Supplementary Information (SI) for RSC Advances. This journal is © The Royal Society of Chemistry 2024

1	Supporting information for
2	
3	Adsorption mechanism of aqueous Cr(VI) by Vietnamese corncob biochar:
4	a spectroscopic study
5	
6	Duy-Khoi Nguyen ¹ , Quoc-Bao Ly-Tran ¹ , Van-Phuc Dinh ^{1,*} , Bich-Ngoc Duong ¹ , Thi-Phuong Tu
7	Nguyen ¹ , Pham Nguyen Kim Tuyen ² .
8	
9	^a Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City,
10	700000, Viet Nam.
11	^b Faculty of Environment, Sai Gon University, Ho Chi Minh City 700000, Vietnam.
12	
13	Corresponding authors: <u>dvphuc@ntt.edu.vn</u>

15 Preparation of calibration curves and Cr(VI) stock solution

- 16 For the preparation of calibration curve, Cr(VI) solutions with concentrations of 0.5, 1.0, 2.0, 3.0,
- 17 4.0, and 5.0 mg/L were prepared from a 1000 mg/L standard Cr(VI) solution (Sigma) and diluted
- 18 with 0.5M HNO₃. Subsequently, a linear standard curve was generated using an AAS ZA3300
- 19 instrument, resulting in a correlation coefficient ($R^2 = of 0.996$). For the adsorption experiments,
- 20 the desired concentration of the Cr(VI) stock solution was prepared by diluting it from the 1000
- 21 mg/L standard Cr(VI) solution in deionized water and adjusting the pH using 0.1-0.5M HNO₃ and
- 22 0.1-0.5M NaOH.

23 Investigation of factors influencing the adsorption process

- 24 Effect of pH: The pH of the Cr(VI) adsorption process was investigated at values of 2.0-11.0.
- 25 Specifically, 50 mL of a Cr(VI) solution with a concentration of 85 mg/L was introduced into 100
- 26 mL glass containers, each containing 0.1 g of CCBC, at the specified pH values for adsorption.
- The adsorption process was carried out using a magnetic stirrer (RSM-03-10K, Germany) with a stirring speed of 250 rpm at 34 °C and t = 180 mins. After adsorption, the biochar was separated
- from the solution using centrifugation (6000 rpm for 30 minutes). The Cr(VI) concentration before

30 and after adsorption was analyzed using a AAS (ZA3300, Hitachi, Japan).

- 31 *Effect of contact time*: Adsorption time was investigated in the range of 5 to 270 mins at pH =
- 32 2.0, T = 34 °C, Cr(VI) concentration of 85 mg/L (V = 50 mL), $m_{biochar} = 0.1$ g. The adsorption
- 33 process and Cr(VI) concentration analysis were conducted in a manner similar to the previously
- 34 described procedure.

35 *Effect of initial Cr(VI) concentration:* Various Cr(VI) concentrations were investigated 36 sequentially: 25, 50, 75, 100, 125, 150, 175, 200, and 225 mg/L to calculate isotherm adsorption 37 models. The adsorption process was carried out with 50 mL of Cr(VI) solution at pH = 2.0, t = 180 38 mins, $m_{biochar} = 0.1$ g at 34 °C, 44 °C, and 54 °C respectively.

39 *Effect of adsorbent dosage and ionic strength:* The influence of adsorbent dosage and ionic 40 strength was studied under the following conditions: pH = 2.0, t = 180 mins, T = 34 °C, with a 41 volume of 50 mL and a Cr(VI) concentration of 85 mg/L. Adsorbent dosage ranged from 0.05 to 42 0.15 g (0.05; 0.075; 0.1; 0.125; 0.15), and ion strength was varied from 0.0 to 18.63 x 10³ mg/L of

43 KCl (0.0; 3.72; 7.45; 11.18; 14.91; 18.63 x 10³).

45 ANOVA Analysis for effect of pH

<mark>рН</mark>	<u>Count</u>	<mark>Sum</mark>	<u>Average</u>	<i>Variance</i>
2	<mark>3</mark>	172.38	<mark>57.46</mark>	<mark>7.74</mark>
<mark>3</mark>	<mark>3</mark>	123.71	<mark>41.24</mark>	<mark>47.11</mark>
<mark>4</mark>	<mark>3</mark>	<mark>96.88</mark>	<mark>32.29</mark>	<mark>5.43</mark>
<mark>5</mark>	<mark>3</mark>	<mark>78.64</mark>	<mark>26.21</mark>	2.51
<mark>6</mark>	<mark>3</mark>	<mark>63.56</mark>	<mark>21.19</mark>	1.75
<mark>7</mark>	<mark>3</mark>	<mark>51.85</mark>	17.28	3.52
<mark>8</mark>	<mark>3</mark>	<mark>28.67</mark>	<mark>9.56</mark>	<mark>40.57</mark>
<mark>9</mark>	<mark>3</mark>	<mark>31.46</mark>	10.49	1.15
10	<mark>3</mark>	<mark>45.62</mark>	15.21	<mark>6.58</mark>
11	<mark>3</mark>	<mark>34.87</mark>	11.62	<mark>9.70</mark>

ANOVA						
Source of Variation	<mark>SS</mark>	df	\overline{MS}	F	P-value	F crit
Between Groups Within Groups	6493.37 252.13	9 20	721.49 12.61	<u>57.23</u>	2.58E-12	<mark>2.39</mark>
Total	6745.50	<mark>29</mark>	I			

47 ANOVA Analysis for effect of Sorbent dosage

Sorbent dosage (g)	Count	<mark>Sum</mark>	<u>Average</u>	<i>Variance</i>
0.05	<mark>3</mark>	<mark>76,68</mark>	<mark>25,56</mark>	0,12
<mark>0.075</mark>	<mark>3</mark>	113,88	<mark>37,96</mark>	0,26
<mark>0.1</mark>	<mark>3</mark>	149,15	<mark>49,72</mark>	0,41
0.125	<mark>3</mark>	178,79	<mark>59,60</mark>	<mark>0,18</mark>
<mark>0.15</mark>	<mark>3</mark>	206,73	<mark>68,91</mark>	0,03

ANOVA						
Source of Variation	<u>SS</u>	df	<u>MS</u>	F	P-value	F crit
Between Groups Within Groups	3535,22 2,00	<mark>4</mark> 10	883,80 0,20	<mark>4423,59</mark>	3,45E-16	<mark>3,48</mark>
Total	3537,21	<mark>14</mark>				

49 ANOVA Analysis for effect of Ionic strength

Ionic strength	<u>Count</u>	<mark>Sum</mark>	<u>Average</u>	<i>Variance</i>		
0.05	<mark>3</mark>	<mark>161,68</mark>	<mark>53,89</mark>	<mark>0,73</mark>		
0.1	<mark>3</mark>	157,80	<mark>52,60</mark>	<mark>19,21</mark>		
<mark>0.15</mark>	<mark>3</mark>	149,58	<mark>49,86</mark>	<mark>8,77</mark>		
0.2	<mark>3</mark>	140,17	<mark>46,72</mark>	<mark>44,82</mark>		
0.3	<mark>3</mark>	131,99	<mark>44,00</mark>	149,41		
ANOVA						
Source of Variation	<mark>SS</mark>	<mark>df</mark>	<u>MS</u>	F	<mark>P-value</mark>	F crit
Between Groups	<mark>200,99</mark>	<mark>4</mark>	<mark>50,25</mark>	1,13	<mark>0,40</mark>	<mark>3,48</mark>
Within Groups	<mark>445,86</mark>	<mark>10</mark>	<mark>44,59</mark>			
Total	<mark>646,85</mark>	<mark>14</mark>		1	1	

50 ANOVA Analysis for effect of adsorption time

					_
Time	Count	<mark>Sum</mark>	Average	Variance	
<mark>5</mark>	<mark>3</mark>	<mark>46.03</mark>	15.34	<mark>0.29</mark>	
<mark>10</mark>	<mark>3</mark>	<mark>52.11</mark>	17.37	<mark>0.39</mark>	
<mark>15</mark>	<mark>3</mark>	<mark>55.37</mark>	18.46	<mark>0.24</mark>	
20	<mark>3</mark>	<mark>58.62</mark>	19.54	<mark>0.08</mark>	
<mark>30</mark>	<mark>3</mark>	<mark>61.54</mark>	20.51	<mark>0.06</mark>	
<mark>40</mark>	<mark>3</mark>	<mark>63.91</mark>	<mark>21.30</mark>	0.03	
<mark>60</mark>	<mark>3</mark>	<mark>64.8</mark>	<mark>21.60</mark>	0.00	
<mark>80</mark>	<mark>3</mark>	<mark>65.6</mark>	<mark>21.87</mark>	0.23	
100	<mark>3</mark>	<mark>67.29</mark>	<mark>22.43</mark>	<mark>0.16</mark>	
120	<mark>3</mark>	<mark>67.9</mark>	<mark>22.63</mark>	0.15	
<mark>150</mark>	<mark>3</mark>	<mark>70.77</mark>	<mark>23.59</mark>	0.13	
<mark>180</mark>	<mark>3</mark>	72.51	<mark>24.17</mark>	0.05	
210	<mark>3</mark>	<mark>72.14</mark>	<mark>24.05</mark>	<mark>0.10</mark>	
<mark>240</mark>	<mark>3</mark>	<mark>72.4</mark>	<mark>24.13</mark>	0.03	
270	<mark>3</mark>	<mark>72.05</mark>	<mark>24.02</mark>	0.05	
ANOVA					
Source of					
Variation	<u>SS</u>	df	MS	F	
Between Groups	307.42	<mark>14</mark>	<mark>21.96</mark>	166.31	
Within Groups	<mark>3.96</mark>	<mark>30</mark>	0.13		
otal	311.38	<mark>44</mark>			

	Types of models	Non-linear form	Parameters
_	Langmuir	$Q = \frac{Q_m K_L C_e}{Q_m K_L C_e}$	$K_L(L.mg^{-1})$
[sot]	Langmun	$Q_e - 1 + K_L C_e$	$Q_m (mg.g^{-1})$
her	Freundlich	$Q = K_{-} C^{1/n}$	n
В	Freuhanen	$Q_e = \Pi_F \Theta_e$	$K_F ((mg.g^{-1}).(L.mg^{-1})^{1/n})$
mo		$0 c^{\beta_s}$	Q_{S} (L.g ⁻¹)
del	Sips	$Q_{\rho} = \frac{Q_{s} \cdot C_{\rho}}{2}$	$\alpha_{s}(L.mg^{-1})$
s (3	•	$1 + \alpha_s C_e^{\beta_s}$	β_s
07	S Redlich-Peterson	$A_{RP}.C_{e}$	A_{RP} (mg g ⁻¹ min ⁻¹)
K		$Q_e = \frac{\beta_e}{\beta_e}$	K_{RP} (mg.g ⁻¹)
		$1 + K_{RP} C_{e}^{s}$	g
	Decudo first ordor	$0 = 0 (1 - e^{-k_1 t})$	$q_{e (cal)} (mg.g^{-1})$
_	1 Seudo-111 St-01 dei	$Q_t = Q_e \cdot (1 - e)$	$k_1 (min^{-1})$
Kin	Pseudo-second-	$Q_e^2 k_2 t$	$q_{e (cal)} (mg.g^{-1})$
etic	order	$Q_t = \frac{1}{1 + k_2 \cdot Q_e \cdot t}$	k ₂ (g.mg ⁻¹ .min ⁻¹)
mo	Intraparticle	$0 - K t^{1/2} + C$	K _P
del	diffusion	$Q_t = K_{p,t} + C$	С
Ś	F 1	$0 - \frac{1}{2}$	$\alpha (\text{mg g}^{-1} \text{min}^{-1})$
	Elovic	$Q_t = -\frac{1}{\beta} . ln(1 + \alpha\beta t)$	β (mg.g ⁻¹)

Table S1. Non-linear isotherm and kinetic models used in this study

Sample	Weight of biomass (g)	Weight of product (g)	Yield of conversion (%)
CCBC-500-15	10.01	2.62	26.21
CCBC-500-30	10.06	2.48	24.70
CCBC-500-45	10.03	2.45	24.44
CCBC-600-15	10.00	2.27	22.78
CCBC-600-30	10.08	2.24	22.29
CCBC-600-45	10.03	2.21	22.06
CCBC-700-15	10.05	2.20	21.96
CCBC-700-30	10.00	2.11	21.16
CCBC-700-45	10.04	2.02	20.14

Table S2. Efficiency of converting corn cob biomass to biochar

 $Yield = [(m_{biochar} / m_{biomass}) \times 100\%] [1]$

Materials	Pyrolysis condition (°C)	Ssa ^a (m ² /g)	S _{micro} (m²/g)	S _{ext} ^b (m ² /g)	Pore volume (cm ³ /g)	Refs
Corn cob biochar	500	6.7	3.8	2.9	0.002	This study
Corn cob biochar	600	262	245	17	0.113	This study
Corn cob biochar	700	443	416	27	0.194	This study
Corn cob activated carbon	500	25.3	21.7	3.6	-	[2]
Corn cob activated carbon	600	30.9	-	-	0.011	[3]
Cassava Stems biochar	700	200.5	-	-	0.122	[4]
Sugarcane bagasse biochar	800	60	-	-	0.090	[5]
Spent coffee ground biochar	500	11	-	-	0.010	[6]
Pomelo fruit peel biochar	500	40.6	-	-	-	[7]

Table S3. The porosity of biochar samples synthesized from raw corn cob

^aCalculated with the BET model. ^bDetermined by the t-plot method, $S_{ext} = Ssa - S_{micro}$. Ssa = Specific surface area.

78 79 Table S4. Percentage removal of Cr(VI) from water on CCBC samples synthesized under 80 different pyrolysis conditions.

Pyr. condition	Biochar	Ads. time	Ads. temp.	%
(°C, mins)	(g)	(mins)	(°C)	Removal
700, 15				57.6 ± 2.1
600, 15	0.1	180	34	42.5 ± 2.3
500, 15				31.3 ± 2.4
700, 30	0.1	180	34	56.5 ± 2.0
600, 30	0.1	180	34	43.1 ± 2.2
500, 30	0.1	180	34	32.5 ± 2.2
700, 45	0.1	180	34	55.3 ± 2.0
600, 45	0.1	180	34	43.7 ± 1.9
500, 45	0.1	180	34	32.9 ± 2.0

Pyr. = pyrolysis; Ssa = Specific surface area; Temp. = temperature; Ads. = adsorption.

84

Fig. S1. The solution after Cr(VI) adsorption onto CCBC synthesized at different pyrolysis condition ($C_o = 85 \text{ mg/L}$, pH = 2.0, T = 34 °C, t = 180 mins).

Types of models	Parameters	34 °C
	$K_L(L.mg^{-1})$	0.06
	$q_{\rm m}$ (mg.g ⁻¹)	38.13
Langmuir	RMSE	2.25
	R ²	0.93
	χ^2	2.72
	n	3.30
	$K_F ((mg.g^{-1}).(L.mg^{-1})^{1/n})$	8.04
Freundlich	RMSE	1.23
	R ²	0.98
	χ^2	0.43
	$Q_{S}(L.g^{-1})$	6.98
	$\alpha_{s}(L.mg^{-1})$	0.09
Sips	β _s	0.46
	RMSE	1.06
	R ²	0.98
	χ^2	0.33
	$K_{\rm RP}({\rm L.g^{-1}})$	0.73
	$A_{RP}(L.mg^{-1})$	0.43
Redlich-	g	16.28
Peterson	RMSE	6.96
	R ²	0.33
	χ^2	21.39

Table S5. The parameters of non-linear isotherm models at $34 \ ^\circ C$

100 Fig. S3. XRD pattern (a); and SEM image (b) of CCBC before 4th cycles of Cr(VI) adsorption.

103 Fig. S4. Possible interaction mechanism between Cr(VI) and CCBC

References

- 106 [1] Y.-n. Liu, Z.-h. Guo, Y. Sun, W. Shi, Z.-y. Han, X.-y. Xiao, P. Zeng, Stabilization of heavy
- 107 metals in biochar pyrolyzed from phytoremediated giant reed (Arundo donax) biomass,
- 108 Transactions of Nonferrous Metals Society of China, 27 (2017) 656-665.
- 109 [2] H. Li, P. Gao, J. Cui, F. Zhang, F. Wang, J. Cheng, Preparation and Cr(VI) removal
- 110 performance of corncob activated carbon, Environmental Science and Pollution Research, 25
- 111 (2018) 20743-20755.
- 112 [3] G.K. Gupta, M. Ram, R. Bala, M. Kapur, M.K. Mondal, Pyrolysis of chemically treated
- 113 corncob for biochar production and its application in Cr(VI) removal, Environmental Progress &
- 114 Sustainable Energy, 37 (2018) 1606-1617.
- 115 [4] S. Wijitkosum, T. Sriburi, Applying Cassava Stems Biochar Produced from Agronomical
- 116 Waste to Enhance the Yield and Productivity of Maize in Unfertile Soil, Fermentation, 7 (2021)117 277.
- 118 [5] K. Saini, B. Biswas, A. Kumar, A. Sahoo, J. Kumar, T. Bhaskar, Screening of sugarcane
- 119 bagasse-derived biochar for phenol adsorption: optimization study using response surface
- 120 methodology, International Journal of Environmental Science and Technology, 19 (2022) 8797-
- 121 8810.
- 122 [6] J. Shin, S.-H. Lee, S. Kim, D. Ochir, Y. Park, J. Kim, Y.-G. Lee, K. Chon, Effects of
- 123 physicochemical properties of biochar derived from spent coffee grounds and commercial
- 124 activated carbon on adsorption behavior and mechanisms of strontium ions (Sr2+), Environmental
- 125 Science and Pollution Research, 28 (2021) 40623-40632.
- 126 [7] V.-P. Dinh, D.-K. Nguyen, T.-T. Luu, Q.-H. Nguyen, L.A. Tuyen, D.D. Phong, H.A.T. Kiet,
- 127 T.-H. Ho, T.T.P. Nguyen, T.D. Xuan, P.T. Hue, N.T.N. Hue, Adsorption of Pb(II) from aqueous
- 128 solution by pomelo fruit peel-derived biochar, Materials Chemistry and Physics, 285 (2022)
- 129 126105.
- 130