Supplementary Materials

Improvement of Electrochemical Performance with Cetylpyridinium Chloride for Al Anode of Alkaline Al-Air Battery

Lei Guo ^{a, b*}, Rui Sun ^a, Xinlei Chen ª, Ting Shang ª, Qingbiao Li ª, Xingwen Zheng ˁ, Riadh Marzouki ^d, Jun **Chang a, b, and Savaş Kaya^e**

a *School of Material and Chemical Engineering, Tongren University, Tongren 554300, China*

b *Guizhou Provincial Key Laboratory for Cathode Materials of New Energy Battery, Tongren 554300, China*

- c *Key Laboratory of Material Corrosion and Protection of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, China*
- ^d*Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413 Abha, Saudi Arabia*
- e *Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, Sivas 58140, Turkey*
- * Email: chygl@gztrc.edu.cn

Figure S1 Schematic representation of the three-electrode setup.

As shown in Table S1, we have achieved a relatively good level compared to Al-air batteries with different electrolyte system. In comparison, solid electrolyte batteries and gel electrolyte batteries have lower capacity density than this work, which is more suitable for portable electronic products. The capacity density of dual electrolyte batteries is slightly higher than this work. However, the use of ion exchange membranes in these batteries leads to a relatively complex structure and increased costs. We acknowledge that many strategies possess distinct benefits and drawbacks, as well as specific situations in which they are relevant.

Material	System	Anode utilization $(\%)$	Capacity density $(mAh g-1)$	Refs.
Home-made Al alloy	Cetylpyridinium chloride	68.5	2041	This work
Commercial 3D porous Al foams	Citric acid & ZnO	58.23	1902	$[1]$
Commercial pure aluminum	ZnO & acrylamide	41.9	1241	$[2]$
Commercial 6061	4-amino-6-hydroxy-2- mercaptopyrimidine &	60.0	1785	$[3]$
Al alloy	ZnO			
Commercial 1060 Al	Ethylene glycol & Na ₂ SnO ₃	40.0	1421	$[4]$
Commercial 1050 Al	Deep eutectic solvent-based solid electrolyte		35.8	$[5]$
Commercial pure aluminum	Dual-electrolyte system	78	2328	[6]
Commercial pure aluminum	Dual-electrolyte system		2100	$[7]$
Commercial Al7475, Al6062, and Al5052 Al alloys	$NH4VO3 + CMC$ (gel electrolyte)		509.25	[8]

Table S1 Comparison of battery performance of AABs with various electrolytes.

References

- 1. Jiang, H.; Yu, S.; Li, W.; Yang, Y.; Yang, L.; Zhang, Z., Inhibition effect and mechanism of inorganicorganic hybrid additives on three-dimension porous aluminum foam in alkaline Al-air battery, *J. Power Sources* **2020***, 448*, 227460.
- 2. Cheng, H.; Wang, T.; Li, Z.; Guo, C.; Lai, J.; Tian, Z., Anode interfacial layer construction via hybrid inhibitors for high-performance Al–Air batteries, *ACS Appl. Mater. Interfaces* **2021**, *13*, 51726-51735.
- 3. Luo, L.; Zhu, C.; Yan, L.; Guo, L.; Zhou, Y.; Xiang, B., Synergistic construction of bifunctional interface film on anode via a novel hybrid additive for enhanced alkaline Al-air battery performance. *Chem. Eng. J.* **2022**, *450*, 138175.
- 4. Tanaka, H.; Miyahara, M., Free energy calculations for adsorption-induced deformation of flexible

metal–organic frameworks, *Curr. Opin. Chem. Eng.* **2019**, *24*, 19-25.

- 5. Ryohei, M., All solid state rechargeable aluminum–air battery with deep eutectic solvent based electrolyte and suppression of byproducts formation. *RSC Adv*. **2019**, *9*, 22220.
- 6. Teabnamang, P.; Kao-ian, W.; Nguyen, M. T.; Yonezawa, T.; Cheacharoen, R.; Kheawhom, S., Highcapacity dual-electrolyte aluminum–air battery with circulating methanol anolyte. *Energies* **2020**, *13*, 2275-2289.
- 7. Phusittananan, Tanawat.; Kao-ian, W.; Nguyen, M. T.; Yonezawa, T.; Pornprasertsuk, R.; Mohamad, A. A.; Kheawhom, S., Ethylene glycol/ethanol anolyte for high capacity alkaline aluminum-air battery with dual-electrolyte configuration. *Front. Energy Res*. **2020**, *8*, 189-201.
- 8. Atencio, A. P, Aviles, J. R.; Montero M. L.; Gonz á lez-Flores, D.; Oc ó n, Pilar., Performance improvement of alkaline–electrolyte aluminum–air batteries by NH₄VO₃-based additives. *Energy & Fuels* **2022**, *36*, 2851-2860.