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Abstract The literature on the performance evaluation of medical expert systems is 
extensive, yet most of the techniques used in the early stages of system development are 
inappropriate for deployed expert systems. Because extensive clinical and informatics expertise 
and resources are required to perform evaluations, efficient yet effective methods of monitoring 
performance during the long-term maintenance phase of the expert system life cycle must be 
devised. 

Statistical process control techniques provide a well-established methodology that can be used to 
define policies and procedures for continuous, concurrent performance evaluation. Although the 
field of statistical process control has been developed for monitoring industrial processes, its 
tools, techniques, and theory are easily transferred to the evaluation of expert systems. Statistical 
process tools provide convenient visual methods and heuristic guidelines for detecting 
meaningful changes in expert system performance. The underlying statistical theory provides 
estimates of the detection capabilities of alternative evaluation strategies. 

This paper describes a set of statistical process control tools that can be used to monitor the 
performance of a number of deployed medical expert systems. It describes how p-charts are used 
in practice to monitor the GermWatcher expert system. The case volume and error rate of 
GermWatcher are then used to demonstrate how different inspection strategies would perform. 

n JAMIA. 1996;3:258-269. 

The literature on the evaluation of information sys- 
tems and expert systems in medicine is extensive. 
Stead proposed a framework that relates five levels of 
system development to five types of evaluation stud- 
ies.’ This model explicitly recognizes routine use as a 
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phase in system development that requires validation 
and efficacy studies. Although Stead identified ran- 
domized trials, inception cohorts, and impact studies 
as appropriate evaluation techniques for this phase, 
the need to incorporate continuous performance mon- 
itoring in response to modifications, updates, or pro- 
gram fixes was not described. In a follow-up article, 
Stead examined 39 manuscripts in the context of his 
evaluation framework.* Six papers focus on systems 
in routine use; none deals with the issue of post-de- 
ployment performance monitoring. 

Van Gennip and Talmon provide a comprehensive 
compendium of the evaluation experiences from the 
European Advanced Informatics in Medicine pro- 
gram? In this collection, Talmon and van der Loo list 
684 evaluation studies related specifically to medical 
expert systems.4 None of the studies in the compen- 
dium addresses the problem of the continuous eval- 
uation of expert systems after they have been de- 
ployed into routine daily use. 

Estimates from traditional information systems devel- 
opment literature suggest that the maintenance phase 
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of a deployed system consumes as much as 60% of 
information systems resources within large compa- 
nies.5 In describing a series of experiments in the long- 
term maintenance of the QMR knowledge base, Giuse 
states: 

Computerized medical knowledge bases must be re- 
vised constantly, and can never be considered com- 
pletely finished. . . Consequently, even the best 
medical knowledge bases are subject to obsoles- 
cence unless a careful maintenance and updating 
process is implemented.6 

For knowledge-based systems, Giuse’s findings suggest 
that continued knowledge-base maintenance can itself 
require significant additional maintenance resources. 

If the on-going maintenance of an expert system is an 
unending, resource-intensive task, techniques to mini- 
mize these expensive activities are highly desired. How- 
ever, the need to minimize the cost of long-term main- 
tenance should not compromise the need to ensure that 
an expert system is performing adequately. Since de- 
ployed systems continue to undergo constant changes in 
response to errors, new requirements, or additional 
knowledge, continuous performance-monitoring tech- 
niques must be implemented and supported. The ques- 
tion we examine here is: What tools and techniques are 
available to design efficient monitoring schemes that re- 
sult in a quantifiable level of confidence in an expert sys- 
tem’s current level of performance? 

Statistical process control provides both a theoretical 
framework and a set of practical techniques for address- 
ing this question. Statistical process control was devel- 
oped to interpret sources of variability in manufacturing 
processes and outputs. Because of this heritage, statistical 
process-control texts and practitioners use manufactur- 
ing terms such as producer, buyer, and defect. These 
terms can be readily translated into expert system (pro- 
ducer), clinician (buyer), and expert-system error (de- 
fect). Because of this correspondence, statistical process- 
control techniques developed for concurrent monitoring 
of the quality and acceptability of manufactured prod- 
ucts can be used to monitor the quality and acceptability 
of expert-system output. 

In this overview paper, we describe the use of statistical 
process-control techniques to monitor the performance of 
expert systems that are in daily use. We show how pro- 
cess control charts can be used as a tool for monitoring 
and detecting significant changes in expert-system per- 
formance over time. In addition, we show how statistical 
sampling inspection plans can be used to determine the 
frequency and intensity of post-deployment re-evalua- 
tion studies that must be performed to estimate an expert 
system’s current error rate. We conclude by providing 
some initial guidance on the proper selection of these 
techniques in various clinical settings. 

The GermWatcher expert system is used to illustrate 

these techniques. GermWatcher is an expert system de- 
signed to evaluate positive microbiology cultures for po- 
tential nosocomial infections.” GermWatcher encodes 
the culture-based criteria of the Centers for Disease Con- 
trol and Prevention’s National Nosocomial Infection Sur- 
veillance System. GermWatcher is in full production at 
two academic hospitals; the p-chart example in this re- 
view is in routine use at Washington University; the in- 
spection sampling examples have not been implemented. 

Statistical Process Control Charts 

All complex processes and systems exhibit variation. 
Detecting and explaining variation are the fundamen- 
tal concepts in statistical process control. Based on 
fundamental statistical concepts combined with prac- 
tical heuristics, a wide variety of tools have been cre- 
ated to examine variation in manufacturing processes. 
Statistical process-control methods have been devel- 
oped to detect two dissimilar sources of variation: 

n Common-cause or controlled variation refers to the 
ever-present, small, random changes due to un- 
known causes. Common-cause variation produces 
a stable and consistent pattern of variation over 
time. A system or process that exhibits only com- 
mon-cause variation is said to be in the state of sta- 
tistical control. 

n Special-cause or uncontrolled variation refers to a 
sustained significant change that may have one or 
more “assignable” causes. Special-cause ‘variation 
produces a pattern of variation that changes over 
time. A system or process that exhibits special-cause 
variation is said to be out of the state of statistical 
control. 

For systems in statistical control, experience can be 
used to predict future system behavior with a level of 
confidence determined from basic statistical princi- 
ples; for systems not in statistical control, experience 
cannot be used to predict future system behavior us- 
ing any well-founded analytic methods. Note that a 
system in statistical control still may be producing 
output that is unacceptable according to performance 
specifications or tolerances. The existence of statistical 
control only implies that the system’s behavior is suf- 
ficiently stable that future system output should re- 
main within a statistically predictable range. 

Distinguishing between common-cause and special- 
cause variation is essential for improving the behavior 
of the observed system or process. When special-cause 
variation is present, efforts to discover an assignable 
source of variation must occur before further process 
improvements can be achieved. But when common-- 
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Figure 1 X-/R and X-/s Shewhart plots of the number 
of days from the time that a culture specimen is collected 
until the culture result is finalized by the microbiology 
laboratory and is processed by GermWatcher, from 
March 1993 to June 1994. Three standard deviations were 
used for all control limits. UCL = upper control limit, 
LCL = lower control limit. 

cause variation is present, new processes or re-engi- 
neered systems must be developed to further improve 
system behavior. Thus, the tools used to improve pro- 
cesses or system output differ greatly in the presence 
of special-cause or common-cause variation. 

The Shewhart control chart is the visualization tool 
most widely used to distinguish common-cause vari- 
ation from special-cause variation. Different versions 
of the Shewhart chart are used to plot continuous 
measurement data versus discrete counts or values 
derived from discrete counts, such as percentages. The 
Shewhart chart versions most widely used in manu- 
facturing are the X/R (average and range) chart for 
monitoring continuous data measurements and the p- 
chart for monitoring the fraction of product rejected 
during inspection, a derived value based on discrete 
counts. A less common variation of the X/R chart is 
the x/s (average and standard deviation) chart. 

In this section, we describe the construction and use 
of the X/R, X/s, and p-charts. We then illustrate the 
use of p-charts to monitor the concurrent performance 
of the GermWatcher expert system. P-charts, control 
limits, and tests for special-cause variation were ana- 
lyzed using JMP Version 3.1 by SAS Institute, Inc. 
(Cary, NC). 

X/R and X/s Charts 

Consider a manufacturing process that produces an 
item with measurable dimensions. Due to known and 
unknown differences in materials, machines, opera- 
tors, and processes, each manufactured item will have 
slightly different measurements. The X/R and x/s 
Shewhart charts divide the continuous output from 
the manufacturing process into subgroups or samples. 
Measurements taken from each subgroup are sum- 
marized by a subgroup mean and range (highest 
value minus lowest value) for X/R plots or by a sub- 
group mean and standard deviation for X/s plots. 
These summary statistics are plotted on a control 
chart (Fig. 1). As long as the process remains stable, 
the subgroup statistics also remain fairly constant. 
However, if the process is not stable, a plot of the 
subgroup statistics reveals one of a small number of 
detectable patterns. Later in this review, we describe 
a set of common patterns used to detect processes that 
are not in statistical control (see Detecting Changes: 
The Western Electric Rules, below). 

Control limits, calculated using the same data that 
generate the subgroup statistics, help determine when 
a process is markedly out of control. Control limits 
are expressed as an upper control limit (UCL) and a 
lower control limit (LCL). Three standard deviations 
are traditionally used for calculating UCL and LCL. 
The choice of the size of the control limits is a balance 
between statistical theory and practical experience. 
Narrower limits have an increased ability to detect 
when a process is out of control (increased sensitivity) 
but also have an increased risk of erroneously infer- 
ring a stable process to be out of control (decreased 
specificity). The calculation of control limits for 
means, ranges, and standard deviations is straightfor- 
ward and has been presented elsewhere.‘,” Most sta- 
tistical process control books provide tables of the 
constants used in calculating control limits. These ta- 
bles reduce the statistical computations to simple 
equations that can be solved easily on the manufac- 
turing floor. 

Equations for UCL and LCL are derived from for- 
mulas that depend on the normal distribution. How- 
ever, extensive empiric simulation studies have 
shown that the use of these formulas in many mark- 
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edly non-normal distributions, such as the uniform, 
triangular, and exponential distributions, does not al- 
ter the performance of the charts significantly as long 
as subgroups contain 5 or more measurements.” 
Thus, X/R and X/s process control charts are ex- 
tremely robust methods to monitor even data that do 
not follow a normal distribution pattern. 

Figure 1 illustrates the use of X/R and x/s process 
control charts to monitor the number of days from the 
collection of a culture specimen until the culture result 
is finalized by the microbiology laboratory and is 
processed by GermWatcher. This plot does not pro- 
vide information on GermWatcher’s performance di- 
rectly, but it does provide information on the timeli- 
ness of the expert-system output in the field. 
Although the mean values are in statistical control, the 
range and standard deviation exhibit many patterns 
that indicate a lack of statistical control (see Detecting 
Changes: The Western Electric Rules, below). 

P-Charts 

X/R and X/s charts are used for monitoring changes 
in continuous variables. A second class of measure- 
ments based on counts of the occurrence of some at- 
tributes, or attribute data, is more commonly used in 
medicine’2-‘6 and is more appropriate for monitoring 
expert-systems performance. Measurements based on 
counts are monitored using the p-chart, np-chart, c- 
chart, or u-chart; each variation has a specific setting 
in which it is best used. We focus on the p-chart be- 
cause it is the most versatile and most widely used. 

The p-chart was developed to monitor the rate of re- 
jected product, also called the fraction defective. If in- 
specting an output is to result in classifying a product 
as accepted or rejected, then the p-chart is the most 
appropriate process-control chart. The fraction re- 
jected, denoted by p, is the ratio of the number of 
rejected articles divided by the total number of in- 
spected articles. The percent rejected, denoted as 100p, 
is 100 times the fraction rejected. Although calcula- 
tions require the use of fraction rejected (p), it has 
become customary to plot p-charts using the percent 
rejected (100p). 

P-charts are constructed by inspecting a sample for 
defects or nonconformance with specifications. The 
most efficient strategies for defining samples for in- 
spection are described below (see Inspection Sampling 
Plans). For each sample i, the number of defective ar- 
ticles divided by the total sample size is pl, the frac- 
tion rejected for that sample. P-charts plot p, versus i 
(Fig. 2). In general, p-charts do not require that the 
number of articles inspected in each sample be equal. 

Figure 2 Shewhart p-chart of the monthly disagree- 
ment rate between GermWatcher output and the infec- 
tion control nurses from February 1993 to June 1994. 
Three standard deviations were used for all control lim- 
its. Asterisk denotes where the data set was divided into 
independent sequences based on two or more points 
greater than 3 standard deviations from the mean (West- 
ern Electric Rule 2 in Table 2). Averages, UCLs, and LCLs 
for each sequence were calculated separately. 

However, since the calculation of control limits is sim- 
plified with equal sample sizes, many authors use the 
average sample size as a simplifying assumption 
when different sample sizes are present. 

The binomial distribution forms the statistical basis 
for calculating the UCLs and LCLs in p-charts. Like 
X/R and X/s charts, three standard deviations from 
the mean fraction rejected rate is a frequently used 
limit. As in the previous charts, this limit is a balance 
between competing goals. Other limits may be used 
to balance the probability of incorrectly inferring the 
existence of assignable causes of variation when none 
exists (reduced specificity) versus the cost of not de- 
tecting assignable causes of variation when they are 
present (improved sensitivity). 

Detecting Changes: The Western Electric Rules 

Control charts are used to detect processes that exhibit 
special-cause variation. Different deficiencies in a pro- 
cess cause different recognizable patterns to appear in 
a control chart. Although many statistical and heuris- 
tic rules for detecting special causes have been set 
forth, the most widely used set of basic rules was de- 
veloped by managers of the Western Electric Tele- 
phone Company (now AT&T) in the 1950s.” Table 1 
lists the 15 most common control-chart patterns de- 
scribed by the Western Electric investigators. Table 2 
lists operational definitions for the eight basic Western 
Electric rules. If multiple rules are used, any positive 
rule indicates a significant change or loss of process 
control in the measured process. The Western Electric 
rules do not require complex pattern recognition and 
therefore can be easily applied by nontechnical per- 
sonnel. 
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Table 1 

The Western Electric Control Chart Patterns 

Pattern Name 
(alphabetical order) Pattern Description 

Cycles 

Freaks 

Gradual change in 
level 

Grouping or bunching 

Instability 

Interaction 

Mixtures 

Natural pattern 

Stable forms of mix- 
ture 

Stratification 

Sudden shift in level 
Systematic variables 

Tendency of one chart 
to follow another 

Trends 

Unstable forms of mix- 
ture 

Short trends that occur in repeated 
patterns 

Presence of a single measurement 
greatly different from the others 

Progressive and sustained differ- 
ence in measurements in a single 
direction 

A sudden clustering of measure- 
ments all or most quite close to- 
gether 

Unnaturally large fluctuations with 
erratic ups and downs 

Tendency of one variable to alter 
the behavior of another 

Measurements that tend to fall near 
the high and low edges with an 
absence of normal fluctuations 
near the middle 

Stable pattern without trends, sud- 
den shifts, erratic ups and 
downs; balanced 

Presence of more than one distribu- 
tion, each being in balance 

A form of stable mixture character- 
ized by an artificial constancy 
that hugs the centerline 

A positive change in one direction 
Any predictable pattern; natural 

fluctuations are unpredictable 
Point-to-point or level-to-level cor- 

respondence in changes between 
two supposedly unrelated control 
charts 

A continuous movement up or 
down; a long series of points 
without a change of direction 

A form of mixture caused by sev- 
eral distributions that are shifting 
or changing with respect to each 
other 

Modified from AT&T Statistical Quality Control Handbook. 
Charlotte, NC: Delmar Printing, 1956. 

Using P-Charts to Monitor GermWatcher 
Performance 

GermWatcher is an expert system that uses the cul- 
ture-based definitions of the Centers for Disease Con- 
trol and Prevention’s National Nosocomial Infection 
Surveillance System to classify positive microbiology 
cultures as potential nosocomial infections. Two ex- 
tensive performance validations of the program have 
been described elsewhere.‘,’ 

GermWatcher’s design includes a means of tracking 
cultures when an infection control nurse disagrees 

with the classification assigned to those cultures by 
the expert system. In a previous paper, we described 
the use of the rate of nurse disagreement as a useful, 
inexpensive, indirect measure of GermWatcher’s per- 
formance.8 We use the monthly nurse disagreement 
rate to illustrate the use of p-charts and the Western 
Electric rules. 

The problem we address in this use of statistical pro- 
cess-control charts is how to ensure that the program 
modifications constantly being made to the Germ- 
Watcher expert system do not result in a deterioration 
of its performance. Although new functionality is ex- 
tensively tested in controlled laboratory conditions 
before release, we seek sound methods for determin- 
ing if some unforeseen interaction in the deployed set- 
ting will result in reduced rather than improved 
expert-system performance. 

Figure 2 plots the monthly nurse disagreement rate 
for the first 17 months of GermWatcher’s deployment. 
This period is illustrated because improvements to 
early versions of the program were being rapidly de- 
veloped and implemented. 

During the period of time plotted in Figure 2, Western 
Electric Rule 2 (Table 2) was triggered at two time 
points. When the rule was triggered, a new segment 
or interval was created, and new mean and upper/ 
lower control limits were calculated, resulting in three 
intervals. Based on the information presented in Fig- 
ure 2 and the results of the Western Electric rules for 
special causes, we conclude that the GermWatcher 
expert system had a sustained period of special-cause 
variation caused by multiple releases of the software, 
which resulted in significant improvement in expert- 
system performance. As of August 1994, the program 
has remained in statistical control. 

Based on two extensive formal evaluations, Germ- 
Watcher’s performance (3.5% error)8 is well within the 
acceptable specification range (less than 15% error) re- 
quired by our domain experts. Because our continu- 
ous monitoring of the nurses’ disagreement rate re- 
mains in statistical control, we have provided a 
significant level of confidence that the program’s per- 
formance continues to remain well within the accept- 
able range. 

Sampling Inspection Plans 

The nurses’ disagreement rate is an indirect indicator 
of GermWatcher’s true performance. Only a more for- 
mal blinded evaluation using an infectious disease 
physician as the reference standard can provide in- 
formation on the expert system’s true performance. 
However, formal evaluation studies using highly 
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skilled personnel are extremely resource intensive. 
Therefore, we require a sound methodology to deter- 
mine the most efficient procedures for monitoring the 
true performance characteristics of the expert system. 
We introduce statistical inspection sampling as one 
approach for examining the trade-offs between mini- 
mizing the use of expensive resources and maximiz- 
ing the error-detection rate provided by different per- 
formance-monitoring schemes. 

The evaluation of quality by inspecting 100% of the 
product is called screening inspection; inspecting some 
but not all of the product is called sampling inspec- 
tion.” In sampling inspection, the sequence or meth- 
ods used to determine which product to inspect is 
called an acceptance plan. A perfect acceptance plan 
would enable the buyer to accept all nondefective 
items and to reject all defective items. In medical 
expert systems terms, a perfect acceptance plan would 
ensure that the clinician receives only correct results 
and that all incorrect results would be either rejected 
or corrected. Although 100% inspection is the only 
way to ensure complete separation of correct from in- 
correct results, total-inspection plans are difficult to 
realize in actual practice. If automated review is not 
possible, 100% inspection is extremely expensive and 
frequently subject to error due to human fatigue. 

Sampling inspection plans examine only a portion of 
the available product. Two major classes of inspection 
plans are lot-by-lot plans and continuous plans.19 Lot- 
by-lot plans are used when items to be inspected are 
produced as meaningful aggregates or lots. A sample 
is drawn from the lot to determine the acceptability 
of the entire lot. In continuous sampling inspection, 
current inspection results are used to determine 
whether sampling inspection or 100% inspection is to 
be used for the next set of articles. In using these tech- 
niques for monitoring expert system performance, the 
ability to use statistical theory to calculate the average 
rate of defects (expert system errors) that can be de- 
tected by alternative inspection plans is of particular 
interest. The goal of these techniques is to use sam- 
pling inspection plans that provide a quantifiable con- 
fidence level in estimating system performance and 
that minimize the cost of system monitoring. 

An Overview of Acceptance Sampling 

Acceptance inspection refers to the examination of a 
sufficient quantity of product to provide a basis for 
action. Key actions are accepting the product for the 
user, rejecting the product, or repairing the defects. 
Since all manufacturing processes produce some de- 
fective product, the goal of acceptance inspection is to 
detect when a predefined acceptable quality limit has 

Table 2 n 

The Basic Western Electric Rules 

Test 1 A single point falls outside of the 3 sigma limit 
Test 2 Two out of three successive points fall greater than 2 

sigma or beyond 
Test 3 Four out of five successive points fall greater than 1 

sigma or beyond 
Test 4 Eight successive points fall on one side of the center- 

line 
Test 5 Six points in a row steadily increasing or decreasing 
Test 6 Fourteen points in a row alternating up and down 
Test 7 Fifteen points in a row above and below the center 

line, all within 1 sigma 
Test 8 Eight points in a row on both sides of the center 

line, none within 1 sigma 

Modified from AT&T Statistical Quality Control Handbook. 
Charlotte, NC: Delmar Printing, 1956, and from Sal1 J, Ng K, 
Hecht M, Tilley D, Potter R. JMP, Cary, NC: SAS Institute, 1994. 

been exceeded. A sampling plan establishes a sample 
size, denoted by n, and a limit called the acceptance 
number, denoted by c, which defines the maximum 
allowable number of defects in a random sample 
drawn from a lot. The acceptance number is chosen 
according to the likelihood that this number of defects 
would be seen in a sample drawn from a lot of size 
N with a true defect rate less than or equal to the 
predefined quality level. As n/N decreases (the sample 
size becomes a smaller proportion of the lot size), the 
two key elements of a sampling plan, the sample size 
and the acceptance number, become independent of 
the lot size. 

A plot of the likelihood of rejecting a sample versus 
the true defect rate for various acceptance plans is 
called an operating characteristic (OC) curve. Figure 
3 illustrates a set of OC curves for four plans with 
different sample sizes (n = 77,130,177,222) and differ- 
ent acceptance numbers (c = 0, 1, 2; 3). 

The perfect sampling plan would accept all lots when 
the true defect rate was less than the prespecified limit 
and would reject all lots that exceeded this limit (the 
“ideal” plan in Figure 3). The probability that the ob- 
served number of defects in a sample exceeds the ac- 
ceptance number when the sample is drawn from a 
lot with a known defect rate is calculated exactly by 
the binomial distribution. When the true defect rate is 
small, this probability is approximated using the Pois- 
son distribution.” It is from the OC curves that one 
can assess the degree of protection against product 
defects for specific sampling plans. All four plans il- 
lustrated in Figure 3 are designed to reject lots drawn 
from a population with a true defect rate of more than 
3.0% with probability = 0.90. The equivalent interpre- 
tation is that all four plans incorrectly accept lots 
drawn from a population with a true defect rate of 
more than 3.0% with probability = 0.10. 
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Figure 3 Operational characteristic (OC) curves for 
four sampling acceptance plans. For each plan, the prob- 
ability of accepting a lot (P,) based on inspecting a sam- 
ple of n specimens drawn randomly from a population 
with a true percent defective rate 100p) is approximated 
by a Poisson distribution. Four plans which accept lots 
with p > 3.0% with I’, < .05 are shown. An ideal sampling 
plan always accepts lots (I’. = 1) when p 5 parceFtable and 
always rejects lots (P, = 0) when p > pacceptable. The ideal 
plan for pacceptable = 3.0% is illustrated, although no such 
sampling plan can be created in practice. 

The shape of the OC curve for a given sampling plan 
leads to two additional concepts: the producer’s risk 
and the consumer’s risk.17 The producer’s risk is de- 
fined as the probability or risk of rejecting product 
when the sample quality actually is acceptable. A plan 
that incorrectly rejects product when the true defect 
rate is acceptable causes unnecessary rework or waste 
by the producer, which increases the cost of producing 
product. The consumer’s risk is defined as the prob- 
ability or risk of accepting product when the sample 
quality actually is unacceptable. A plan that incor- 
rectly accepts product when the true defect rate is 
unacceptable does not provide the quality protection 
desired by the consumer. The goal of inspection- 
sampling plans is to minimize both quantities. Table 
3 illustrates the difference in producer’s risk and con- 
sumer’s risk for the four plans in Figure 3. 

Lot-by-Lot Inspection Plans 

Published sampling plans have been described in the 
following ways”: 

n Acceptable quality level (AQL)-the highest per- 
cent defective that is acceptable as a process aver- 
age. AQL describes the maximum percent defective 
that will be accepted regularly by the sampling plan 
or the maximum percent defective for which the 
probability of acceptance is very high. A plan de- 

scribed as having a 3% AQL means that a process 
with a true defect rate of 3% will result in samples 
that will be accepted in most cases (usually 95% 
acceptance). AQL embodies a producer’s risk per- 
spective. 

n Lot tolerance percent defective (LTPD)- the quality 
above which there is a small chance that a lot will 
be accepted. LTPD describes the maximum allow- 
able percent defective for which the probability of 
acceptance is very low. A plan described as having 
a 3% LTPD means that a process with a true defect 
rate of 3% will result in samples that would be re- 
jected in most cases (usually 95% rejection). LTPD 
embodies a consumer’s risk perspective. 

n Point of control-the quality rate in which a sam- 
ple has a probability of acceptance of 0.50. Point of 
control is infrequently used as a description of a 
sampling plan. 

n Average outgoing quality limit (AOQL)-the up- 
per limit on quality that may be expected in the 
long run when all rejected samples are subjected to 
100% inspection, with all defective articles removed 
and replaced by good articles. AOQL plans require 
that rejected samples can have their defects re- 
moved or corrected. AOQL defines the worst av- 
erage quality that can exist in outgoing product, 
and it attempts to combine both the producer’s and 
consumer’s risk perspectives. It can only be used in 
settings in which all defective product in a rejected 
sample can be either removed or repaired by the 
producer before releasing that sample to the con- 
sumer. 

Single sampling rejects or accepts a lot based on one 
sample from a set of product. Double sampling defers 
rejecting a lot if the number of defects in a first sample 
is insufficient for acceptance but not large enough for 
outright rejection; a second sample is then obtained, 
and the total number of defects in both samples is 
used to make a final decision. Thus, there are four 
possibilities with double-sampling plans”: 

1. Acceptance after the first sample 

2. Rejection after the first sample 

3. Acceptance after the second sample 

4. Rejection after the second sample 

Multiple-sampling plans generalize the potential to 
defer the acceptance or rejection of a sample until 
three or more samples are obtained. Table 4 illustrates 
the sampling procedures for single-, double-, and 
higher-order lot-by-lot sampling plansI On average, 
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Table 3 n 

Producer’s and Consumer’s Risk in the Four Single Lot-by-Lot Acceptance Sampling Plans Shown in 
Figure 3. Assumes a Prespecified Quality Limit (Lot Tolerance) = 3.0% 

n = 77 n = 130 n = 177 n = 222 
Inspection Plan c=o c=l c=2 c=3 Ideal Plan 

Producer’s risk Lots l.O%> defective rejected 54 .37 .26 .19 0 
Lots 2.0% defective rejected .79 .73 .69 .65 0 
Lots 2.5”/u defective rejected .88 34 .81 .80 0 

Consumer’s risk Lots 3.5”/0 defective accepted ,067 ,058 ,054 .050 0 
Lots 4.0% defective accepted .046 ,034 ,028 .023 0 
Lots 5.0% defective accepted ,021 ,011 .007 ,005 0 

for the same level of quality protection, multiple-sam- 
pling plans require less inspection than do single- or 
double-sampling plans. However, multiple-sampling 
plans are more difficult to put into operation and can 
cause unpredictable variability in the inspection 
workload. 

Continuous Inspection Plans 

Continuous-sample plans are appropriate when there 
is no natural aggregation of product into lots, such as 
in conveyor-line production. Because most continu- 
ous-inspection procedures remove defective articles 
from production, nearly all continuous-inspection 
plans are of the AOQL type. Four major approaches 
form the basis for most continuous-sampling plans. 
Figure 4 illustrates these four standard approaches. 
Single-sampling plans such as CSP-1 are easy to de- 
scribe and simple to implement, but they can reject a 
significant number of samples that actually are within 
the desired performance limits, thus resulting in more 
100% inspection than is necessary. Double-sampling 
plans, and their extension to higher order sampling 
plans, are more complex to implement and may oc- 
casionally require larger sampling sizes; however, 
they are more efficient on average and are more dis- 
criminating in their ability to accept samples that truly 
meet specifications and to reject samples that truly do 
not. CSP-2 differs from CSP-1 in that 100% inspection 
is not initiated when a single defect is found but is 
invoked only if a second defect occurs within the next 
i units. CSP-3 refines CSP-2 by including an inspection 
of the next four units to protect against a sudden run 
of unacceptable output. If none of these units is de- 
fective, sampling continues as in CSP-2. CSP-M allows 
for successive reduction in sampling frequency if pre- 
vious sampling does not reveal any defects. When a 
unit is rejected, inspection occurs at the previous sam- 
pling frequency. Any number of sampling frequency 
levels may be provided. As with lot-by-lot inspection 
plans, differences in the discriminating ability of al- 
ternative sampling plans are described using OC 
curves. 

Using Inspection-Sampling Concepts to Monitor 
GermWatcher’s Performance 

Due to their historical development in the manufac- 
turing sector, statistical process control techniques 
such as inspection sampling are concerned with de- 
tecting defects in manufactured goods. If expert-sys- 
tem output is considered to be the “finished product,” 
the theory and techniques of inspection sampling can 
be used without modification in expert-system per- 
formance monitoring. We use these techniques to de- 
termine an inspection plan that could be used by an 
infectious disease physician (our reference standard) 
to ensure that GermWatcher’s performance remains 
acceptable. The goal is to efficiently use the physi- 
cian’s time to review GermWatcher output while pro- 
viding some level of certainty that the expert system’s 
output has not exceeded a predetermined error rate. 

From previous studies, GermWatcher’s error rate was 
determined to be 3.5%.8 For this example, we examine 
both lot-by-lot and continuous sampling methods. 
Lot-by-lot plans consider each week or month to be a 
single lot that contains “defects” in the form of mis- 
classified cultures. Continuous plans consider the 
steady daily stream of cultures to come from an on- 
going production process for which the creation of 

Table 4 n 

Basic Outline of Multiple Lot-by-Lot Sampling 
Plans. An Infinite Number of Levels Are Possible 

Combined Samples 

Sample Acceptance Rejection 
Sample Size Size Number Number 

First n, nl Cl rl 
Second n, n, + n, C2 rz 
Third n3 n, + nz + n3 C3 r3 
Fourth n, n, + n, + n3 + n, G rr 
Fifth n5 n, + n, + n3 + n, + i-ii G l-5 
Note: c, < cz < c3 < C~ < c5 and c, < r,, for all i 

Modified from Bowker AH, Lieberman GJ. Engineering Statis- 
tics, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1972; 511. 
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weekly or monthly batches is an artificial aggregation 
of results. Since inspection corrects identified errors, 
we describe our alternative sampling plans in terms 
of AOQL performance. 

The microbiology laboratory processes approximately 
2,500 positive cultures per month; approximately 350 
cultures are finalized each day. Using GermWatcher’s 
current average error rate of 3.5% and assuming that 
we seek to maintain no less than 5.0% AOQL from 
our inspection sampling plan, we have the informa- 
tion required to use the Dodge & Romig sampling 
inspection tables to calculate the most efficient single 
and double sampling plans that match these perfor- _ -_ 
mance characteristics.” 

CSP- I 
l”!qlCCl IOO%~ - 

Dl2lc~tVC 
found I" 1~ I 
units 
inspected’! 

units 

inspected? I 

Inspecl~l 

sampling utc / 

f3 Defective 
found? 

NO YCS 

Table 5 presents the values for sample size (n) and 
acceptance number (c) for single and double sampling 
plans based on lots formed from monthly and weekly 
culture results. Table 5 also includes the lot tolerance 
per cent defective (p,) with a consumer’s risk proba- 
bility of O.lO-the error rate that has a 10% chance of 
being incorrectly accepted given the proposed sam- 
pling plan. 

Table 5 illustrates a number of key issues in selecting 
effective and efficient inspection plans. Although sin- 
gle inspection plans are the easiest to implement, they 
require more inspection on average than do double or 
multiple inspection plans. For example, the monthly 
single inspection plan requires that the infectious dis- 

CSP-3 CSP-M 

Inspect 100% f 

Defective 

found in last 

II. 

units 
inspected? 

NO Yes 

+ 

Figure 4 Four major classes of continuous sampling plans. Multi-level plans, such as CSP-2, CSP-3, and CSP-M, can 
be extended to multi-level plans of arbitrary depth. Modified from Grant EL, Leavenworth RS. Statistical Quality 
Control, 6th ed. NY McGraw-Hill, 1988. 
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Table 5 l 

Single and Double Lot-by-Lot Sampling Inspection Plan for GermWatcher. Assumes Average Process 
Error = 3.5% with Desired AOQL = 5.0% 

Single Sampling Double Sampling 

Lots N n C PI nl Cl n, + n, C2 PI 

Monthly 2500 75 6 13.9% 50 2 180 14 12.0% 
Weekly 350 26 2 20.0% 27 1 65 6 16.6% 

N = lot size; n, n,, n2 = sample size; c, c,, c2 = acceptance number; I’, = lot tolerance percent defective with consumer’s risk = 0.10. 

ease physician examine 75 cultures from each 
monthly lot, whereas the double inspection plan usu- 
ally requires the physician to examine only 50 cultures 
but occasionally to examine 180 cultures from each 
monthly lot. In addition, double inspection plans offer 
more protection against accepting lots with higher- 
than-acceptable defective rates. For example, the 
weekly single inspection plan has a 10% chance of 
accepting a lot with 20.0% defects, whereas the 
weekly double inspection plan has the same chance 
of accepting a lot with only 16.6% defects. 

For continuous sampling, Table 6 illustrates the sam- 
ple sizes required using a two-, three-, and four-level 
sampling plan at three AOQL levels using a fixed 
sample fraction f = 0.5. An inspection plan with 
AOQL = 4.0% ensures that the inspection process will 
allow no more than 4.0% defects, over the long run. 
In this example, if a three-level sampling plan were 
implemented, the infectious disease physician initially 
would inspect 19 consecutive cultures. If no cultures 
were misclassified, the physician would randomly 
sample only 50% cultures (j= 0.5). If none of the next 
19 sampled cultures were misclassified, the physician 
would randomly sample only 25% cultures (f’ = 0.25). 
If none of the next 19 sampled cultures were misclas- 
sified, the physician would randomly sample 12.5% 
cultures (f” = 0.25). When a misclassified culture was 
found in a sample, the physician would reinstitute 
sampling at the next higher sampling frequency until 
19 cultures were seen without misclassification. 

Selecting the Appropriate Monitoring 
Methodology 

Table 5 illustrates the use of single and double lot-by- 
lot inspection sampling for GermWatcher. Table 6 il- 
lustrates the use of multi-level continuous monitoring. 
Given these results, is the choice of lot-by-lot or con- 
tinuous sampling arbitrary? If not, how should one 
choose the approach to use? 

Inspection sampling theory provides no guidance for 
selecting the most appropriate sampling plan. Do- 
main considerations usually favor one approach over 

the other. In settings in which the cost of inspection 
is high or inspected items must be destroyed, plans 
that minimize the number of items inspected are fa- 
vored, usually resulting in multi-stage sampling 
plans. In settings in which the impact of accepting 
substandard output is high, plans that minimize the 
consumer’s risk usually are preferred. In our setting, 
clinical considerations determine if lot-by-lot or con- 
tinuous sampling plans are appropriate. 

GermWatcher’s role is to provide data for a historical 
database of potential nosocomial infections that can 
be used to institute new infection-control policies or 
to investigate infectious outbreaks. In its current im- 
plementation, GermWatcher’s output is not used to 
impact daily patient care, although its findings could 
lead to changes in nursing practices or other process 
changes. GermWatcher analyzes cultures that have 
been finalized by the microbiology laboratory, a pro- 
cess that usually takes approximately one week. By 
that time, the patient has received therapy based on 
preliminary culture results. GermWatcher does not at- 
tempt to recommend antibiotic therapies or any other 
aspect of concurrent patient care. The infectious dis- 
ease physician could easily follow a monthly lot-by- 
lot inspection plan because it is possible to correct any 
misclassified cultures days or weeks after the initial 
classification by GermWatcher. Although we have also 
presented a weekly inspection plan in Table 5, a once- 
a-month inspection plan would allow the physician to 
schedule a portion of only one day per month for in- 
spection sampling while ensuring a high level of 

Table 6 n 

The Number of Cultures to be Inspected for Two-, 
Three-, and Four-Level Continuous Sample Plans 
with Sampling Fraction f = 0.5. AOQL levels of 
4.0%, 5.0%, and 7.5% are shown 

AOQL % defective 2 levels 3 levels 4 levels 

4.0% 14 19 22 
5.0% 11 15 18 
7.5% 6 9 11 

From Grant EL, Leavenworth RS. Statistical Quality Control, 6th 
ed. New York: McGraw-Hill, 1988; 526. 
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expert-system performance monitoring. If a sample is 
rejected, the physician could then review the entire 
month’s output at that time. In our setting, we have 
proposed, but not implemented, the monthly double 
sampling inspection plan to our domain expert. 

Unlike GermWatcher, many medical expert systems 
are used to provide timely patient-specific informa- 
tion that may be used to alter patient management. If 
these systems begin to produce unacceptable rates of 
incorrect output, this situation must be detected and 
corrected immediately. In this setting, continuous 
daily inspection sampling plans are preferred. 

In both lot-by-lot and continuous inspection, the 
amount of expert-system output (cultures for 
GermWatcher) that must be examined for evaluation 
purposes is only a small fraction of the total. Hence, 
great improvement in efficiency can be gained by im- 
plementing sampling inspection plans during the 
maintenance phase of deployed clinical expert sys- 
tems. In addition, the statistical theory behind inspec- 
tion sampling allows accurate quantification of the 
risks involved in a particular sampling plan. The 
producer’s risk quantifies the likelihood that a cor- 
rectly functioning expert system will produce a sam- 
ple that is rejected during inspection; the consumer’s 
risk quantifies the likelihood that an incorrectly func- 
tioning expert system will produce a sample that is 
accepted during inspection. Based on the intended 
purpose of the expert system output and the clinical 
setting in which the expert system’s output is used, 
these risks can be discussed openly and frankly with 
the intended consumers of the expert system. Alter- 
native plans, with greater or lesser detection charac- 
teristics, can be examined based on the dangers as- 
sociated with incorrect output versus the cost of more 
extensive output monitoring. 

The statistical process control charts and inspection- 
sampling techniques introduced here cannot improve 
the impact of incorrect rules, bad assumptions, or 
other knowledge-base errors. Current manufacturing 
practices emphasize incorporating quality into all 
phases of product design and manufacturing. Inspec- 
tion sampling and process monitoring are no longer 
used as the main guardians of final quality. As in 
manufacturing, modern software engineering prac- 
tices have been developed to embed quality-improv- 
ing processes in the design, development, and imple- 
mentation of complex software systems. 

If an expert system did not undergo continuous minor 
modifications and if medical practices did not change, 
on-going monitoring of the quality of the expert sys- 
tem’s output would not be required once formal eval- 
uations demonstrated acceptable system performance. 

Like most deployed medical expert systems, neither 
GermWatcher nor medical practices have remained 
static. Thus, some method of ensuring continued qual- 
ity performance must be developed to ensure patient 
safety. Statistical process-control methods provide a 
sound and rigorous framework in which to monitor 
and describe the degree of safety and protection pro- 
vided to patients, physicians, and other consumers of 
deployed clinical expert-systems technology. 

Charlene Abrams, Carl Carpenter, Janette Coble, Tom Corcoran, 
Stephen Fly, Scott Levitt, Keith Marrs, Paul Schoening, Bridget 
Spitznagel, Edward Spitznagel, and Michael Spitznagel contrib- 
uted to multiple versions of GermWatcher. The extensive com- 
ments of the ]ournal of the American Medical Informatics Associa- 
tion reviewers are appreciated. 
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