Supplementary Data 1:

Summary of replicability issues of the nine benchmarked tools

Supplementary Data 2:

Description of performance metrics used for evaluation

Supplementary Data 3:

ScanProsite performance on our proposed test set using different motif score thresholds

Supplementary Data 4:

Paper reported performance of the benchmarked nine tools

Supplementary Data 5:

Relative difference between paper reported sensitivity and EBTD & BTD sensitivity relative to reported sensitivity. We did not compare DNABP, because DNABP simply put away a small portion of its training set and used that as test set; we did not see data leakage problem in this test set.

Supplementary Data 6:

BLAST performance on proposed test set for different E-value thresholds

Supplementary Data 7:

Five-fold cross-validation performance of BLAST on BTD-Combo dataset

Supplementary Data 8:

Benchmarked tool summary with model and feature details

Supplementary Data 9:

HMMER performance on proposed test set for different E-value thresholds

Suppleme	entary Data	1: Summary	y of replic	ability issues	s of the eleven	benchmarked tools
----------	-------------	------------	-------------	----------------	-----------------	-------------------

Tool	Issue
Local-DPP	None
DNABP	DNABR classifier software used for residue binding confidence score not currently available
iDNAProt-ES	feature index order not specified after feature selection
StackDPPred	Inconsistencies in feature extraction between code and paper
PseAAC	None
DeepDBP	Inconsistent feature count and model structure between code and paper
PDBP-Fusion	None
KK-DBP	feature index order not specified after feature selection
LSTM-CNN_Fusion	Some hyperparameters inconsistent between code and paper
PB_DBP	A lack of specified hyperparameters for the BiLSTM and final layers
PreDBP-PLMs	None

Supplementary Data 2: Description of performance metrics used for evaluation

We used three performance metrics—sensitivity, specificity, and Matthews Correlation Coefficient (MCC)—to measure the tools' performance in each evaluation experiment. These metrics are defined as follows:

Sensitivity =
$$\frac{TP}{TP+FN}$$

Specificity = $\frac{TN}{TN+FP}$
 $MCC = \frac{(TP \times TN) - (FP \times FN)}{\sqrt{(TP+FP) \times (TP+FN) \times (TN+FP) \times (TN+FN)}}$

In these definitions, TP, FP, TN, and FN represent the number of true positives, false positives, true negatives and false negatives, respectively. Sensitivity and specificity range from 0 to 1, with 1 indicating a perfect score for positive and negative sample identification, respectively and 0 indicating the worst possible score. The MCC ranges from -1 to 1; where 1 denotes a perfect classifier, -1 denotes the worst classifier, and 0 indicates a random classifier. For MCC, the minority DNA-binding class (positive) samples have been labelled as positive in all cases.

One important point to note is that we did not include the conventional metric of accuracy. This decision was made because, in our proposed benchmarking dataset BTD, the negative class significantly outweighs the positive class. The dominance of one class would make accuracy a misleading metric for evaluating the effectiveness of the tools. Moreover, accuracy is a metric which depends on the ratio of positive and negative class sizes. Thus, the accuracy value reported on a test set can be very misleading if this ratio differs significantly from the ratio of real-world positive and negative population sizes.

Supplementary Data 3: ScanProsite performance on our proposed test set using different motif score thresholds

SN	SP	MCC	Motif Score Threshold for Classification
0.5806	0.7918	0.3723	0
0.4914	0.8468	0.3606	12.173
0.3739	0.8877	0.3085	18.1818
0.2521	0.9266	0.2479	26.9988
0.1267	0.9636	0.1709	41.1368

The four non-zero motif score thresholds are actually the 20th, 40th, 60th and 80th percentile of non-zero test set motif significance scores

		Paper Reporte	d Performance	
ΤοοΙ	Test Set	Sensitivity	Specificity	МСС
Local-DPP	PDB186	0.925	65.6	0.625
DNABP	PDB14K (406 seqs put away as tes	t 0.6847	0.7241	0.409
iDNAProt-ES	PDB186	0.8131	0.8	0.613
StackDPPred	PDB186	0.9247	0.8064	0.7363
PseAAC	PDB186	0.95	0.688	0.666
DeepDBP	PDB186	0.98	0.97	0.992
PDBP-Fusion	PDB2272	0.7331	0.6685	0.5665
KK-DBP	PDB186	0.978	0.645	0.661
LSTM-CNN_Fusion	PDB2272	0.7623	0.9023	0.6463
PB_DBP	Custom Dataset from Swiss-Prot	0.975	0.945	0.92
PreDBP-PLMs	PDB186	0.974	0.835	0.796
	PDB2272	0.904	0.865	0.768

Supplementary Data 4: Paper reported performance of the benchmarked eleven tools

Supplementary Data 5: Relative difference between paper reported sensitivity and EBTD & BTD sensitivity relative to reported sensitivity.

Tool	Sensitivity				
	Paper	EBTD	Deviation (%)		
Local-DPP	0.925	0.97	4.6392		
StackDPPred	0.9247	0.965	4.1762		
PDBP-Fusion	0.7331	0.945	22.4233		
LSTM-CNN_Fusion	0.7623	0.958	20.428		

	Paper	BTD	Deviation (%)
Local-DPP	0.925	0.517	-44.1081
StackDPPred	0.9247	0.427	-53.8229
PDBP-Fusion	0.7331	0.499	-31.9329
LSTM-CNN_Fusion	0.7623	0.502	-34.1467

Note: We did not compare DNABP and PB_DBP. DNABP simply put away a small portion of its training set and used that as the test set. We did not see data leakage problem in this test set. The train and test set used by PB_DPB are not available and so, we do not know the exact limitations of their dataset. **Supplementary Data 6:** BLAST performance on proposed test set for different E-value thresholds

E-Value Threshold	SN	SP	MCC
0.01	0.582346369	0.814653244	0.402012623
0.001	0.558882682	0.827181208	0.396611134
0.0001	0.545921788	0.836689038	0.397179968
0.00001	0.530502793	0.843736018	0.392515885
0.000001	0.517094972	0.85033557	0.389209565

performance of BLAST on BTD-combo dataset						
	SN	SP	MCC			
Fold 1	0.576298	0.805612	0.385989			
Fold 2	0.576298	0.805612	0.385989			
Fold 3	0.58523	0.814794	0.40519			
Fold 4	0.58324	0.809631	0.397124			
Mean	0.5801	0.8097	0.3944			
Std	0.004	0.0042	0.0083			

Supplementary Data 7: Five-fold cross-validation performance of BLAST on BTD-Combo dataset

Supplementary Data 8: Benchmarked tool summary with model and feature details

Tool	Feature Type	Feature Detail	Computation Model	Model Detail
Local-DPP	Evolutionary	Local Pse-PSSM features	Classic	Random Forest
DNABP	Sequence + Evolutionary	PSSM with physicochemical properties (PSSM-PP), Binding propensity measures (BP), Non-binding propensity measures (NBP), Physicochemical property feature (PHY)	Classic	Random Forest
iDNAProt-ES	Sequence + Evolutionary + Structure	Amino acid composition, Dubchak features, PSSM Composition, PSSM Segmented Distribution Secondary Structure Occurrence, Secondary Structure Composition, Accessible Surface Area Composition, Torsional Angles Composition, Structural Probabilities Composition, Auto-Covariance (PSSM, Torsional Angles, Structural Probabilities), Bigram (PSSM, Torsional Angles, Structural Probabilities)	Classic	SVM
StackDPPred	Evolutionary + Structure	PSSM-distance transformation (PSSM-DT) feature, Residue probing transformation (RPT) feature, Evolutionary distance transformation (EDT) feature, Feature extracted from RCEM	Classic (stage)	SVM, Logistics Regression, KNN, Random Forest
PseAAC	Sequence	Monogram, Bigram, Trigram, Gapped bigram, Monogram percentile, Bigram percentile, Nearest neighbor bigram	Classic	Extra Tree Classifier, Random Forest
DeepDBP	Sequence	Same as features in PseAAC	Deep Learning	ANN, CNN
PDBP-Fusion	Sequence	One-hot encoding to DNA sequences	Deep Learning	CNN, LSTM
KK-DBP	Evolutionary	Reduced PSSM, PSSM-Composition, AADP-PSSM	Classic	Random Forest
LSTM-CNN_Fusion	Sequence + Evolutionary	One-hot encoding to DNA sequences, CNN to PSSM	Deep Learning	CNN, LSTM
PB_DBP	Sequence	ProtBert embedding of protein sequence	Deep Learning	PLM, BILSTM
PreDBP-PLMs	Sequence + Evolutionary	ProtT5 embeddings Pse-PSSM (Pseudo Position-Specific Score Matrix)	Deep Learning	PLM, CNN

proposed test set for different E-value thresholds						
E-value Threshold	SN	SP	MCC			
0.01	0.8536	0.571	0.4042			
0.001	0.8346	0.6035	0.4144			
0.0001	0.8346	0.6038	0.4146			
0.00001	0.8344	0.6038	0.4144			
0.000001	0.8344	0.6038	0.4144			

Supplementary Data 9: HMMER performance on proposed test set for different E-value thresholds