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Fig. S1. 

Fluorescence images of fluorescence beads with a diameter of 0.2 µm (F8809, Invitrogen). 

(Left) The beads measured at 233 K in the cryostat with liquid nitrogen circulation. (Right) The 

beads measured at 293 K without liquid nitrogen circulation. Scale bar: 2 µm. The fluorescence 

images were acquired using the slit-scanning Raman microscope described in Materials and 

Methods. The exposure time was 10 ms/line. The interval between acquiring neighboring lines, 

equivalent to the detector readout time, was 200 ms. The scanning pitch was 90 nm. The 

fluorescence images were reconstructed from zeroth-order light diffracted by the 

spectrophotometer. The slit width of spectrophotometer was 50 µm (~1.0 A.U. confocal slit). 



Fig. S2. 

Local heating by laser irradiation in Raman imaging of cell samples. (A) Molar extinction 

coefficient of FAD calculated from the excitation spectrum taken by a spectrophotometer. (B) 

Molar extinction coefficient of reduced cytochrome c calculated from the excitation spectrum 

taken by a spectrophotometer. (C) Plots of the fluorescence intensity to the concentration for FAD 

in aqueous solutions (black circle), a linear calibration curve fit to the plots (black dashed line), 

and the plot of intracellular autofluorescence intensity to the concentration estimated from the 

fitting curve (red diamond). (D) Plots of the Raman intensity to the concentration for reduced 

cytochrome c in aqueous solutions (black circle), a linear calibration curve fit to the plots (black 

dashed line), and the plot of intracellular Raman intensity to the concentration estimated from the 

fitting curve (green cross). FAD and reduced cytochrome c in water with each concentration was 

measured by our Raman microscope for obtaining the calibration curves. Intracellular 

concentration of FAD and reduced cytochrome c was obtained from the calibration curves and 



fluorescence and Raman intensity of HeLa cells.  (E) A schematic of the 3D model for simulation 

of local heating with laser irradiation by COMSOL. Aspect ratio of each component is modified 

for visibility. The actual parameters used in the calculation were listed in the Table S1. (F) 

Distribution of the sample temperature after laser irradiation for 70 s (upper). Enlarged images of 

x-z and y-z cross-sections along with the white lines in the x-y plot are also shown (lower). Initial

temperature of the sample was 233 K and temperature of the cooling block was kept in 233 K

during the simulation. (G) Raman spectra of water measured at low temperature (173 to 243 K)

with an exposure time of 10 s/line. (H) Raman spectra of cryofixed HeLa cells at 233 K measured

with exposure times of 5 s/line (blue line) and 40 s/line (red line). The laser power was 3.0

mW/µm2 for Fig. S2G-H.



Fig. S3. 

Raman measurement of ice crystal formation in HeLa cell measurements. (A) The Raman 

spectrum averaged over the white square in (B). (B) Raman images presenting the distributions of 

cytochrome, protein, and lipid in HeLa cells (left) and ice crystals over the imaging area (right), 

with rapid freezing by liquid propane at 88 K. (C) Raman images presenting the distributions of 

cytochrome, protein, and lipid in HeLa cells (left) and ice crystals over the imaging area (right) 

with slow freezing at the cooling rate of 1 K/min using the metal plate in the custom cryostat. 

Exposure time was 5 s/line. Scale bar: 10 µm. 



Fig. S4. 

Raman images of cryofixed HeLa cells reconstructed from Raman bands that appeared or 

increased only in cryofixed condition. (A) The images reconstructed at 1061 and 2880 cm-1 

(lipid) (B) The images reconstructed at 1151 and 1517 cm-1 (carotenoids). (C) The images 

reconstructed from 917, 968, and 1337 cm-1 (cytochromes). (D) The image reconstructed at 1298 

cm-1 (cytochromes and lipid). Exposure time: 5 s/line. Scale bar: 10 µm.



Fig. S5. Temperature dependence of Raman spectra of biological molecules. Raman spectra 

of (A) 1 mM bovine serum albumin, (B) 1 mM phenylalanine, and (C) 20 mM EdU aqueous 

solutions. The exposure time and the laser power were 60 s and 3.0 mW/µm2, respectively. 



Fig. S6. 

Estimation of Raman band width of phenylalanine at 1001 cm-1. (A) Raman spectra of HeLa 

cells obtained at a high spectral resolution with a 40 µm slit width (~0.8 Airy Unit confocal slit) 

and 1800 L/mm grating at cryofixed condition (red) and a low spectral resolution with a 60 µm 

slit width (~1.2 Airy Unit confocal slit) and 600 L/mm grating at room temperature (blue). Red 

and blue solid lines are fitted using Gaussian functions.  (B) Detection point spread functions 

(DPSF) of the spectrophotometer used in the Raman microscope for each condition, which were 

estimated by convolution of the slit width and the point spread function of the system measured 

using the neon spectrum using the slit width (10µm) smaller than the pixel size. (C) Raman spectra 

of HeLa cells estimated by deconvolving the measured spectrum (A) with DPFS (B). Note that the 

Gaussian functions were used for the deconvolution. 



Fig. S7. 

Sample modification during repeated Raman imaging acquisitions of HeLa cells fixed by 

paraformaldehyde. The images were reconstructed by the intensity at 1680 cm-1 assigned to the 

amide-I vibrational mode. Black arrows indicated the modified position during Raman imaging. 

The exposure times were set to 5, 10, 20, and 40 s/line for the first, second, third, and fourth 

acquisitions, respectively. Scale bar: 10 µm. 



Fig. S8. 

Estimated SNR in Raman spectral imaging with extended exposure times. (A) The SNR 

derived for the bands at 750 cm-1, 2850 cm-1, and 2933 cm-1 of the cryofixed HeLa cells in Fig.2A 

(circle). The SNR was normalized by the SNR value at 5 s/line for each exposure time. The 

normalized SNR was averaged over 12 different regions in Fig. 2A (n = 12). The black dashed line 

shows the SNR for long exposures, estimated using the first data point (5 s/line). This curve 

theoretically assumes Poisson noise and increases along the square root of the total exposure time. 

However, the measured SNR is larger than the SNR theoretically estimated due to the time-

dependent decrease in spectral background. (B) Plots of the Raman signal (the difference of the 

peak and bottom, circle) and the spectral background (diamond) for the same bands as in A. 

Increase in the spectral background intensity along total radiation time is less than linear, indicating 

the occurrence of photobleaching or transition to the dark state of background fluorescence. The 

Raman signal and spectral background intensities were averaged over 12 different regions in Fig. 

2A (n = 12). (C) Autofluorescence images of cryofixed HeLa cells at 203 K reconstructed by 

averaging the intensity between1900 and 2400 cm-1. Excitation intensity was 3.0 mW/µm2. Scale 

bar was 5 µm. Step size was 1.2 µm. (D) Irradiation time dependence of fluorescence intensity of 

cryofixed cells. Fluorescence intensity was averaged excluding the top and bottom 10% of each 

image in (C). 



Fig. S9. 

Temperature dependence of autofluorescence in Raman imaging of cells. (A) Raman images 

of HeLa cells observed repeatedly at room temperature (293 K), 233 K, 213 K, 193 K and 173 K. 

The images were reconstructed by the intensity at 1803-2295 cm-1. (B) Average Raman spectra of 

HeLa cells. Red, orange, cyan, purple and blue lines are the spectra measured at 293 K(room 

temperature ), 233 K, 213 K, 193 K, and 173 K, respectively. The rectangles in (A) indicates the 

area used to calculate the averaged Raman spectra. The exposure time, and the intensity of 

excitation laser were 3 s/line and 60µW/µm2, respectively. The scanning step was 540 nm. Scale 

bar: 10 µm. 



Fig. S10. 

Stripe correction of Raman images. Raman images of cryofixed HeLa cells with wide FOV (A, 

B) and treated with multiple Raman tag (C, D), without stripe correction (A, C) and with stripe

correction (B, D). All scale bars: 20 µm (A, B) and 10 µm (C, D)



Table. S1. 

Parameters for the calculation of local heating. 



Table S2. 

Detailed parameters for the Raman image reconstruction 
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