SUPPORTING INFORMATION FOR

Diclofenac removal by alkylammonium clay minerals prepared over microwave heating

Denise B. França^{a,1}, Alice P. N. Silva^a, Josy A. Osajima^b, Edson C. Silva-Filho^b, Santiago Medina-Carrasco^c, Maria del Mar Orta^d, Maguy Jaber^e, Maria G. Fonseca^{a*}

^aUniversidade Federal da Paraíba, Núcleo de Pesquisa e Extensão - Laboratório de Combustíveis e Materiais (NPE - LACOM), Cidade Universitária s/n – Campus I, 58051-900, João Pessoa-PB, Brazil.

^bUniversidade Federal do Piauí, Laboratório Interdisciplinar de Materiais Avançados (LIMAV), Avenida Universitária s/n, 64049-550, Teresina-PI, Brazil.

^cUniversidad de Sevilla, SGI Laboratorio de Rayos X - Centro de Investigación,

Tecnología e Innovación de la Universidad de Sevilla (CITIUS), Avenida Reina

Mercedes, 4B, 41012, Sevilla, Spain.

^dUniversidad de Sevilla, Departamento de Química Analítica da Facultad de Farmacia, Calle Profesor García González 2, 41012, Sevilla, Spain

^eSorbonne Université, CNRS UMR 8220, Laboratoire d'Archéologie Moléculaire et

Structurale (LAMS), Case courrier 225, 4 pl. Jussieu, 75252, Paris Cedex 05, France.

*mgardennia@quimica.ufpb.br

¹ Universidade Federal do Piauí, Laboratório Interdisciplinar de Materiais Avançados (LIMAV), Avenida Universitária s/n, 64049-550, Teresina-PI, Brazil.

Sample	Basal spacing (nm)
C ₁₄ -Ver-100%	1.1-1.2, 2.6-2.7
C ₁₄ -Ver-200%	1.1-1.2, 2.6-2.7
C ₁₆ -Ver-100%	1.1, 2.7-2.8 and 3.9-4.1
C ₁₆ -Ver-200%	1.0-1.1, 2.9
C ₁₈ -Ver-100%	1.0-1.2, 2.8-2.9 and 4.2-4.4
C ₁₈ -Ver-200%	1.0-1.10, 3.3-3.4

Table S1. Basal distance values obtained from TEM images

Langmuir					
Sample	$q_{e(exp)}$	<i>q_{max}</i>	KL	R ²	SD
	(mg g ⁻¹)	(mg g ⁻¹)	$(10^{-2} \mathrm{Lmg^{-1}})$		(mg g ⁻¹)
C ₁₄ -Ver-100%	36.30 ± 1.08	46.70 ± 2.51	1.16 ± 0.16	0.9862	1.62
C ₁₆ -Ver-100%	52.89 ± 1.05	97.4 ± 7.39	0.30 ± 0.04	0.9913	1.84
C ₁₈ -Ver-100%	17.90 ± 0.72	21.64 ± 1.00	0.89 ± 0.12	0.9876	0.68
C ₁₄ -Ver-200%	97.75 ± 1.46	115.10 ± 4.80	1.1 ± 0.13	0.9878	3.63
C ₁₆ -Ver-200%	110.06 ± 1.65	118.19 ± 4.50	2.39 ± 0.35	0.9836	4.98
C ₁₈ -Ver-200%	107.97 ± 2.16	115.86 ± 4.50	3.23 ± 0.58	0.9805	5.58
Freundlich					
Sample	n		K_F	\mathbb{R}^2	SD
		(mg g	$^{-1}$)(mg L ⁻¹) ^{-1/n}		(mg g ⁻¹)
C ₁₄ -Ver-100%	2.30 ± 0.2		06 ± 0.86	0.9383	3.43
C ₁₆ -Ver-100%	1.61 ± 0.1	.3 1.	28 ± 0.36	0.9744	3.15
C ₁₈ -Ver-100%	2.36 ± 0.1	.7 1.	36 ± 0.24	0.9805	0.86
C ₁₄ -Ver-200%	2.55 ± 0.2	.21 9.	21 ± 1.61	0.9750	5.21
C ₁₆ -Ver-200%	3.39 ± 0.3	30 19	$.42 \pm 2.72$	0.9750	6.15

Table S2. Adsorption parameters of drug adsorption on organo-vermiculites according to the Langmuir, Freundlich, and Temkin models

......

C ₁₈ -Ver-200%	3.85 ± 0.47	24.33 ± 4.04	0.9576	8.22
Temkin				
Sample	b_T	A_T	R ²	SD
	$(10^2 \text{ J mol}^{-1})$	(L mg ⁻¹)		$(mg g^{-1})$
C ₁₄ -Ver-100%	1.34 ± 0.17	0.54 ± 0.24	0.8778	4.84
C ₁₆ -Ver-100%	1.02 ± 0.21	0.38 ± 0.29	0.7108	10.58
C ₁₈ -Ver-100%	2.91 ± 0.35	0.54 ± 0.27	0.8813	2.13
C ₁₄ -Ver-200%	238 ± 46.1	4.51 ± 5.16	0.7423	16.73
C ₁₆ -Ver-200%	0.84 ± 0.14	33.60 ± 40.8	0.8032	17.26
C ₁₈ -Ver-200%	0.68 ± 0.06	11.80 ± 6.47	0.9397	9.80

Sample	Surfactant/proportion	Experimental	$q_e^{\rm c}$	Reference
	(% CEC)	conditions	(mg g ⁻¹)	
Mt ^a	C ₁₆ Br/400%	рН: 6.5	49.31	Oliveira et
(76 cmol(+)		C _i : 10 - 2000 mg L ⁻¹		al. ¹
kg ⁻¹)		Organoclay mass: 100		
	BDTA ^c /400%	mg	60.40	
		Volume of drug		
		solution: 50 mL		
		t: 24 h		
		T: 25 °C		
Bent ^b	DDP ^d /200%	pH: 6.0	25.5	França et
(75 cmol(+)		C _i : 1-500 mg L ⁻¹		al. ²
kg ⁻¹)		Organoclay mass: 150		
		mg		
		V = 20 mL		
		t: 10 min		
		$T: 25^{\circ}C$		
	HDP ^e /200%	pH: 6.0	91.13	
		C _i : 1-500 mg L ⁻¹		
		Organoclay mass: 50		
		mg		
		V = 20 mL		

 Table S3. Diclofenac adsorption capacity obtained for others organoclays according

 to the literature

		t: 10 min		
		$T: 25^{\circ}C$		
Mt	HDBA ^f /160%	C _i : 20-150 mg L ⁻¹	125.55	Chu et al. ³
(90 cmol(+)		Organoclay mass: 50		
kg ⁻¹)		mg		
		V = 50 mL		
		T : 25 °C		
Na-Mt (120.0 cmol kg ⁻¹)	C ₁₆ Br/200%	$\label{eq:pH} \begin{array}{l} pH > 5.0 \\ C_i \approx 50 \mbox{ - 1500 mg } L^{-1} \\ Organoclay mass = 70 \\ mg \\ V_{sol} \mbox{ (DFNa)} = 20 \mbox{ mL} \\ t = 24 \mbox{ h} \end{array}$	318.13	Sun et al. ⁴
Bent (139 cmol(+) kg ⁻ ¹)	C ₁₆ Br/260%	pH: 7.0 $C_i \approx 159 - 1590 \text{ mg L}^-$ 1 Organoclay mass not given V = 40 mL t = 7 days $T : 25 ^{\circ}C$	388.0	Martinez- Costa et al. ⁵
Na-Ver	C ₁₄ Br/200%	pH 6.0 for C ₁₆ -Ver-	97.75	Present
(67 cmol(+)	C ₁₆ Br/200%	200% and C_{18} -Ver-	110.06	study
kg ⁻¹)	C ₁₈ Br/200%	200%; pH 8.0 for C ₁₄ - Ver-200%	107.97	
		C _i : 1-500 mg L ⁻¹		
		Organoclay mass: 50		
		mg		
		V = 20 mL		
		t: 30 min		

^aMontmorillonite; ^bBentonite; ^cBenzyldimethyltetradecylammonium; ^dDodecylpyridinium; ^eHexadecylpyridinium; ^fBenzyldimethylhexadecylammonium

Table S4. Summary of mass losses and temperature intervals for events in the DTGcurves for organovermiculites after stability test

pН	Sample	Event	T (°C)	Mass loss Total mass Total o		Total organic
				(%)	loss (%)	content ^a (%)
6.0	C ₁₄ -Ver-100%	Ι	50-115	2.6	19.2	12.8
		II	115-228	3.5		
		III	228-341	7.5		
		IV	341-443	1.2		
		V	443-523	0.6		
		VI	523-762	3.8		
_	C ₁₄ -Ver-200%	Ι	50-118	2.7	26.2	20.8
		II	118-184	2.8		
		III	184-216	11.3		
		IV	216-345	3.0		
		V	345-518	3.7		
		VI	518-770	2.7		
_	C ₁₆ -Ver-100%	II	50-125	2.2	18.2	13.3
		III	125-221	3.1		
		IV	221-350	9.0		
		V	350-462	1.3		
		VI	522-774	2.6		
_	C ₁₆ -Ver-200%	Ι	50-118	2.7	29.9	22.8
		II	118-221	7.1		
		III	221-362	13.7		

		IV	362-506	2.0			
		V	506-767	4.4			
_	C ₁₈ -Ver-100%	II	50-133	2.5	20.2	14.9	
		III	133-232	3.9			
		IV	232-345	9.4			
		V	345-459	1.4			
		VI	459-528	0.2			
		VII	528-776	2.7			
-	C ₁₈ -Ver-200%	Ι	50-130	2.3	33.9	27.4	
		ΙΙ	130-266	15.9			
		III	266-380	9.9			
		IV	380-497	1.6			
		V	497-774	4.2			
8.0	C ₁₄ -Ver-100%	Ι	50-122	2.7	19.4	12.7	
		ΙΙ	122-221	2.9			
		III	221-340	7.9			
		IV	340-449	1.3			
		V	449-518	0.5			
		VI	518-775	4.1			
-	C ₁₄ -Ver-200%	Ι	50-117	2.4	24.9	19.0	
		II	117-187	2.9			
		III	187-217	2.0			
		IV	217-342	11.2			
		V	342-420	1.9			
		VI	420-513	1.0			

	VII	513-773	3.5		
C ₁₆ -Ver-100%	Ι	50-121	2.5	20.3	14.1
	II	121-222	3.3		
	III	222-348	8.9		
	IV	348-446	1.3		
	V	446-519	0.6		
	VI	519-766	3.6		
C ₁₆ -Ver-200%	Ι	50-120	2.1	29.4	23.1
	II	120-220	7.7		
	III	220-366	13.6		
	IV	366-506	1.9		
	V	506-770	4.2		
C ₁₈ -Ver-100%	Ι	50-120	2.3	21.5	15.7
	II	120-223	4.1		
	III	223-362	10.0		
	IV	362-447	1.1		
	V	447-523	0.5		
	VI	523-769	3.5		
C ₁₈ -Ver-200%	Ι	50-118	2.0	33.9	28.1
	II	118-261	16.1		
	III	261-366	10.1		
	IV	366-455	1.5		
	V	455-509	0.5		
	VI	509-766	3.8		

^aValues obtained from the sum of mass losses, excluding dehydration and dihydroxylation.

Table S5. Results of the CHN elemental analysis of organovermiculites before andafter treatment at pH 6.0 and pH 8.0

Sample	Untreated samples		рН 6.0			pH 8.0						
	С	Η	N	α^{a}	С	Н	N	α^{a}	С	Н	N	α^{a}
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
C ₁₄ -Ver-100%	11.6	3.2	0.9	15.7	11.5	3.4	0.8	15.8	11.5	3.3	0.8	15.6
C ₁₆ -Ver-100%	13.0	3.3	0.9	17.2	12.6	3.4	0.7	16.8	12.6	3.4	0.7	16.7
C ₁₈ -Ver-100%	14.1	3.6	0.8	18.5	13.9	3.6	0.8	18.3	13.9	3.6	0.7	18.2
C ₁₄ -Ver-200%	18.2	4.3	1.4	23.9	16.5	4.1	1.1	21.7	16.7	4.1	1.1	21.8
C ₁₆ -Ver-200%	21.3	4.8	1.4	27.5	20.1	4.7	1.2	26.0	20.0	4.4	1.2	25.7
C ₁₈ -Ver-200%	23.8	5.2	1.4	30.3	23.2	5.1	1.2	29.6	23.3	5.2	1.2	29.7

^aTotal organic content determined from CHN elemental analysis

Wavenumber	Assignment ^a	Wavenumber	Assignment ^a
(cm^{-1})		(cm^{-1})	
1606	v(ring)	1376~1380	v _s (COO ⁻)
1577	vas(COO ⁻)	1305	v _{as} (C-N-C) ⁺ CH
			$rock + CH_2$
			wagging
1557	v(ring)	1287	CH rock + CH ₂
			wagging
1506 and 1417	δ (C-N-H) ⁺ CH rock	762	$v(C-Cl) + \delta(ring)$ in-
	(ring)		plane
1468 and 1453	v(C-N) + CH rock	744	CH wagging (ring)
	(ring)		

 Table S6. Assignments of the bands in FTIR spectra associated with diclofenac

 adsorbed in the samples

^aIliescu et al.⁶ and Lin-Vien et al.⁷

Table S7. Experimental conditions for evaluation of the adsorption of sodiumdiclofenac by organophilic vermiculites

Parameter	Experimental conditions						
evaluated	рН	m (mg)	t (min)	$C_i (mg L^{-1})$			
рН	6.0; 8.0 and 10.0	25	1440	10			
Adsorbent	Fixed ^a	25, 50, 75,	1440	10			
dosage		100, 125					
		and 150					
Time	Fixed ^a	Fixed ^a	5, 7, 10, 15,	10			
			20, 30, 40				
			and 60				
Drug	Fixed ^a	Fixed ^a	Fixed ^a	1, 10, 50, 100, 150,			
concentrations				200, 250, 300, 400, and			
				500.			

^aOptimal experimental conditions evaluated for each adsorbent.

 Table S8. Equilibrium adsorption models

Model	Equation ^a	
Langmuir ⁸	$q_e = \frac{q_{max}K_LC_e}{1+K_LC_e}$	Eq. (S1)
Freundlich ⁹	$q_e = K_F C_e^{\frac{1}{n}}$	Eq. (S2)
Temkin ¹⁰	$q_e = \frac{RT}{b_T} \ln(A_T C_e)$	Eq. (S3)

^a C_e (mg L⁻¹) is the drug equilibrium concentration; q_e (mg g⁻¹) is the equilibrium amount of diclofenac adsorbed on the organoclays; q_{max} (mg g⁻¹) is the maximum adsorption capacity of the adsorbent, assuming the uptake of the monolayer drug by the adsorbent; K_L (L mg⁻¹) is the Langmuir constant; K_F (mg g⁻¹) (mg L⁻¹)^{-1/n} and *n* are Freundlich constants related to the capacity and intensity of adsorption, respectively; b_T is the constant related to the adsorption heat (J mol⁻¹); A_T is the isotherm constant (L mg⁻¹); *R* is the gas constant (8.314 J mol⁻¹ K); *T* is the absolute temperature (K).

Figure S1. Interlayer arrangements of (a) C_{14} , (b) C_{16} , and (c) C_{18} organic chains in the organophilic samples for (i) vermiculite and (ii) hydrobiotite phases.

Non-exchangeable K⁺ (Hb)

Figure S2. TEM images of (a) Na-Ver, (b) C₁₄-Ver-100%, (c) C₁₄-Ver-200%, (d) C₁₆-Ver-100%, (e) C₁₆-Ver-200%, (f) C₁₈-Ver-100%, (g) C₁₈-Ver-200%.

Figure S3. Nitrogen adsorption-desorption isotherms for (a) Na-Ver, (b) C_{14} -Ver-100%, and (c) C_{16} -Ver-100%, and (d) Kr adsorption isotherm for C_{18} -Ver-100%.

Figure S4. Graph of zeta potential versus amount of drug adsorbed by the organophilic vermiculites (25 °C, 25 mg mass adsorbent, $C_i = 10 \text{ mg } L^{-1}$, 24 h, pH 6.0 for C_{16} -Ver-200% and C_{18} -Ver-200%, and pH 8.0 for C_{14} -Ver-100%, C_{14} -Ver-200%, C_{16} -Ver-100%, and C_{18} -Ver-100%.

Figure S5. Relation between q_e and nitrogen content in the adsorbents (25 °C, pH 6.0 or 8.0 and $C_i = 500 \text{ mg L}^{-1}$).

Figure S6. (i) TG and (ii) DTG curves for (a) C_{14} -Ver-100%, (b) C_{16} -Ver-100%, (c) C_{18} -Ver-100%, (d) C_{14} -Ver-200%, (e) C_{16} -Ver-200% and (f) C_{18} -Ver-200% after stability test at pH 6.0, and (iii) TG and (iv) DTG curves for (a) C_{14} -Ver-100%, (b) C_{16} -Ver-100%, (c) C_{18} -Ver-100%, (d) C_{14} -Ver-200%, (e) C_{16} -Ver-200% and (f) C_{18} -Ver-200% after stability test at pH 8.0.

References

- Oliveira, T.; Guégan, R.; Thiebault, T.; Milbeau, C. Le; Muller, F.; Teixeira, V.; Giovanela, M.; Boussafir, M. Adsorption of Diclofenac onto Organoclays: Effects of Surfactant and Environmental (pH and Temperature) Conditions. *J. Hazard. Mater.* 2017, *323*, 558–566, DOI: 10.1016/j.jhazmat.2016.05.001
- (2) França, D. B.; Trigueiro, P.; Silva Filho, E. C.; Fonseca, M. G.; Jaber, M.
 Monitoring Diclofenac Adsorption by Organophilic Alkylpyridinium Bentonites.
 Chemosphere 2020, 242, 125109, DOI: 10.1016/j.chemosphere.2019.125109
- Chu, Y.; Dai, Y.; Xia, M.; Xing, X.; Wang, F.; Li, Y.; Gao, H. The Enhanced Adsorption of Diclofenac Sodium (DCF) and Ibuprofen (IBU) on Modified Montmorillonite with Benzyldimethylhexadecylammonium Chloride (HDBAC). *Colloids Surf., A* 2024, *681*, 132764, DOI: 10.1016/J.COLSURFA.2023.132764
- (4) Sun, K.; Shi, Y.; Chen, H.; Wang, X.; Li, Z. Extending Surfactant-Modified 2:1 Clay Minerals for the Uptake and Removal of Diclofenac from Water. *J. Hazard. Mater.* 2017, *323*, 567–574, DOI: 10.1016/j.jhazmat.2016.05.038
- (5) Martinez-Costa, J. I.; Leyva-Ramos, R.; Padilla-Ortega, E. Sorption of Diclofenac from Aqueous Solution on an Organobentonite and Adsorption of Cadmium on Organobentonite Saturated with Diclofenac. *Clays Clay Miner*.
 2018, 66, 515–528, DOI: 10.1346/ccmn.2018.064119
- (6) Iliescu, T.; Baia, M.; Kiefer, W. FT-Raman, Surface-Enhanced Raman
 Spectroscopy and Theoretical Investigations of Diclofenac Sodium. *Chem. Phys.*2004, 298, 167–174, DOI: 10.1016/j.chemphys.2003.11.018
- (7) Lin-Vien, D.; Colthup, N. B.; Fateley, W. G.; Grasselli, J. G. The Handbook of

Infrared and Raman Characteristic Frequencies of Organic Molecules, 1st ed.; Academic Press: London, 1991.

- Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass Mica and
 Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403, DOI: 10.1021/ja02242a004
- (9) Freundlich, H. M. F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385–471, DOI: 10.1515/zpch-1907-5723
- (10) Temkin, M. J.; Pyzhev, V. Recent Modifications to Langmuir Isotherms. *Acta Physicochim. USSR* 1940, *12*, 217–222.