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Supplementary Results
Data quality control. Due to the heterogeneity inherent to postmortem human brain samples, we examined the distribution
of the spatial spots by diagnosis for each cluster and found that most clusters are well represented across the diagnoses, except
for WM3 in early-stage AD cases (Supplementary Fig. 1). Two mouse clusters lacked clear spatial localization, one being
a mixture of erythrocytes and neurons based on marker gene expression, and the other a group of low quality spots based on
UMIs, which we removed from our subsequent analyses (Supplementary Fig. 1). Furthermore, we examined the expression of
a post-mortem “ex-vivo activation” signature, previously identified as an artifact of cellular stress during sample processing1 in
both the spatial and snRNA-seq datasets, and while found expression of select ex-vivo activation genes like HSPA1A, HSPA1B,
FOS, and JUN, the overall expression program score2 was low (Supplementary Figs. 1, 5).

Differential cell composition analysis. We performed differential cell composition analysis with Milo3 to test whether
the cell states captured by snRNA-seq were enriched or depleted in disease (Supplementary Fig. 6), noting that the largest
differences were found among microglia, astrocytes, and vascular cell types. This analysis uses a network-based approach
to aggregate transcriptomically similar cells into "cell neighborhoods", and performs a statistical test for the over- or under-
representation of different groups (i.e. disease and control) within these neighborhoods3 (Methods). For example, microglia
cluster MG2 (SPP1+, CD74+, INPP5D+) and astrocyte cluster ASC1 (GFAP+, NEAT1+, CLU+) were enriched in disease
in our snRNA-seq dataset. Alternatively, astrocyte clusters ASC2 (RORA+, GLI3+) and ASC4 (HMGB1+, BAG3+, primarily
observed in the PCC), were depleted in disease. Excitatory and inhibitory neuronal cell states were generally well represented
among control and disease samples; however based on the effect size distributions we found considerable variability among
the cellular neighborhoods within these states stratified by disease status. Among the brain vascular cells, we found the largest
differences in cell state abundances within subtypes of pericytes, with extracellular matrix pericytes4 (M-pericytes) enriched
in disease and membrane transport pericytes (T-pericytes) depleted in disease. Imbalances in the composition of the brain
vascular compartment like those observed here may be emblematic of the molecular and structural breakdown of the blood-
brain-barrier5. Together, this analysis revealed shifts in cell state composition throughout neurodegeneration, encompassing
both selectively vulnerable and disease reactive states.

Comparative differential expression analyses of sporadic AD and DSAD. We focused our differential expression
analyses on the frontal cortex (FCX), since we had both spatial and single-nucleus data for this region, and we found significant
positive correlations between effect sizes for gene expression changes in the posterior cingulate cortex (PCC) and FCX across
most cell clusters (Supplementary Figs. 10-16). In our spatial data, although the majority of differentially expressed genes
(DEGs) were unique to a diagnosis (early-stage AD, late-stage AD, or DSAD), we still discovered many are conserved, includ-
ing genes previously associated with AD, like CST3, VIM, NEAT1, and CLU. As discussed in the main text, we found modest
correlations between effect sizes from the different diagnoses in the snRNA-seq data; the cell populations with the weakest
correlations across disease conditions included OPC2 and several of the microglial, vascular, and astrocytic clusters.

In DSAD and late-stage AD, we found genes associated with NIK/NF-κB signaling were downregulated in spatial cluster
L3/4 and excitatory neuron clusters EX L2/3 and L3-5 (Fig. 2g-h). However, we also found regional differences between
DSAD and late-stage AD; NIK/NF-κB signaling genes are upregulated in L1 and L2/3 exclusively in DSAD samples (Fig.
2i-l). Altogether, we identified conserved regional and cell-specific transcriptional changes between late-stage AD and DSAD,
supporting the utility of studying DSAD to understand AD molecular changes in both DS and the general population.

Cellular deconvolution of human spatial DEGs. We sought to identify the cellular origins of the spatial DEGs by
performing cellular deconvolution analysis of these DEGs (Methods). Inspecting snRNA-seq of the spatial DEGs shared
between late-stage AD and DSAD revealed cell-type-specific expression of many spatial DEGs, of which many were also
region specific (Fig. 2c). For example the gene QKI, previously identified as upregulated in AD6, is upregulated only in upper
cortical layers (L2/3 and L3-5; average log2(fold-change) > 0.2, adjusted p-value < 0.05), although it is highly expressed in
WM and oligodendrocytes (Extended Data Fig. 1). In early-stage AD, many oligodendrocyte genes were found among the
downregulated DEGs in cortical cluster L6b and the WM clusters, while relatively more of these oligodendrocyte genes were
upregulated in cortical clusters for DSAD (Fig. 2d). Intriguingly, early-stage AD downregulated DEGs in L3/4 contained a
greater proportion of neuronal genes, although many of the downregulated DEGs did not correspond to any cell marker genes,
further supporting that these L3/4 transcriptional changes may be involved in AD-related cognitive decline (Fig. 2d).

Spatiotemporal gene expression changes in 5xFAD. In addition, we wanted to identify evolutionary-conserved AD
transcriptional changes, as drug development largely relies on mouse models. However, mouse models of AD have been
criticized for discrepancies with clinical AD. Considering previous literature shows baseline regional differences between
human and mouse7,8, we hypothesized that there may be also regional differences in disease. In addition, we believe that
focusing on the features shared between human and mouse will help forward in vivo research. We performed DE analysis
on our mouse ST dataset comparing 5xFAD versus WT within each spatial cluster for each timepoint (Supplementary Figs.



17-20; Supplementary Tables 14-17). This analysis revealed an increased number of upregulated genes with age except in
thalamic clusters, where the maximum was at the earliest timepoint (4 months, Supplementary Fig. 21). Upregulated genes at
4 months in the thalamus included disease-associated microglia (DAM) genes9, like Cst7, Tyrobp, Ctsd, and Trem2, suggesting
an early response to plaques localized to the thalamus, and with increasing age, we found upregulation of these genes across
brain regions. We then examined the expression of DEGs identified in our human ST dataset in a matched comparison with
the cortical and WM clusters of our mouse spatial dataset (Supplementary Fig. 22). We found significant and positive fold-
change correlations in most cortical layer comparisons, except L1 and L6b. Like our comparison of DSAD and late-stage
AD, WM correlations were weaker, indicating that the 5xFAD model recapitulates some but not all clinical AD changes. Our
analyses compiled a list of species-conserved, regional DEGs including some genes previously identified in disease-associated
glia signatures9–11.

Multi-scale co-expression network analysis reveals spatial expression programs disrupted in AD . Co-expression
networks contain groups of genes (modules) that are highly co-expressed and are potentially co-regulated or involved in shared
biological functions. We constructed spatial co-expression networks and identified gene modules individually for each cortical
layer cluster and WM, yielding 166 modules from seven networks (network plot in Fig. 3a). Based on an approach previously
employed in a brain-wide network analysis in bulk RNA-seq12, we defined a set of 15 cortex-wide “meta-modules” by hierar-
chically clustering these 166 modules based on their similarity in gene expression patterns (module eigengenes, MEs) and their
constituent gene sets (dendrogram and triangular heatmaps in Fig. 3a, Methods). We used the ST dataset and the snRNA-seq
dataset to evaluate the spatial and cellular expression patterns of the meta-modules, noting that many of these expression signa-
tures correspond to grey matter regions and neurons, and that some were expressed across multiple regions and cell types (Figs.
3d).

We compared effect sizes between the differential module eigengene (DME) tests for each of the 166 modules to assess
the similarity in network-level changes between subtypes of AD (Figs. 3b). The DMEs that were shared across these disease
groups contained hub genes associated with key AD-related processes like amyloid-beta formation, myelination and chromatin
organization (Extended Data Fig. 3). We found that the largest set of unique DMEs were those downregulated in early-stage
AD, highlighting the role of transient systems-level expression changes in the molecular cascade underlying AD progression
(Extended Data Fig. 3). The early disease alterations in L3/4 also support our DEG findings and pinpoint gene networks that
may contribute to the initial cognitive symptoms of AD, such as memory deficits and impaired information processing. Further,
while the majority of the DMEs specific to early-stage AD were downregulated, the majority of DMEs specific to late-stage
AD and DSAD were upregulated compared to controls. Although these modules were transcriptomically distinct across the
different network analyses, the hub genes for these modules upregulated in late-stage AD and DSAD were enriched for genes
associated with neurotransmission, neuronal development, and RNA processing.

Hemoglobin and ATP synthase subunit expression in DSAD females. Examining the sex DEGs identified in DSAD
from our ST dataset, gene set overlap analysis demonstrated that many of these DEGs with the largest effect sizes were shared
across multiple spatial clusters, such as the hemoglobin subunit beta gene HBB and the complement subcomponent gene C1QB
in females, and the myelin associated gene MOBP in males (Fig. 4g). Although HBB expression in female samples may be
partly due to sample variability in blood contamination, hemoglobin is also expressed by neurons and glia. A previous study
found protein-protein interactions between Hbb and ATP synthase13, and we also identified ATP synthase subunits (ATP5PD
and ATP5MPL) as female DEGs.

Additional sex-specific signatures in AD. We sought to establish whether the sex-related DEGs were similar among
disease groups, similar to the disease vs. control DEGs, or similar between human and mouse. First, we compared DE effect
sizes between disease groups in the human ST dataset (Supplementary Fig. 39). In each region, we found genes whose DE
effect size directions were in agreement, as well as those which were discordant across the disease groups. When comparing
DSAD to the other disease groups, we generally observed more differences than similarities; however, this varied between
regions. For example, WM DE effect sizes between DSAD and early-stage AD were positively correlated (R=0.21), while
there was a negative correlation between late-stage AD and early-stage AD (R=-0.47). Sex DEGs in DSAD and late-stage AD
showed greater agreement in the snRNA-seq dataset than in the ST dataset (Supplementary Fig. 40). We next compared DE
effect sizes between the sex DEGs and the diagnosis DEGs in the ST and snRNA-seq datasets (Supplementary Figs. 41-44),
and we found that some of the genes that were not DE between disease and controls showed sex-level differences in the disease
groups. Finally, we compared the sex DEGs between the human and mouse datasets (Supplementary Fig. 45), and we found a
greater agreement between the 5xFAD mice and DSAD compared to early and late-stage AD, which may be related to relatively
higher amounts of amyloid deposition in the 5xFAD and DSAD groups.

Imaging mass cytometry to examine differences in AD protein and RNA expression changes. Imaging mass cy-
tometry (IMC) uses a panel of metal-conjugated antibodies for multiplexed labeling, followed by fast UV-laser tissue ablation
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and cytometry by time of flight (CyTOF) to yield quantitative single-cell spatial proteomic data at approximately 1µm resolu-
tion, and this approach has been previously applied in postmortem human brain tissue14. The constructed images remarkably
mirror images obtained from classical microscopy but with greater channel capacity (Figs. 5b-c). This method circumvents
the constraints of conventional immunohistochemistry, which only allows for analysis of a handful of markers, restricting the
understanding of cellular phenotypes, and avoids the autofluorescence issues inherent to aged human brain tissue. We applied
a supervised machine learning approach to generate cell segmentation masks, allowing us to quantify protein intensities for
individual cells, yielding 32,759 cellular profiles after quality controls (Methods). Our antibody panel did not include marker
proteins for all brain cell types due to limited antibody availability and compatibility. However, we were able to profile neurons,
astrocytes, and microglia.

Using this dataset, we were able to investigate the congruence between protein and gene expression changes in AD. For
example, we found Cystatin C (CST3) significantly changed in microglia and astrocytes from late-stage AD and DSAD (Fig.
5i). CST3 also was upregulated in both groups in spatial clusters L3-5 and L5/6 but was upregulated in only ASC1 for DSAD
and MG2 for late-stage AD in our snRNA-seq data. Similar to CST3, we found that CD44 expression in the ST data was more
concordant with IMC data (Figs. 5j-k) than that in the snRNA-seq data. We expected CD44 upregulation in astrocytes, but
we did not detect microglial upregulation of CD44 at the single-nucleus transcriptome. These discrepancies may be due to the
biological discrepancy between gene and protein expression or other technological and algorithmic limitations. In sum, our IMC
experiment in light of our other -omics experiments highlights the importance of a multi-faceted approach to comprehensively
understand the altered molecular signatures of the brain in neurodegeneration.

Spatial annotation of cell clusters to identify cell-cell signaling dysregulated in disease. While excitatory neuron
subpopulations clustered and were easily annotated by cortical layer, we were not able to stratify inhibitory neurons and non-
neuronal cells by region with snRNA-seq alone. Therefore, we sought to leverage our ST data to infer region localization of
our snRNA-seq clusters. To go beyond cell-type deconvolution analysis (Supplementary Figs. 46-47), we used CellTrek15 to
integrate spatial and single-cell transcriptomic data and predict spatial coordinates of each cell. For this analysis, we computed
paired co-embeddings for each of the 39 human ST samples with the 48 snRNA-seq cortical samples generated in this study
and used CellTrek to train a multivariate random forest model to predict spatial coordinates for each cell using the shared
embeddings (Methods, Extended Data Fig. 6a). We visualized these results in representative spatial samples by plotting the
mapped snRNA-seq cells colored by their cell identity split by major cell lineages (Extended Data Fig. 6a), as well as the
expression of selected cortical layer marker genes side by side with the ST and mapped snRNA-seq datasets, confirming this
approach assigns cell types to their known brain region (Extended Data Fig. 6b). Since this analysis was performed on each
of the ST samples, each cell from the snRNA-seq data was mapped to multiple spatial contexts. Using this information,
we computed a probability for each mapped cell to each of the spatial clusters. For example, this analysis uncovered that a
subpopulation of LAMP5+ inhibitory neurons are WM interstitial neurons16 (Extended Data Fig. 6c-d). Finally, for the snRNA-
seq data we added a label for upper cortical layer, lower cortical layer, or WM based on the spatial context that the cell was
most frequently mapped to (Methods). We performed differential cell composition analysis using these updated annotations
(excluding the spatially mapped cell states with 10 or fewer Milo cell neighborhoods) and identified new trends that were
masked in our previous analysis without spatial information (Extended Data Fig. 6e). For example, our previous analysis found
that ASC1 was enriched in DSAD (Supplementary Fig. 6), and this analysis shows that this enrichment is greater in the WM
than the cortex. Additionally, we found that WM pericytes were enriched in disease, while cortical pericytes were depleted
(Extended Data Fig. 6e). This analysis also revealed a considerable shift in the composition of all inhibitory neuron subtypes
in disease, where deep layer inhibitory neurons were relatively less abundant compared to upper layer inhibitory neurons.
Furthermore, we inspected the predicted cell density distributions of specific cell subpopulations like subtypes of astrocytes
and microglia in representative ST samples (Extended Data Fig. 6f). We also used these mappings to directly investigate
the spatial and cellular contexts of systems-level transcriptomic signatures by visualizing the meta-module eigengenes in the
predicted ST coordinates split by the major cell types (Extended Data Fig. 6g).

We used CellChat17 to infer cell signaling between different cell states based on the expression of ligand and receptor pairs
and perform statistical testing to compare the signaling patterns between control and disease (Fig. 6a). The additional spatial
information allows us to distinguish these signaling changes as short- or long-range cellular communication, which is otherwise
lost with snRNA-seq data alone. We compared the CellChat results to LIANA18, another CCC inference method that computes
consensus results from a variety of individual inference methods and ligand-receptor databases (Methods), and we found that
the number of predicted signaling links between cell states were correlated across the two methods (Supplementary Figs. 48-
49). For this analysis, we chose to only include the snRNA-seq data generated in this study since current CCC inference tools
do not explicitly account for batch effects.

Downregulation of CD99 signaling in AD. CD99 is also a hub gene of M11, but CD99 signaling is downregulated in
DSAD (Extended Data Fig. 8). We discovered pericyte and astrocyte (ASC3) communication with excitatory and inhibitory
neuronal populations is absent, suggesting that disrupted CD99-CD99L2 signaling may contribute to neurovascular changes
seen in AD, and we confirmed by immunofluorescence that CD99-CD99L2 colocalization is significantly decreased in both



late-stage AD and DSAD compared to control (Extended Data Fig. 8f-g). Notably, despite the overall downregulation of CD99
signaling in DSAD, we also found CD99-PILRA signaling between cortical lower layer pericytes and microglia exclusively in
DSAD. PILRA, a myeloid inhibitory signaling receptor, has been associated with AD genetic risk19–22; our findings implicate
pericytes in the modulation of microglial function in AD via PILRA activity.

Integrating spatial transcriptomics with fluorescent amyloid imaging to identify pathology-associated gene ex-
pression signatures. Amyloid pathology is a defining feature of AD, and there is a critical need to understand the devel-
opment of amyloid pathology and the cellular response. Previous studies identified amyloid-associated cell subpopulations that
are transcriptionally distinct9–11 as well as plaque-associated gene expression changes23. However, these studies did not in-
vestigate amyloid-associated gene expression changes regarding the conformational changes associated with plaque formation,
and they did not use a uniform approach in humans and mice.

We devised a strategy to identify amyloid-associated gene expression changes in both our human and mouse ST datasets
(Methods). Immunofluorescent staining ST tissue sections with Amylo-glo and the antibody OC yielded information about the
size and spatial location of amyloid aggregates in the same coordinates as our gene expression data, and we developed a custom
image analysis pipeline to integrate these amyloid quantifications with our ST datasets. We performed geospatial statistical
analysis24–26 to identify “hot spots” of plaques and fibrils (Figs. 7d-e, Supplementary Figs. 52-55), and used generalized
linear models (GLMs) to perform differential gene expression testing with respect to the amyloid hot spot intensity (Methods).
Critically, this analysis was agnostic of disease status or mouse age groups to specifically identify genes associated with amyloid
rather than those associated with other disease-related factors.

Since amyloid depositions appear in grey matter much more frequently than in WM, for the human dataset we focused
our analysis on the gray matter regions (Methods). Gene set overlap analysis showed that 55 genes were common between
the plaque- and fibril-associated genes (Fig. 7f, Fisher’s exact test p-value = 1.8e-115, odds ratio = 1248.92) in the human
dataset. There were more amyloid-associated genes identified in the mouse dataset compared to the human dataset, likely
because the mouse dataset profiled several different brain regions each with their own unique transcriptomic profiles while the
human dataset only profiled the PFC. We found that some of the mouse amyloid-associated gene sets had significant overlaps
between those found across different spatial clusters, but most of these genes were spatially restricted to only one of these
groups. Perhaps surprisingly, we noted a general lack of microglial genes in the human amyloid-associated genes, whereas
several of these mouse amyloid gene sets, including those from cortical regions, contained microglial genes like Trem2 and
Tyrobp. However, we identified MEF2C, a microglial transcription factor associated with AD genetic risk19,20, in the shared
amyloid genes.

We compared the amyloid-associated gene sets identified in this study with plaque-induced gene (PIG) module from
another amyloid mouse model23, in addition to other relevant gene signatures like disease-associated microglia (DAMs9),
astrocytes (DAAs10), and oligodendrocytes (DOLs11), which were originally identified in 5xFAD mice. We performed gene
set overlap analysis, and we computed gene signature scores for these gene sets in the mouse and human ST dataset (Methods),
revealing significant overlaps between our mouse amyloid-associated genes with these published gene sets (Fig. 7k). Since
the PIG module was previously identified using co-expression network analysis, we performed a similar network analysis in
our 5xFAD ST dataset to see if we could recover a similar expression program using hdWGCNA27 (Methods, Extended Data
Figs. 9-10, Supplementary Fig. 57, Supplementary Table 38). One of the gene modules identified in this analysis (SM6) was
enriched for genes related to microglial activation and amyloid-beta response, and the expression of this module increased with
age in 5xFAD but not WT mice (Extended Data Fig. 9). Further, we found that this module significantly overlapped with the
PIG module, and that the expression of the PIG module also only increased with age in 5xFAD mice (Supplementary Figs. 58,
59). Altogether, these findings demonstrate that these amyloid-associated gene expression changes are highly reproducible and
are mouse model-agnostic.

Supplementary Discussion

Single-cell sequencing has uncovered cell state-specific changes in disease, revealing novel insights into disease pathophysiol-
ogy and gene targets for further study. A critical limitation of these methods is their lack of spatial information. AD pathology
progresses in a predictably anatomical manner that may be linked to brain circuitry. Recently, several spatial profiling methods
were developed with varying levels of resolution, throughput, and number of genes28–33. Spatial transcriptomics (ST) relies on
a grid of spots with primers to uniquely barcode transcripts based on their spatial location and does not require pre-determined
gene targets, allowing an unbiased assessment of gene expression. However, the size of each spot is 55µm, resulting in tran-
scriptomic profiles that may be from 1-10 cells. We generated ST data from postmortem human brain tissue samples of clinical
AD, encompassing early- and late-stage AD in the general population, and DSAD. Due to technical limitations, we could not
profile gene expression at a macroscopic level of multiple brain regions, and our samples had varying amounts of cortical
layers and WM. We also generated ST data from the 5xFAD mouse model at four ages, allowing us to simultaneously assess
multiple brain regions and the temporal dynamics of amyloid accumulation, with reduced sample heterogeneity compared to
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the human dataset. These human and mouse ST datasets are the largest of their kind to our knowledge (n=119 total), together
encompassing a rich data resource for the AD community.

Further, we generated a unique snRNA-seq dataset of DSAD and integrated previously published AD studies to identify
cellular changes conserved between both populations. Differential cell abundance analysis showed enrichment of activated
microglial and astrocyte cell states in DSAD, as well as altered makeup of the vascular compartment, compared to cognitively
normal controls. Many of the genes upregulated in all disease groups were attributed to glial and vascular cells based on our
DEG deconvolution analysis, where notably more oligodendrocyte changes were found in the WM in early and late-stage AD.
In addition, inspecting spatial gene co-expression modules in our snRNA-seq data provided cellular contexts of these gene
programs, uncovering neuronal and glial components that may be integral to disease biology.

Recent efforts in genome-wide association studies (GWAS) and fine mapping analyses of sporadic AD have nominated
numerous candidate risk loci and risk genes19,34–37. Disease risk SNPs, cis-regulatory elements, genes, and proteins do not
operate in a vacuum, and a disease-associated gene may play a role in a broader regulatory network that ultimately contributes
to a disease phenotype38. Several previous studies have found associations between microglial cis-regulatory elements and
AD genetic risk in mouse39 and human brains40–42. Additionally, key shifts in the transcriptional and epigenomic identities
of glia have been previously observed in single-cell studies of human AD42 and mouse models9,10,43, where AD risk genes
and loci are directly involved in these shifts in microglia. Integration of polygenic disease enrichment with multi-scale gene
co-expression networks has the potential to widen the scope of our understanding of AD genetics. We performed a series of
genetic enrichment analyses with scDRS44 and found evidence of association between AD risk and meta-module M11 based on
the human and mouse ST datasets and the human snRNA-seq dataset. Interestingly, the ligands CD99 and ANGPTL4, identified
in our cell signaling analyses, are hub genes in M11, and a few genes specific to fibrillar amyloid are also members of M11,
including AEBP1 and DTNA, both previously found associated with AD45–47.

While previous 5xFAD studies identified amyloid-associated subpopulations and genes, not all are recapitulated in clinical
AD, and this has been previously highlighted in human AD snRNA-seq studies examining the DAM signature. One study
that focused on TREM2 genetics in human AD and in mouse models found remarkable transcriptomic changes in reactive
microglia48, while another identified a network of plaque-induced genes in an APP mouse model, but it remains unclear to
what degree analogous signatures are observed in humans23. While this may be due to single-cell vs single-nucleus com-
parisons49, a previous snRNA-seq study using human AD and 5xFAD samples48 in addition to our previous re-analysis42

proposed that this may be a species difference. Identifying cross-species transcriptomic changes are of particular interest for
mouse model development and preclinical translation. We evaluated the expression of DEGs identified in clinical AD in the
5xFAD dataset, identifying regional evolutionary-conserved disease gene expression changes. The large genetic component
of AD, which underlies the axis of cognitive resilience-susceptibility, greatly contrasts the uniform genetic background of AD
mouse models like 5xFAD50. While mouse models may provide limited insights into human AD, comparative cross-species
-omics analyses would likely be improved using a genetically diverse mouse strain51. Furthermore, it is important that future
studies include larger and more complete human datasets to properly disentangle biological differences between species from
technical differences.

Finally, we generated a spatial proteomic dataset to examine the protein expression of genes we identified in our transcrip-
tomic datasets, in addition to other AD-related proteins. In this dataset, we discovered increased tau and amyloid pathology
in DSAD cells compared to late-stage AD. A limitation of our transcriptomic analyses is our focus on amyloid pathology.
Although we did not observe dramatic transcriptional differences between DSAD and late-stage AD, tau pathology better cor-
relates with cognitive decline; future studies investigating the individual and combined effects of tau and amyloid pathology in
DSAD may help to disentangle the molecular differences between these groups. Notably though we found that findings in the
ST data were upheld at the protein level; however, we could not confirm layer-specific expression due to technical limitations.
snRNA-seq results were less concordant with the proteomic data. Although this may be due to profiling only nuclear RNA,
resultant protein expression may also be affected by posttranscriptional and posttranslational regulatory changes, as well as pro-
tein trafficking, which may not be captured in transcriptomic data. High-throughput methods to assess protein expression are
also still limited, and the availability of effective antibodies remains a large impediment in the study of proteins. Despite these
limitations, the proteomic data supported that M11 represents key AD co-regulated genes, as we found the encoded proteins of
both hub genes CD44 and CLU upregulated in AD glia, demonstrating our integrative analytical approach uncovers functional
information that enriches our understanding of disease-relevant gene targets.



Supplementary Fig. 1 | Quality control of the human and mouse spatial transcriptomics datasets. a, Dot plot showing the expression of selected marker genes in the
cortical layer clusters from the human ST dataset. b, Dot plot showing the expression of selected marker genes in the clusters from the mouse ST dataset. c, The number of
spots profiled in each cluster, and the proportion of diagnosis attributed to each of the clusters. d-e, Distributions of the number of UMI captured in each of the mouse (d)
and human (e) ST clusters. Each data point represents a ST spot, and the number of ST spots per cluster is noted in Supplementary Table 1. f-g, Distributions of the
number of UMI captured in each of the human (f) and mouse (g) samples. Number of ST spots per cluster noted in Supplementary Tables 1-2. h-i, Distributions of ex-vivo
activation 1 UCell 2 scores in each of the ST clusters in the human (h) and mouse (i clusters). For box and whisker plots, box boundaries and line correspond to the
interquartile range (IQR) and median, respectively. Whiskers extend to the lowest or highest data points that are no further than 1.5 times the IQR from the box boundaries.
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Supplementary Fig. 2 | Clustering results in the human ST dataset. We used BayesSpace 52 to jointly cluster spatial transcriptomic spots in the 39 samples from the
human dataset based on their transcriptomic content as well as their spatial information (Methods). This process resulted in nine clusters, which we annotated based on
marker gene expression and anatomic location. Each human ST sample is shown here with each spot colored by BayesSpace cluster assignment. We organized the
samples in this plot by disease status, sex, and age.



Supplementary Fig. 3 | Comparison of grey and white matter content in human ST samples. For each of the human ST samples, we calculated the difference between
the number of grey matter spots and white matter spots, then divided by the total number of spots. Grey matter vs white matter was determined based on our unbiased
clustering analysis. We then ranked each sample based on this metric. In this plot we also visualize the total number of spots per sample as the size of each dot.

8



Supplementary Fig. 4 | Clustering results in the mouse ST dataset. We used BayesSpace 52 to jointly cluster spatial transcriptomic spots in the 80 samples from the
mouse dataset based on their transcriptomic content as well as their spatial information (Methods). This process resulted in 15 clusters, which we annotated based on
marker gene expression and anatomic location. Each mouse ST sample is shown here with each spot colored by BayesSpace cluster assignment. We organized the
samples in this plot by disease age, genotype, and sex.



Supplementary Fig. 5 | Quality control of the integrated snRNA-seq dataset. a, Distributions of the number of UMI captured in each snRNA-seq sample for the frontal
cortex (FCX, top) and the posterior cingulate cortex (PCC, bottom). b, Distributions of the number of genes captured in each snRNA-seq sample for the FCX (top) and the
PCC (bottom). c, UMAP dimensionality reduction plot of the integrated snRNA-seq dataset comprised of the data generated in this study and three previous snRNA-seq
datasets of AD. The UMAP plot is faceted by study of origin, and colored by cluster annotations. d, Bar plot showing the number of nuclei in each of the snRNA-seq clusters.
Each data point represents a cell barcode from the snRNA-seq dataset from Milo, and the number of barcodes shown per sample are listed in Supplementary Table 5. e,
Heatmap showing the expression of the top 5 marker genes ranked by effect size in the snRNA-seq dataset. These marker genes were identified using only the data
generated in this study, and this heatmap only shows expression data from these nuclei (Methods). f, Heatmap showing the expression of the same genes as in panel (e) in
the three other snRNA-seq datasets. g, Distributions of ex-vivo activation 1 UCell 2 scores in each of the snRNA-seq clusters. For box and whisker plots, box boundaries and
line correspond to the interquartile range (IQR) and median, respectively. Whiskers extend to the lowest or highest data points that are no further than 1.5 times the IQR
from the box boundaries.
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Supplementary Fig. 6 | Differential cell state composition in snRNA-seq datasets. a-f, Box and whisker plots showing the results of the differential cell state
composition tests using MiloR 3. Each data point represents a cellular neighborhood from the Milo algorithm, and the differential cell composition between disease (right)
and control (left) effect sizes are shown. Groups are organized on the y-axis by major cell types, and ordered by median fold-change values within each cell type. For box
and whisker plots, box boundaries and line correspond to the interquartile range (IQR) and median, respectively. Whiskers extend to the lowest or highest data points that
are no further than 1.5 times the IQR from the box boundaries. Each data point represents a single cell neighborhood from Milo, and the number of cell neighborhoods per
cluster are shown in Supplementary Table 5.



Supplementary Fig. 7 | Early-stage AD versus control DEGs in the ST dataset. Volcano plots show the adjusted significance levels and effect sizes from the differential
gene expression comparisons between early-stage AD cases versus cognitively normal controls in the human ST dataset. The results are shown for the differential gene
expression analysis in each of the nine spatial clusters. The top and bottom ten genes by effect size are annotated. Statistical test: MAST 53, two-sided test.
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Supplementary Fig. 8 | Late-stage AD versus control DEGs in the ST dataset. Volcano plots show the adjusted significance levels and effect sizes from the differential
gene expression comparisons between late-stage AD cases versus cognitively normal controls in the human ST dataset. The results are shown for the differential gene
expression analysis in each of the nine spatial clusters. The top and bottom ten genes by effect size are annotated. Statistical test: MAST 53, two-sided test.



Supplementary Fig. 9 | AD in DS versus control DEGs in the ST dataset. Volcano plots show the adjusted significance levels and effect sizes from the differential gene
expression comparisons between AD in DS cases versus cognitively normal controls in the human ST dataset. The results are shown for the differential gene expression
analysis in each of the nine spatial clusters. The top and bottom ten genes by effect size are annotated. Statistical test: MAST 53, two-sided test.
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Supplementary Fig. 10 | Late-stage AD versus control DEGs in the snRNA-seq dataset. Volcano plots show the adjusted significance levels and effect sizes from the
differential gene expression comparisons between late-stage AD cases versus cognitively normal controls from the integrated analysis of the three previously published
snRNA-seq datasets. The results are shown for the differential gene expression analysis in each of the snRNA-seq clusters. The top and bottom five genes by effect size are
annotated. Statistical test: MAST 53, two-sided test.



Supplementary Fig. 11 | AD in DS versus control DEGs in the FCX snRNA-seq dataset. Volcano plots show the adjusted significance levels and effect sizes from the
differential gene expression comparisons between AD in DS cases versus cognitively normal controls in the frontal cortex (FCX) snRNA-seq dataset. The results are shown
for the differential gene expression analysis in each of the snRNA-seq clusters. The top and bottom five genes by effect size are annotated. Statistical test: MAST 53,
two-sided test.
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Supplementary Fig. 12 | AD in DS versus control DEGs in the PCC snRNA-seq dataset. Volcano plots show the adjusted significance levels and effect sizes from the
differential gene expression comparisons between AD in DS cases versus cognitively normal controls in the posterior cingulate cortex (PCC) snRNA-seq dataset. The
results are shown for the differential gene expression analysis in each of the snRNA-seq clusters. The top and bottom five genes by effect size are annotated. Statistical test:
MAST 53, two-sided test.



Supplementary Fig. 13 | snRNA-seq DEGs examined by chromosome. a, Heatmap colored by effect size from the PCC AD in DS versus control differential gene
expression analysis, with genes stratified by chromosome and by spatial region. Statistically significant (FDR < 0.05) genes with an absolute average log2(fold-change) >=
0.25 in at least one region are shown. b, Stacked bar chart showing the number of PCC AD in DS versus control DEGs in each snRNA-seq cluster stratified by
chromosome. c, Heatmap colored by effect size from the late-stage AD versus control differential gene expression analysis, with genes stratified by chromosome and by
spatial region. Statistically significant (FDR < 0.05) genes with an absolute average log2(fold-change) >= 0.25 in at least one region are shown. d, Stacked bar chart
showing the number of late-stage AD versus control DEGs in each snRNA-seq cluster stratified by chromosome.
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Supplementary Fig. 14 | Comparison of spatial transcriptomic DEG effect sizes between early-stage AD and late-stage AD. Comparison of differential expression
effect sizes from early-stage AD versus control and late-stage AD versus control. Genes that were statistically significant (adjusted p-value < 0.05) in either comparison were
included in this analysis. Genes are colored blue if the direction is consistent, yellow if inconsistent, and grey if the absolute effect sizes were smaller than 0.05. Black line
represents a linear regression with a 95% confidence interval around the mean shown in grey. Pearson correlation coefficients are shown in the upper left corner of each
panel.



Supplementary Fig. 15 | Comparison of snRNA-seq DEG effect sizes between sporadic AD and AD in DS. Comparison of differential expression effect sizes from sAD
versus control and AD in DS versus control. Genes that were statistically significant (adjusted p-value < 0.05) in either comparison were included in this analysis. Genes are
colored blue if the direction is consistent, yellow if inconsistent, and grey if the absolute effect sizes were smaller than 0.05. Black line represents a linear regression with a
95% confidence interval around the mean shown in grey. Pearson correlation coefficients are shown in the upper left corner of each panel.
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Supplementary Fig. 16 | Comparison of snRNA-seq AD in DS versus control DEG effect sizes in the PCC and FCX. Comparison of differential expression effect sizes
from AD in DS versus control in the PCC and FCX snRNA-seq data. Genes that were statistically significant (adjusted p-value < 0.05) in either comparison were included in
this analysis. Genes are colored blue if the direction is consistent, yellow if inconsistent, and grey if the absolute effect sizes were smaller than 0.05. Black line represents a
linear regression with a 95% confidence interval shown in grey. Pearson correlation coefficients are shown in the upper left corner of each panel.



Supplementary Fig. 17 | 5xFAD versus wild type DEGs at four months of age. Volcano plots show the adjusted significance levels and effect sizes from the differential
gene expression comparisons between 5xFAD versus wild type mice at four months of age. The results are shown for the differential gene expression analysis in each of the
spatial transcriptomic clusters. The top and bottom six genes by effect size are annotated. Statistical test: MAST 53, two-sided test.
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Supplementary Fig. 18 | 5xFAD versus wild type DEGs at six months of age. Volcano plots show the adjusted significance levels and effect sizes from the differential
gene expression comparisons between 5xFAD versus wild type mice at six months of age. The results are shown for the differential gene expression analysis in each of the
spatial transcriptomic clusters. The top and bottom six genes by effect size are annotated. Statistical test: MAST 53, two-sided test.



Supplementary Fig. 19 | 5xFAD versus wild type DEGs at eight months of age. Volcano plots show the adjusted significance levels and effect sizes from the differential
gene expression comparisons between 5xFAD versus wild type mice at six months of age. The results are shown for the differential gene expression analysis in each of the
spatial transcriptomic clusters. The top and bottom six genes by effect size are annotated. Statistical test: MAST 53, two-sided test.
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Supplementary Fig. 20 | 5xFAD versus wild type DEGs at twelve months of age. Volcano plots show the adjusted significance levels and effect sizes from the
differential gene expression comparisons between 5xFAD versus wild type mice at six months of age. The results are shown for the differential gene expression analysis in
each of the spatial transcriptomic clusters. The top and bottom six genes by effect size are annotated. Statistical test: MAST 53, two-sided test.



Supplementary Fig. 21 | Number of 5xFAD DEGs and GO term enrichment analysis. a, Barplot showing the number of DEGs in each group. b, Selected pathway
enrichment analysis for the 5xFAD DEGs. One-sided Fisher’s exact test was used for enrichment analysis.
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Supplementary Fig. 22 | Comparisons of human and mouse DEGs. a-b, Heatmaps showing correlations of effect sizes between human and mouse ST datasets in
orthologous genes between human and mouse for cortical layer clusters a and white matter b clusters. c, Heatmap showing differential gene expression effect size results in
the 5xFAD versus WT comparisons.



Supplementary Fig. 23 | Module eigengenes for the human ST meta-modules. a, Spatial feature plots showing module eigengenes (MEs) for the 15 human
co-expression meta-modules shown in eight representative samples. b, ME distributions in each disease group (control, early-stage AD, late-stage AD, AD in DS) stratified
by cortical layer clusters and white matter.
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Supplementary Fig. 24 | Module eigengenes of human co-expression meta-modules in the mouse ST dataset. a-b, Left: Module eigengene (ME) distributions for the
15 human co-expression meta-modules in each mouse age group (control, early-stage AD, late-stage AD, AD in DS) stratified by cortical and white matter clusters. Right:
Spatial feature plots showing MEs in four representative samples. Panel a shows the results in wild type mice and panel b shows the results in 5xFAD.



Supplementary Fig. 25 | Genetic enrichment analysis in mouse Spatial Transcriptomics. Dot plots showing the results of genetic enrichment analysis performed in the
mouse Visium ST dataset using scDRS 44. The scDRS Python package was run on the mouse ST dataset to compute spatial transcriptomic disease relevance scores
(st-DRS) across a corpus of 22 traits provided by the scDRS package, resulting in spot-level disease enrichment scores and significance levels. A Monte Carlo (MC) test
was used to test for group-level significance between each trait and the ST clusters, separately for each disease group and for the entire dataset together (All, right side).
Black outlines on the dots denote a significant group-level association (FDR ≤ 0.05).
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Supplementary Fig. 26 | Genetic enrichment analysis in the AD in DS snRNA-seq dataset. Dot plots showing the results of genetic enrichment analysis performed in
the snRNA-seq dataset generated in this study using scDRS 44. The scDRS Python package was run on the snRNA-seq dataset to compute single-cell disease relevance
scores (sc-DRS) across a corpus of 74 traits provided by the scDRS package, resulting in cell-level disease enrichment scores and significance levels. A Monte Carlo (MC)
test was used to test for group-level significance between each trait and the snRNA-seq clusters, separately for each disease group and for the entire dataset together (All,
right side). Black outlines on the dots denote a significant group-level association (FDR ≤ 0.05).



Supplementary Fig. 27 | Genetic enrichment analysis in the Mathys et al 54 snRNA-seq dataset. Dot plots showing the results of genetic enrichment analysis
performed in the Mathys et al 54 dataset generated in this study using scDRS 44. The scDRS Python package was run on the snRNA-seq dataset to compute single-cell
disease relevance scores (sc-DRS) across a corpus of 74 traits provided by the scDRS package, resulting in cell-level disease enrichment scores and significance levels. A
Monte Carlo (MC) test was used to test for group-level significance between each trait and the snRNA-seq clusters, separately for each disease group and for the entire
dataset together (All, right side). Black outlines on the dots denote a significant group-level association (FDR ≤ 0.05).
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Supplementary Fig. 28 | Genetic enrichment analysis in the Zhou et al 48 snRNA-seq dataset. Dot plots showing the results of genetic enrichment analysis performed
in the Zhou et al 48 dataset generated in this study using scDRS 44. The scDRS Python package was run on the snRNA-seq dataset to compute single-cell disease
relevance scores (sc-DRS) across a corpus of 74 traits provided by the scDRS package, resulting in cell-level disease enrichment scores and significance levels. A Monte
Carlo (MC) test was used to test for group-level significance between each trait and the snRNA-seq clusters, separately for each disease group and for the entire dataset
together (All, right side). Black outlines on the dots denote a significant group-level association (FDR ≤ 0.05).



Supplementary Fig. 29 | Genetic enrichment analysis in the Morabito & Miyoshi et al 42 snRNA-seq dataset. Dot plots showing the results of genetic enrichment
analysis performed in the Morabito & Miyoshi et al 42 dataset generated in this study using scDRS 44. The scDRS Python package was run on the snRNA-seq dataset to
compute single-cell disease relevance scores (sc-DRS) across a corpus of 74 traits provided by the scDRS package, resulting in cell-level disease enrichment scores and
significance levels. A Monte Carlo (MC) test was used to test for group-level significance between each trait and the snRNA-seq clusters, separately for each disease group
and for the entire dataset together (All, right side). Black outlines on the dots denote a significant group-level association (FDR ≤ 0.05).
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Supplementary Fig. 30 | Sex differences within the early-stage and late-stage AD spatial transcriptomics. Volcano plots showing the effect size and significance level
from the early-stage AD (a) and late-stage AD (b) female versus male differential expression tests in each of the snRNA-seq clusters. The top 5 and bottom 5 significant
genes by effect size are labeled. Statistical test: MAST 53, two-sided test.



Supplementary Fig. 31 | Cellular deconvolution of sex DEGs in early-stage and late-stage AD. Deconvolution of spatial DEGs using snRNA-seq cluster marker genes.
Bar charts showing the number of DEGs up or down in disease for each spatial cluster are shown on the top and bottom respectively. Proportional bar charts in the middle
show the proportion of spatial DEGs that are also cluster marker genes in each of the snRNA-seq clusters. Spatial DEGs that are not in the snRNA-seq marker genes are
shown in grey.
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Supplementary Fig. 32 | Sex differences within the AD in DS cohort for the frontal cortex dataset snRNA-seq. Volcano plots showing the effect size and significance
level from the AD in DS female versus male differential expression tests in each of the snRNA-seq clusters. The top 5 and bottom 5 significant genes by effect size are
labeled. Statistical test: MAST 53, two-sided test.



Supplementary Fig. 33 | Sex differences within the AD in DS cohort for the posterior cingulate cortex (PCC) dataset snRNA-seq. Volcano plots showing the effect
size and significance level from the AD in DS female versus male differential expression tests in each of the snRNA-seq clusters. The top 5 and bottom 5 significant genes
by effect size are labeled. Statistical test: MAST 53, two-sided test.
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Supplementary Fig. 34 | Sex differences within late-stage AD snRNA-seq. Volcano plots showing the effect size and significance level from the late-stage AD female
versus male differential expression tests in each of the snRNA-seq clusters. The top 5 and bottom 5 significant genes by effect size are labeled. Statistical test: MAST 53,
two-sided test.



Supplementary Fig. 35 | Sex differences within 4 month 5xFAD spatial transcriptomics. Volcano plots showing the effect size and significance level from the 4 months
of age 5xFAD female versus male differential expression tests in each of the snRNA-seq clusters. The top 10 and bottom 10 significant genes by effect size are labeled.
Statistical test: MAST 53, two-sided test.
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Supplementary Fig. 36 | Sex differences within 6 month 5xFAD spatial transcriptomics. Volcano plots showing the effect size and significance level from the 6 months
of age 5xFAD female versus male differential expression tests in each of the snRNA-seq clusters. The top 10 and bottom 10 significant genes by effect size are labeled.
Statistical test: MAST 53, two-sided test.



Supplementary Fig. 37 | Sex differences within 8 month 5xFAD spatial transcriptomics. Volcano plots showing the effect size and significance level from the 8 months
of age 5xFAD female versus male differential expression tests in each of the snRNA-seq clusters. The top 10 and bottom 10 significant genes by effect size are labeled.
Statistical test: MAST 53, two-sided test.
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Supplementary Fig. 38 | Sex differences within 12 month 5xFAD spatial transcriptomics. Volcano plots showing the effect size and significance level from the 12
months of age 5xFAD female versus male differential expression tests in each of the snRNA-seq clusters. The top 10 and bottom 10 significant genes by effect size are
labeled. Statistical test: MAST 53, two-sided test.



Supplementary Fig. 39 | Comparison of female vs. male spatial transcriptomics differential expression effect sizes across disease conditions. Comparison of
female vs. male differential expression effect sizes from early-stage AD and late-stage AD (a); early-stage AD and AD in DS (b); late-stage AD and AD in DS (c). Genes that
were statistically significant (adjusted p-value < 0.05) in either comparison were included in this analysis. Genes are colored blue if the direction is consistent, yellow if
inconsistent, and grey if the absolute effect sizes were smaller than 0.05. Black line represents a linear regression with a 95% confidence interval around the mean shown in
grey. Pearson correlation coefficients are shown in the upper left corner of each panel. Numbers of inconsistent and consistent genes in each quadrant are reported in the
corners of each plot.
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Supplementary Fig. 40 | Comparison of female vs. male differential expression effect sizes between AD in DS and late-stage AD snRNA-seq. Comparison of
female vs. male differential expression effect sizes in AD in DS and late-stage AD for each snRNA-seq cluster. Genes that were statistically significant (adjusted p-value <
0.05) in either comparison were included in this analysis. Genes are colored blue if the direction is consistent, yellow if inconsistent, and grey if the absolute effect sizes were
smaller than 0.05. Black line represents a linear regression with a 95% confidence interval around the mean shown in grey. Pearson correlation coefficients are shown in the
upper left corner of each panel. Numbers of inconsistent and consistent genes in each quadrant are reported in the corners of each plot.



Supplementary Fig. 41 | Comparison of female vs. male and disease vs. control differential expression effect sizes across disease conditions in spatial
transcriptomics. Comparison of female vs. male and disease vs. control differential expression effect sizes from early-stage AD and late-stage AD (a); early-stage AD and
AD in DS (b); late-stage AD and AD in DS (c). Genes that were statistically significant (adjusted p-value < 0.05) in either comparison were included in this analysis. Genes
are colored blue if the direction is consistent, yellow if inconsistent, and grey if the absolute effect sizes were smaller than 0.05. Black line represents a linear regression with
a 95% confidence interval around the mean shown in grey. Pearson correlation coefficients are shown in the upper left corner of each panel. Numbers of inconsistent and
consistent genes in each quadrant are reported in the corners of each plot.
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Supplementary Fig. 42 | Comparison of female vs. male and AD in DS vs. control differential expression effect sizes across disease conditions in frontal cortex
snRNA-seq. Comparison of female vs. male and AD in DS vs. control (frontal cortex) differential expression effect sizes. Genes that were statistically significant (adjusted
p-value < 0.05) in either comparison were included in this analysis. Genes are colored blue if the direction is consistent, yellow if inconsistent, and grey if the absolute effect
sizes were smaller than 0.05. Black line represents a linear regression with a 95% confidence interval around the mean shown in grey. Pearson correlation coefficients are
shown in the upper left corner of each panel. Numbers of inconsistent and consistent genes in each quadrant are reported in the corners of each plot.



Supplementary Fig. 43 | Comparison of female vs. male and AD in DS vs. control differential expression effect sizes across disease conditions in posterior
cingulate cortex snRNA-seq. Comparison of female vs. male and AD in DS vs. control (posterior cingluate cortex) differential expression effect sizes. Genes that were
statistically significant (adjusted p-value < 0.05) in either comparison were included in this analysis. Genes are colored blue if the direction is consistent, yellow if
inconsistent, and grey if the absolute effect sizes were smaller than 0.05. Black line represents a linear regression with a 95% confidence interval around the mean shown in
grey. Pearson correlation coefficients are shown in the upper left corner of each panel. Numbers of inconsistent and consistent genes in each quadrant are reported in the
corners of each plot.
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Supplementary Fig. 44 | Comparison of female vs. male and AD vs. control differential expression effect sizes across disease conditions in late-stage AD
snRNA-seq. Comparison of female vs. male and late-stage AD vs. control differential expression effect sizes. Genes that were statistically significant (adjusted p-value <
0.05) in either comparison were included in this analysis. Genes are colored blue if the direction is consistent, yellow if inconsistent, and grey if the absolute effect sizes were
smaller than 0.05. Black line represents a linear regression with a 95% confidence interval around the mean shown in grey. Pearson correlation coefficients are shown in the
upper left corner of each panel. Numbers of inconsistent and consistent genes in each quadrant are reported in the corners of each plot.



Supplementary Fig. 45 | Comparison of female vs. male differential expression effect sizes between human and mouse spatial transcriptomics. Comparison of
female vs. male differential expression effect sizes between different age groups for 5xFAD mice and different disease groups for humans for spatial transcriptomic clusters.
Pearson correlation coefficients were computed to compare the differential expression effect sizes between groups.
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Supplementary Fig. 46 | Cell-type deconvolution results in the human ST dataset. Spatial feature plots in eight representative samples from the human ST dataset
showing the inferred proportion of different major cell types based on our deconvolution analysis conducted with SPOTLight 55..



Supplementary Fig. 47 | Cell-type deconvolution results in the mouse ST dataset. Spatial feature plots in eight representative samples from the mouse ST dataset
showing the inferred proportion of different major cell types based on our deconvolution analysis conducted with SPOTLight 55.
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Supplementary Fig. 48 | Comparison of predicting cell-cell signaling interactions between CellChat 17 and LIANA 18 in control snRNA-seq. Scatter plots show the
cell-cell communication interaction frequencies in CellChat 17 and LIANA 18. Panels are grouped for each cell cluster as the signal sender, where the interaction frequencies
represent the number of links to all other cell clusters. Black line represents a linear regression with a 95% confidence interval around the mean shown in grey. Pearson
correlation coefficients are shown in the upper left corner of each panel.



Supplementary Fig. 49 | Comparison of predicting cell-cell signaling interactions between CellChat 17 and LIANA 18 in AD in DS snRNA-seq. Scatter plots show the
cell-cell communication interaction frequencies in CellChat 17 and LIANA 18. Panels are grouped for each cell cluster as the signal sender, where the interaction frequencies
represent the number of links to all other cell clusters. Black line represents a linear regression with a 95% confidence interval around the mean shown in grey. Pearson
correlation coefficients are shown in the upper left corner of each panel.
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Supplementary Fig. 50 | Differential cell-cell signaling between AD in DS and control. Scatter plots showing the differential outgoing interaction strength versus the
differential incoming interaction strength from the differential cell-cell signaling network analysis between AD in DS cases versus cognitively normal controls. Pathways were
shown in each cluster where there was a statistically significant (p-value < 0.05) difference between AD in DS and control based on a permutation test 17.



Supplementary Fig. 51 | Quantification of amyloid plaques in 5xFAD ST clusters. Box and whisker plots showing the distribution of amyloid quantifications in the 5xFAD
mouse ST dataset, stratifying samples by their neuropathological plaque staging. Box boundaries and line correspond to the interquartile range (IQR) and median,
respectively. Whiskers extend to the lowest or highest data points that are no further than 1.5 times the IQR from the box boundaries. Linear regression and 95% confidence
interval around the mean are shown for each cluster. Pearson correlation results (coefficient and p-value) between age and amyloid burden are shown separately for each
cluster. Amyloid information was obtained only for a subset of the mice within the ST dataset, the number of mice per group are as follows; 4 months: n=3; 6 months: n=4; 8
months: n=4; 12 months: n=5.
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Supplementary Fig. 52 | Integration of amyloid plaque imaging (Amylo-glo) and hotspot analysis in the human ST dataset. Spatial feature plots for the human ST
dataset showing the integration of amyloid plaque imaging of Amylo-glo. a, The Amylo-glo score, computed as the sum of the areas (size) for all overlapping amyloid plaques
with each ST spot, and then log normalized. b, Getis-Ord Gi* hotspot analysis based on the Amylo-glo score.



Supplementary Fig. 53 | Integration of amyloid fibril imaging (OC) and hotspot analysis in the human ST dataset. Spatial feature plots for the human ST dataset
showing the integration of amyloid fibril imaging of OC. a, The OC score, computed as the sum of the areas (size) for all overlapping amyloid plaques with each ST spot, and
then log normalized. b, Getis-Ord Gi* hotspot analysis based on the OC score.
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Supplementary Fig. 54 | Integration of amyloid plaque imaging (Amylo-glo) and hotspot analysis in the mouse ST dataset. Spatial feature plots for the mouse ST
dataset showing the integration of amyloid plaque imaging of Amylo-glo. a, The Amylo-glo score, computed as the sum of the areas (size) for all overlapping amyloid plaques
with each ST spot, and then log normalized. b, Getis-Ord Gi* hotspot analysis based on the Amylo-glo score.



Supplementary Fig. 55 | Integration of amyloid fibril imaging (OC) and hotspot analysis in the mouse ST dataset. Spatial feature plots for the mouse ST dataset
showing the integration of amyloid fibril imaging of OC. a, The OC score, computed as the sum of the areas (size) for all overlapping amyloid plaques with each ST spot, and
then log normalized. b, Getis-Ord Gi* hotspot analysis based on the OC score.
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Supplementary Fig. 56 | Correlation of amyloid hotspots and co-expression module eigengenes. Dot plots show the percentage of ST spots expressing the module in
each group as the size, and the Pearson correlation between the module and the amyloid hotspot score as the color. "x" symbol indicates that the correlation was not
statistically significant (FDR > 0.05). This analysis is shown for the human ST dataset (a) and the mouse ST dataset (b).



Supplementary Fig. 57 | Module eigengenes in representative samples from the mouse ST dataset. Spatial feature plots showing module eigengenes (MEs) for the
ten mouse co-expression modules shown in eight representative samples.
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Supplementary Fig. 58 | Module-trait correlation analysis in the mouse co-expression network. a-b, Heatmap showing the module-trait correlation results for age, sex
(positive correlation corresponds to female), and gene signatures for plaque-induced genes (PIGs), disease-associated oligodendrocytes (DOL), disease-associated
microglia (DAM), and disease-associated astrocytes (DAA) in wild type (a) and in 5xFAD (b) mice. c, Heatmap showing the module-trait correlation results with the amyloid
imaging analysis (Amylo-glo and OC) in 5xFAD with amyloid quantifications. Not significant (ns), p > 0.05; * p <= 0.05; ** p <= 0.01; *** p <= 0.001, **** p<= 0.0001.



Supplementary Fig. 59 | Investigating the gene co-expression modules from Chen et al in our 5xFAD ST dataset. a, Spatial feature plots showing module eigengenes
(MEs) for the ten mouse co-expression modules shown in eight representative samples. b-c, Module eigengene (ME) distributions for the ten mouse co-expression modules
in each mouse age group (control, early-stage AD, late-stage AD, AD in DS) stratified by cluster for 5xFAD (b) and 5xFAD mice (c). d, Heatmap showing gene set overlap
analysis results comparing the sets of genes from the mouse ST co-expression modules with the co-expression modules identified from the Chen et al. 23 study. Fisher’s
exact test results shown as follows: Not significant (ns), p > 0.05; * p <= 0.05; ** p <= 0.01; *** p <= 0.001, **** p<= 0.0001.
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