35.8 ◦C

4 opt process 0.02154 + 0.00526t 9.64 24.23 0.19 37.08 51.76 1.42

7 free feed - 9.64 24.22 0.19 37.08 51.75 1.42
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Supplementary Table S5: Distribution of random parameter values for simulated

models. The range of basic parameter values is based on the values observed in the

training data. Typically an active parameter should halve the uptake or production

rate for the highest observed values or double the maintenance. The temperature

range is selected to reflect similar behavior to the reference processes with an opti-

mum within the design space of the DoE.

Basic parameters:

cγ◦
max

uniformly distributed [0.3, 1] g g−1 h−1

K◦
m uniformly distributed [0, 1] g

cγα
min

uniformly distributed [0, 0.05] g g−1 h−1

Kα
g uniformly distributed [0, 1

2γα
min

] (g g−1 h−1)−1 (0 to 50 % of total uptake)

cγπ
max

uniformly distributed [0, 0.1] g g−1 h−1

Kα
g exponential distributed mean = 1 g g−1 h−1

Temperature (for i ∈ {µ, π, ◦}m j ∈ {max,min}) :

∆Gi
cat uniformly distributed [4 × 104, 1 × 105] mol J−1

∆Hi
eq uniformly distributed [7 × 104, 1 × 106] mol J−1

T i
eq uniformly distributed [304.15, 308.15] K

Ei
0 calculate from cγi

j
cγi

j
= γi

j(304.15) K

inhibition parameters for g

K◦
G exponentially distributed median = max(G) [g L−1]

K◦
n exponentially distributed median = max(n)

K◦
P exponentially distributed median = max(P ) [g g−1]

K◦
X exponentially distributed median = max(X) [g L−1]

parameters for increased γα

Kα
G exponentially distributed median = (max(G))−1 [g L−1]

Kα
n exponentially distributed median = max(n)

Kα
P exponentially distributed median = max(P ) [g g−1]

Kα
X exponentially distributed median = max(X) [g L−1]

inhibition parameters for γπ

Kπ
G exponentially distributed median = max(G) [g L−1]

Kπ
n exponentially distributed median = max(n)

Kπ
P exponentially distributed median = max(P ) [g g−1]

Kπ
X exponentially distributed median = max(X) [g L−1]
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S3 Supplementary Figures
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Supplementary Figure S1: Fitted Splines. The fitted splines (lines) generate

stable rates from noisy experimental data (markers). Biomass (row 1) and prod-

uct (row 2) concentrations allow the calculation of stable uptake rates (row 4)

and substrate usage rates (rows 5 - 7). Column (A) shows the repeats at the

center points, (B) other processes without substrate accumulation, and (C) pro-

cesses with substrate accumulation. In column (B) one measurement at 10 hours

is out of trend. This measurement was removed from the dataset. The fit includ-

ing this point is shown in gray.
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Supplementary Figure S2: Hyperparameter selection. The complexity of the

used error depends on the significance level (α) used in the algorithm described

in Section 2.1.2. Here we show R2, dependent on the significance level, for the

fitted uptake rate (A) and substrate-to-maintenance flux (B) and the substrate-

to-product flux (C), as well as the measured biomass and product concentrations

(D and E) and product per biomass ratio (F). While R2 for the model fit increases

with model complexity (blue), it decreases in cross-validation (red). To get the

best possible fit and avoid overfitting we choose a significance level of α = 0.2.

At this point, the highest R2 for our target variable (P/X) is reached in cross-

validation.
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Supplementary Figure S3:Model estimations for the substrate uptake rate (γ◦,

panel A, y-axis), the substrate-to-maintenance flux (γα, panel B, shades of grey),

and the substrate-to-product flux (γπ, panel C, shades of grey). Marker shapes

indicate the process’ target temperature. Marker colors indicate model error as

calculated by Eq. 13. γ◦ (A) solely depends on the substrate concentration. The

maximum uptake is reached for low substrate concentrations and is inhibited at

higher concentrations. γα (B) depends on the γ◦ and the product per biomass

ratio. Both increase the required maintenance. γπ (C) depends on three variables,

γ◦ − γα, n, and T . γ◦ − γα and the number of generations, n, are shown in (C),

the relative effect of temperature, T , is depicted in (D). The values of γπ in (C)

are shown for 31 °C. For other temperatures, they are multiplied by the relative

effect shown in (D), meaning a reduction of 34% at 25.3 °C and 25% at 27.0 °C,
an increase of 32% at 35.0 °C, and a decrease of 53% at 36.7 °C.
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Supplementary Figure S4: Reduced model predictions (lines) are compared

to measured data for product per biomass (row 1), biomass (row 2), product

(row 3), substrate (row 4), and temperature (row 5). There is a good fit for

processes without substrate accumulation (column A and B) and an adequate

fit with substrate accumulation (C).
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Supplementary Figure S5: Cross-validation. For cross-validation, the other 11

processes are used for model fitting, parameter reduction, and prediction (see

S1.2). The fitting errors increase only moderately in cross-validation (see Table

2b and compare Supplementary Figure S4).
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Supplementary Figure S6: Base feed. In addition to the substrate feed base

(12.5% NH4OH) is added to control the pH value [1]. During optimization, the

base requirement is estimated with a linear regression model based on the nine

training processes without substrate accumulation.

Supplementary Figure S7: Comparison of the predicted (non-linear) and

the experimental validation (linearized) process variables. The feed rate

(f) is shown in panel A, and the temperature (T ) in panel B. The differences in

the feed rate have a minor impact on the process performance. Figure 2 shows

that the optimum is very broad for different feed rates. Even differences in the

feed rate of 50% have a minimal effect on the predicted product-to-biomass

yield (less than 1%). On the other hand, the temperature deviations are more

detrimental, especially after 6.5 hours, they become a problem. Especially the

temperature spikes, due to handling and an undersized cooling capacity may lead

to biological changes that are not well reflected in our process model.
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Supplementary Figure S8: Flux distribution. The substrate uptake (γ◦) is dis-

tributed between production (bottom), growth (center), and maintenance (top).

This is shown for the center point of the training data (top row) and the pre-

dicted optimum (bottom row) as well as for the model prediction (left) and the

experimental rates(right). Maintenance requirements with time, while produc-

tion decreases. There is a good relation between the experimental data and the

model predictions for the center points, where a mean of all four center points

is used. For the optimum, the general trend still holds, but without repeats rate

fits are less stable. The drop in production due to unstable conditions is clearly

visible.
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Supplementary Figure S9: Validation of the predicted optimal fermenta-

tion. In addition to the panels shown in Figure 4 (A-E, H), we show the feed (D),

uptake (E), growth (F), and production (G) rate for the validation experiments.

Supplementary Figure S10: Computational validation. Comparing the yields

for all simulated processes (Ysim
P
X

) at the optimum with the predicted optimum

identified by OptFed. A ratio of 1 means that the optimum is correctly identified,

and 0 means that no production happens at the predicted optimum. For process

variation observed in the training data (bold, standard deviation of relative errors

are 3% for the biomass and 8% for the product). RSM is very stable against

variations in data, but can only reach a mean 78% of the theoretical optimum

compared to 87% with OptFed at experimental error levels. The distribution of

results is shown in Supplementary Figure S13. The creation and evaluation of

the random processes are described in Section S1.3.
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Supplementary Figure S11: Comparison of YP
X

and PV optimized pro-

cesses. Given the process constraints and fitted model in our case study, the

optimal processes are equal in YP
X

and vary less than 16% in P of each other.

Supplementary Figure S12: To estimate the possible error of missing the op-

timal temperature we add errors according to Supplementary methods S1.3.3

and calculate the temperature dependence with these modified data points 1000

times. Reducing the temperature from 35.8 °C (dotted line) to 34.9 °C (solid line)

reduced the production rate by 5%, but guarantees that the models with dis-

turbed data are all within 10% of their optimum (at significance level 0.05).

The black histogram shows the distribution of the optima while the blue and

red histograms indicate the lower and upper bounds of the area with less than

10% error. For temperatures in the gray array less than 5% of the models reach

less than 90% of their optimum. Additional methodical information is found in

Section S1.4.



Schlögel et al. Page 20 of 20

Supplementary Figure S13: Computational validation / distributions. In

addition to the mean value of the optima ratio shown in Figure S10, we see the

distribution of the ratios. For low and medium error levels OptFed the predicted

optimum is very close to he model optimum and outliers are rare.
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