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1 I. Supplemental Figures
2
3

4
5 Figure S.1: Age- and race-specific deaths per 100,000 individuals for three select scenarios.

6

7
8 Figure S.2: Electricity generation by source under the ICE Ban, Current Policy, and Net Zero 
9 scenarios
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1
2 Figure S.3: Electric capacity by source under the ICE Ban, Current Policy, and Net Zero 
3 scenarios

4
5 Figure S.4: Final energy consumption by source under the ICE Ban, Current Policy, and Net-
6 Zero scenarios.

7
8
9
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1 II. Details on EGU Downscaling
2 To determine the location of future capacity, we implement a grow-in-place heuristic. We 
3 use data on planned EGUs and EGUs that have retired since 2002 from December 2021’s Form 
4 EIA-860M ‘Monthly Update to Annual Electric Generator Report’ to map existing and planned 
5 facilities to Temoa’s capacity 1. We use this dataset's geographical data, energy source code, and 
6 the nameplate capacity (MW) of plants. We then pull new fossil capacity (MW) from Temoa by 
7 fuel and cluster. To estimate the new capacity’s location, we pull all planned EGUs in the 
8 cluster’s region from Form EIA-860M, irrespective of plant type (combined cycle, combustion 
9 turbine, etc.). If the sum of the planned capacity in that region is greater than the new cluster’s 

10 capacity from Temoa, we choose a random group of the planned plants whose capacities sum to 
11 between 0.75x and 1.25x the capacity required by the Temoa cluster. We assume the new 
12 capacity is built at the same sites as this list of planned sites. If planned capacity is insufficient, 
13 we repeat the process, adding in retired capacity from the region. If the sum of the planned and 
14 retired capacity in the region is less than the new cluster’s capacity, we assign all of the planned 
15 and retired plants in that region to the new cluster. This implicitly assumes that some of the new 
16 plants will have a higher capacity than planned (if the plant is planned) or than it had when 
17 operating (if the plant is retired). We do not have data on average annual generation for the 
18 retired or planned plants, so we assume that generation scales with capacity in each cluster. That 
19 is, if a plant’s capacity is equal to 5% of the cluster’s total capacity, we assume the new plant 
20 generates 5% of the total electricity generated in that cluster.
21
22 III. Downscaling Algorithm Evaluation
23 Models with a multi-decadal time horizon cannot be validated 2. However, to better 
24 understand the uncertainty present within the downscaling framework, we compare modeled 
25 county-level emissions from the transportation and electric sectors to existing data on emissions. 
26 This exercise should not be viewed as a direct comparison, but rather as a sanity check on the 
27 downscaling method. Temoa’s first time period spans from 2020 to 2024. Even under the 
28 Current Policy scenario, Temoa simulates a changing energy landscape. For example, in 2022, 
29 US coal-fired powerplants generated 828 TWh of electricity 3. Temoa simulates 654 TWh of 
30 coal-fired electricity generation in the first time period. These differences are unsurprising since 
31 Temoa assumes a unitary decision-maker and does not account for behavioral and market 
32 dynamics that occur in the real world.
33 In this exercise, we compare county-level NOx emissions in the electric and transportation 
34 sectors from Temoa to the EPA’s National Emissions Inventory (NEI) 4. The EPA publishes the 
35 NEI approximately every three years. The most recent data comes from 2020, but due to effects 
36 from COVID-19, 2020 is likely not a representative year. As a result, we compare modeled 
37 downscaled emissions to both the 2020 and 2017 NEI. In the electricity sector, we also compare 
38 our results to the EPA’s Emissions & Generation Resource Integrated Database (eGRID) 5. We 
39 compare our results and NEI results to the most recent eGRID release, which contains data from 
40 2021.
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1 Figure S.4 compares Temoa’s simulated on-road transportation emissions to the NEI in 2017 
2 and 2020, showing the absolute difference between the two datasets. We compare NEI results 
3 aggregated to the county-level to our downscaled simulation. In the figures, a positive value 
4 indicates that Temoa projected higher emissions than the NEI reported. We expected Temoa’s 
5 emissions projections to be lower than the 2017 projections due to increased vehicle 
6 electrification and improvements to vehicle efficiency. We anticipated that NEI 2020 emissions 
7 may be lower than Temoa’s simulated emissions due to effects from COVID-19. Figure S.4 
8 shows strong agreement between the NEI and Temoa, with the distribution shifting slightly 
9 between the two NEI data years, in line with our hypotheses. 

10

11
12 Figure S.5: Difference between NOx emissions reported by the National Emissions Inventory 
13 and emissions simulated by Temoa and downscaled to US counties. Emissions reported in metric 
14 tons. Left: 2017 NEI vs. Temoa. Right: 2020 NEI vs. Temoa.

15 Both histograms are centered near zero, indicating broad alignment with the NEI. The 
16 most significant outliers represent counties including Los Angeles and Maricopa counties, where 
17 total emissions are high, so a small percent difference appears large in absolute magnitude. 
18 Next, we compare simulated NOx emissions from electric power generation to reported 
19 emissions from the NEI and eGRID. The NEI and eGRID datasets required some data filtration. 
20 To select only EGUs from the NEI data, we filtered the column ‘naics_description’ to include 
21 only sources described as ‘Fossil Fuel Electric Power Generation’ or ‘Electric Power 
22 Generation.’ We also specified that ‘facility_source_type’ must be ‘Electricity Generation via 
23 Combustion.’ For the eGRID data, while all sources are powerplants, we filtered ‘Plant primary 
24 fuel category’ to include only ‘GAS’ and ‘COAL.’
25 We began by comparing the 2017 and 2020 NEI datasets to 2020 and 2021 eGRID to 
26 understand both interannual variability and variability between data sources (Figure S.4). This 
27 inter-dataset comparison reveals two trends. First, in counties where both datasets report 
28 emissions, there is general agreement across datasets and time periods. Second, there are many 
29 counties where either eGRID or NEI reports positive emissions, but not both. Figure S.5 
30 illustrates this trend, showing the distribution of the percent difference between the different 
31 datasets. In order to avoid positive or negative infinities, we replace all 0 values with 1E-4. This 
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1 leads to large outliers, all of which are displayed in the figure. The top row of Figure S.4 shows 
2 the raw data and the bottom row shows a zoomed in version to highlight outliers.
3

4
5 Figure S.6: Absolute emissions comparison between eGRID and the National Emissions 
6 Inventory [kt].
7
8 When both Temoa and NEI or eGRID report emissions, there is largely agreement, but there are 
9 many counties where one source (Temoa, NEI, eGRID) reports emissions and at least one other 

10 does not. The downscaled emissions from Temoa align most closely with the NEI, demonstrated 
11 in Figure S.6
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
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1

2
3 Figure S.7: Percent difference between NOx emissions from power generation simulated by 
4 Temoa and reported by existing data source. Columns: (1) Temoa vs. 2020 eGRID (2) Temoa vs. 
5 2021 eGRID (3) Temoa vs. 2017 NEI (4) Temoa vs. 2020 NEI.  Rows: (1) Raw data (2) Zoomed 
6 in to more clearly display outliers.

7 IV. Air Quality Modeling
8 We use select modules of the AP3 integrated assessment model to connect emissions to 
9 PM2.5 exposure and mortality risk for three criteria air pollutants: primary PM2.5, SO2, and NOx. 

10 We summarize AP3 herein; however, more details can be found in Dennin & Muller (2024)’s 
11 supplementary information 6 as well as in Clay et al. (2019) 7 and Tschofen et al. (2019) 8. AP3 9 
12 is the third iteration of the Air Pollution Emissions Experiments and Policy analysis (APEEP) 
13 model 10,11.AP3 uses all emissions of primary PM2.5, SO2, and NOx and also NH3 and VOCs, 
14 provided by the EPA’s NEI, to estimate baseline concentrations of ambient PM2.5 in every 
15 county in the contiguous US 12. We use the 2017 NEI to compute a baseline against which we 
16 assess the PM2.5 concentrations from marginal emissions (i.e., one additional short ton). This 
17 baseline accounts for ambient PM2.5 levels resulting from nationwide emissions, including 
18 directly emitted PM2.5, organic aerosols from VOCs, ammonium sulfate ((NH4)2SO4) from NH3 
19 and SO2, sulfate (SO4

2-) from SO2, and ammonium nitrate (NH4NO3) from NH3 and NOx. The 
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1 formation of each subspecies of PM2.5 is dependent on the unique atmospheric dispersion and 
2 chemistry processes associated with the release of its source criteria air pollutant.
3 AP3 models ground-level sources differently than point sources. Moreover, the model treats 
4 point sources differently, a function of their effective heights (physical stack height plus the 
5 plume rise of released emissions) 13. Effective heights are calculated following Turner (1994) 13. 
6 Stack and discharge parameters are obtained from the Sparse Matrix Operator Kerner Emissions 
7 (SMOKE) flat files, provided by the Environmental Protection Agency (EPA) 14. Weather 
8 parameters come from reanalysis data provided by the National Centers for Environmental 
9 Prediction (NCEP), with data sourced from the Physical Sciences Laboratory of the National 

10 Oceanic and Atmospheric Administration (NOAA) 15. We compute the annual average of 
11 surface-level temperatures and horizontal wind speeds using daily average data, spatially 
12 resolved in a 2.5-degree latitude by 2.5-degree longitude grid. Each county is assigned the 
13 weather data from the grid cell in which it is located. If a county spans multiple grid cells, the 
14 data are averaged based on the area of each cell. Our methodology assumes stable conditions, an 
15 average lapse rate of -0.0065 K/m, and considers that, for each facility, the dominant rise 
16 mechanism is the one producing the greater rise between buoyant and momentum effects.
17 AP3 models three bins for point sources: low, medium, and tall 11. For low and medium, 
18 emissions are modeled as being released from the population-weighted centroid of the county in 
19 which they are released. (Ground-level emissions are also assumed to be released at the counties’ 
20 population-weighted centroids.):
21
22 • The low bin contains facilities with effective heights of less than 250 meters. 
23 • The medium bin is designed for facilities with effective heights greater than 250 
24 meters and less than 500 meters. 
25 • When the APEEP) model was first developed 10, facilities with effective heights 
26 greater than 500 meters were uniquely modeled—making up the “tall stacks bin 
27 inventory.” 
28
29 The tall bin’s emissions are modeled from the coordinates of the facility and the effective heights 
30 of its stacks. However, any new facility with an effective height greater than 500 meters is not 
31 modeled in the tall bin but is instead placed in the medium bin. For this study, all transportation 
32 emissions are modeled from the ground-level bin. All EGU emissions are modeled from the 
33 medium stacks bin. This methodology for EGU emissions allows us to work at the county level, 
34 the spatial resolution of our downscaled simulated emissions, and avoid matching (and 
35 potentially mismatching) simulated emissions to specific facilities in the tall bin.
36 It is important to understand the implications of this assumption and its limitations. Hence, 
37 we categorize the “existing fleet” of EGUs into bins based on available data. We analyze point 
38 source data provided by the NEI for facilities involved in power generation in 2017 12. This 
39 dataset is then filtered to include only facilities located in counties modeled by Temoa in 2020. 
40 Out of the 1,105 observed EGUs in the resulting dataset, 35% lack the necessary data to compute 
41 effective heights. These facilities do not have smokestack parameters reported in EPA’s SMOKE 
42 flat files 14, which we can hypothesize corresponds with facilities that do not have tall 
43 smokestacks. This gives us justification to assign them to the low stacks bin of AP3. Still, given 
44 the uncertainty associated with this assumption, we exclude these facilities from the low stacks 
45 bin in Table S.1 (tracking them instead a NA), which summarizes the number of facilities by AP3 
46 bin and sums total emissions for each.
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1 Table S.1 shows that, in 2017, most effective heights among EGUs were below 500 meters 
2 (again, corresponding with AP3’s tall bin), with only about 3% exceeding that height. However, 
3 the distribution of emissions tells a different story: no more than 10% of any pollutant was 
4 emitted from facilities with effective heights under 250 meters (corresponding with AP3’s low 
5 bin). About one-third of facilities had effective heights between 250 and 500 meters 
6 (corresponding with AP3’s medium bin), yet these accounted for roughly two-thirds of total 
7 emissions. Overall, most facilities do not have tall stacks, but most emissions are not from low 
8 stacks.
9

10
11 Table S.1: Electric generating units and NOx, primary PM2.5, and SO2 emissions by effective height 
12 and corresponding AP3 bin. Note: facilities and emissions characterize 2017 and are from the 
13 National Emissions Inventory 12. Smokestack parameters are from SMOKE flat files 14.

Emissions Percentage by Bin
Effective Height Corresponding

AP3 Bin
Electric

Generating Units NOx PM2.5 SO2 NOx PM2.5 SO2

< 250 meters Low 327 30% 56.1 6.32 53.4 9.1% 10% 6.5%

250-500 meters Medium 361 33% 419 43.6 513 68% 71% 62%

> 500 meters Tall 34 3.1% 141 11.0 258 23% 18% 31%

NA Unknown 383 35% 1.96 0.650 0.154 0.3% 1.1% 0.0%

14
15 Notably, effective heights change over time because plume rise depends on varying 
16 parameters such as exit velocity, gas temperature, and atmospheric conditions 13. As a result, 
17 some facilities with 2017 effective heights under 500 meters are still categorized in AP3’s tall 
18 stacks bin inventory due to the model’s original structure 10,11. The 52 EGUs that are included in 
19 (1) the 1,105 observed EGUs in Table S.1 and (2) AP3’s tall stacks bin inventory are evaluated 
20 in the top panel of Table S.2. These 52 EGUs are included in AP3’s tall stacks bin because of 
21 taller effective heights that characterized the plants at previous points in time that may not still be 
22 applicable or were otherwise not applicable in 2017. We summarize these EGUs below:
23
24 • 42 EGUs, accounting for 72% to 73% of emissions from these 52 EGUs, have 2017 
25 effective heights corresponding with the medium bin (250 to 500 meters) 
26 • 4 EGUs, accounting for 10% to 12% of emissions from these 52 EGUs, have 2017 
27 effective heights corresponding with the low bin (less than 250 meters)
28 • 6 EGUs, accounting for 16% to 19% of emissions from these 52 EGUs, have 2017 
29 effective heights corresponding with the tall bin (more than 500 meters)
30
31 Conversely, several facilities with 2017 effective heights above 500 meters are not included in 
32 AP3’s tall stacks bin inventory. This may be due to fluctuating effective heights over time or 
33 because newer facilities with heights over 500 meters have been defaulted to AP3’s medium 
34 stacks bin. Of the 34 EGUs with 2017 effective heights exceeding 500 meters in Table S.1, 28 
35 EGUs (82%) are not in AP3’s tall stacks bin inventory and therefore are defaulted to the medium 
36 stacks bin. These EGUs and the others outside of AP3’s tall stacks bin inventory are summarized 



S10

1 in the bottom panel of Table S.2. AP3’s inflexible structure for tall stack (mostly EGU) facilities 
2 is a limitation of the model, which is currently being addressed in ongoing research developing 
3 its successor, AP4 16.
4
5 Table S.2: Electric generating units within and outside of AP3’s tall stacks bin inventory. Note: 
6 facilities with effective heights > 500 meters were modeled distinctly upon APEEP’s development 
7 10,11.

Emissions Percentage by BinTall Stacks
Bin Inventory Effective Height Electric

Generating Units NOx PM2.5 SO2 NOx PM2.5 SO2

Low: < 250 meters 4 0.4% 12.2 1.00 16.3 2.0% 1.6% 2.0%

Medium: 250-500 meters 42 3.8% 110 6.95 118 18% 11% 14%52 EGUs
Within

Tall: > 500 meters 6 0.5% 24.3 1.30 24.1 3.9% 2.1% 2.9%

Low: < 250 meters 323 29% 43.9 5.32 37.1 7.1% 8.6% 4.5%

Medium: 250-500 meters 319 29% 310 36.6 395 50% 59% 48%

Tall: > 500 meters 28 2.5% 116 9.71 234 19% 16% 28%
1,053 EGUs

Outside

NA 383 35% 1.96 0.650 0.154 0.3% 1.1% 0.0%

8
9 The takeaway is that bin assignment uncertainty and limitations exist whether or not we 

10 specifically distribute facilities to different bins by effective heights. Since our Temoa modeling 
11 does not operate at the facility level, assigning all EGU emissions to the medium stacks bin is the 
12 most logical approach. This bin is the best representative for EGUs given the limited facility-
13 specific information available. Moreover, even if we attempted to allocate emissions from EGUs 
14 with effective heights over 500 meters to AP3’s tall stacks bin, many would still default to the 
15 medium stacks bin (Table S.2’s bottom panel). Additionally, many facilities that could be 
16 assigned to the tall stacks bin are better suited for the medium stacks bin based on 2017 effective 
17 heights (Table S.2’s top panel). The primary potential for missing effective height differentiation 
18 lies with the low stacks bin, but these facilities contribute significantly fewer emissions than 
19 those with effective heights greater than 250 meters, making facility-specific distribution a 
20 persistent challenge.
21 AP3 uses source-receptor (S-R) matrices to model pollution concentrations in every receptor 
22 contiguous US county from all sources of emissions. These matrices are built using Gaussian 
23 plume mathematics, which characterizes three-dimensional atmospheric dispersion from the 
24 point of release 17–19. AP3 acts as a representation of annually averaged atmospheric conditions; 
25 see Turner (1994) for a further explanation 20.
26 The following equations depict the air quality modeling of AP3. First, as shown in Equation 
27 S.1, emissions (e) from each source (S) are loaded in as vectors (E) by pollutant (p) and bin 
28 height (h). The S-R matrices, shown in Equation S.2, model the transport (t) of a short ton of 
29 pollution from each source to each receptor (R), again by pollutant and bin height. This transport 
30 is specific for each pollutant, accounting for relevant chemistry and deposition processes. 
31 Multiplying the emissions vectors by their associated S-R matrices, shown in Equation S.3, 
32 provides speciated concentrations (C) of pollution, by pollutant and bin height, in each 
33 contiguous US county resulting from all sources’ emissions. The concentrations are then added 
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1 across the different bin heights for total speciated ambient pollution in every county resulting 
2 from emissions of NH3, NOx, primary PM2.5, SO2, and VOCs.

3 𝐸𝑝,ℎ =
𝑒1
⋮

𝑒𝑆
 (Equation S.1)

4 𝑆𝑅𝑝,ℎ =
𝑡1,1 ⋯ 𝑡1,𝑅

⋮ ⋱ ⋮
𝑡𝑆,1 ⋯ 𝑡𝑆,𝑅

 (Equation S.2)

5 𝐶𝑝,ℎ = (𝐸𝑝,ℎ)𝑇 × (𝑆𝑅𝑝,ℎ) (Equation S.3)

6 The formation of (NH4)2SO4, SO4
2-, and NH4NO3 depends on the equilibrium between total 

7 (gaseous plus particulate) ammonia, particulate sulfate, and total nitrate.1 Specifically, AP3 
8 models the interpollutant chemistry between ambient ammonia (ambient NH3), sulfuric acid 
9 (H2SO4), and nitric acid (HNO3) as they form particulates 21–23. AP3 then aggregates all 

10 subspecies of ambient PM2.5 to determine total concentrations in each county.
11 Ambient NH3 reacts preferentially with H2SO4 to form (NH4)2SO4. Any remaining, or free, 
12 ambient NH3 can then react with HNO3 to form NH4NO3.2 Two regimes affect this formation: 
13 (1) nitrate-limited, where ambient NH3 is in surplus, and (2) ammonium-limited, where HNO3 is 
14 in surplus. The efficiency with which marginal emissions of NH3 and NOx form NH4NO3 
15 depends on the regime in which a receptor county resides. Unlike emissions of NH3 and NOx, 
16 emissions of SO2 will always contribute to ambient PM2.5 formation, regardless of the 
17 availability of ambient NH3, because SO4

2- is always in the particulate phase.
18 A critical caveat for this study is that we only use marginal PM2.5 concentrations considering 
19 a 2017 baseline. In other words, we assess simulated future emissions in their respective future 
20 years, but the marginal PM2.5 concentrations per short ton of future emissions are those modeled 
21 in AP3 for 2017. Our use of a constant 2017 pollution baseline is based on data availability. The 
22 NEI is released every three years, which determines the years that can be modeled using the 
23 APEEP model (e.g., AP3 can model 2008, 2011, 2014, and 2017) 6,8,25. Although the 2020 NEI 
24 was released last year 26, the development of this version of AP3 occurred before that release. 
25 Even if we were to use the 2020 NEI (or the 2023 NEI, expected to be released in 2026), 
26 concerns about changes in atmospheric chemistry profiles through 2050 would remain. The key 
27 issue is the potential for substantial changes in the relative concentrations of one or more 
28 pollutants between 2017 and 2050, which could significantly impact atmospheric chemistry in 
29 the U.S. For the sake of our methods (i.e., a constant 2017 pollution baseline to which marginal 
30 emissions contribute), it is ideal for the relative concentrations of the pollutants from emissions 
31 of SO2, NOx, and NH3 to remain consistent over time. That said, these relative concentrations are 
32 likely to change in the future. For example, the policies evaluated in our study, which focus on 
33 heavy sources of SO2 and NOx emissions, would contribute to this change, ceteris paribus.
34 Evidence suggests that we should anticipate a future with abundant ambient NH3 relative to 
35 H2SO4 and HNO3. Since the 2000s, SO2 and NOx emissions in the U.S. have declined, while 
36 NH3 emissions have remained steady 27. These trends are mostly expected to persist through 

1 
2 SO2 and NOx form H2SO4 and HNO3 when they react with oxygen (O2) and water (H2O). For example, 2SO2 + O2 
+ 2H2O → 2H2SO4. For more information on the atmospheric behavior of the family of NOx compounds, see 24.
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1 mid-century under the Representative Concentration Pathway (RCP) 4.5 scenario, although NH3 
2 emissions are likely to increase 28–30. These contrasting trends are driven by expectations for key 
3 sectors. Tschofen et al. (2019) identified that SO2, NOx, and NH3 damages were greatest from 
4 the utilities, transportation, and agriculture sectors, respectively 8. While emissions reductions 
5 from the power sector and transportation are projected to continue 31,32, research suggests that 
6 NH3 emissions will rise due to higher temperatures from climate change 33 and increased 
7 agricultural activity to support a growing population 34. However, there are existing methods to 
8 reduce NH3 emissions from agriculture 35, and Gu et al. (2021) found that NH3 abatement is 
9 relatively cost-effective compared to NOx abatement 36.

10 These expected changes are significant when considering the marginal concentrations (𝜇
11 g/m3) we anticipate from SO2 and NOx emissions (and NH3, though it is not the focus of this 
12 study). Below is a summary of the key points:
13
14 • In the future, we expect reductions in SO2 and NOx emissions and increases in NH3 
15 emissions 28. This will alter the relative concentrations influencing the ammonium, 
16 sulfate, and nitrate balance.
17 • As a result, SO2 and NOx emissions are likely to become more damaging on the margin 
18 due to the relative surplus of ambient NH3.
19 • Pollution from SO2 emissions will contribute to ambient PM2.5 regardless of the presence 
20 of ambient NH3. Without ambient NH3, SO2 will form particulate H2SO4 at a minimum 
21 23. However, with higher NH3 emissions, the formation of (NH4)2SO4 becomes more 
22 likely.3
23 • In contrast, NOx emissions will not contribute to ambient PM2.5 without free ambient 
24 NH3.4 As NH3 emissions increase, HNO3 is more likely to form NH4NO3, which 
25 contributes to ambient PM2.5.
26
27 In conclusion, SO2 and NOx emissions are more damaging per ton on the margin in an NH3-
28 saturated environment compared to an NH3-limited environment.
29
30 Hernandez (2023), which examined the sensitivity of health damages to changes in 
31 atmospheric chemistry, provides relevant insights28. Using a chemical transport model, the study 
32 projected that marginal annual damages from ambient PM2.5 associated with SO2 and NOx 
33 emissions are expected to increase by 16% and 17%, respectively, from 2005 to 2055 when 
34 accounting only for interactions between sulfate, nitrate, and ammonium PM2.5 components. 
35 These are relatively modest changes in marginal damages, supporting the use of RCMs even for 
36 analyses decades in the future with different emissions baselines. Additionally, since our focus is 
37 on changes from 2017 to 2055, we need to account for the fact that over a decade of emissions 
38 reductions from SO2 and NOx already influences AP3's baseline. This period includes the most 

3 (NH4)2SO4 is more damaging than H2SO4 when derived from the same quantity of SO2 emissions. This is best 
illustrated by comparing their molecular weights: 132 g/mol for (NH4)2SO4 and 98 g/mol for H2SO4.
4 AP3 assumes that all NOx emissions contribute to ambient PM2.5, even in the absence of free ambient NH3 (based 
on the modeled reaction between H2SO4 and NH3). Since AP3 models annual average concentrations, it would be 
inaccurate to assume that no ambient PM2.5 from NOx would occur without modeled free NH3. For instance, there 
may be periods during the year with high levels of ambient NH3 and low levels of H2SO4, contrary to more typical 
conditions. On such days, HNO3 could react with the available NH3 to form NH4NO3. The statistics used in AP3 for 
this calculation are derived from calibration efforts involving the Comprehensive Air Quality Model with extensions 
(CAMx) model 37,38.
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1 significant decrease in SO2 and NOx emissions relative to future years28. By 2017, AP3’s 
2 baseline indicated that most counties had some level of free ambient NH3, based on annual 
3 average concentrations. Therefore, by 2017, SO2 was likely already forming more damaging 
4 (NH4)2SO4. The formation of NH4NO3 from NOx would vary by county depending on the extent 
5 of the availability of free NH3. As a result, the expected increases in damages from SO2 and NOx 
6 emissions from 2017 to 2055 (rather than from 2005 to 2055) are likely to be less than the 
7 projected 16% and 17% increases.
8 Importantly, Hernandez (2023) also examined the extent to which NOx contributes to 
9 tropospheric ozone in 2005 versus 2055 28. Ozone is a significant oxidant for VOCs, which form 

10 ambient PM2.5 as secondary organic aerosols (SOAs). The study found that the marginal 
11 damages from NOx emissions related to ozone formation are expected to increase by more than 
12 500% from 2005 to 2055. This represents a limitation of the AP3 model and our study, as they 
13 do not account for the ambient PM2.5 impacts of ozone on SOA formation or the health impacts 
14 of tropospheric ozone itself 39,40. On the whole, Hernandez found that NOx damages (including 
15 both organic and inorganic sources) would approximately double from 2005 to 2055.
16 Conversely, our analysis does not factor in the benefits associated with reduced ambient 
17 PM2.5 from marginal NH3 emissions due to fewer SO2 and NOx emissions. These co-benefits will 
18 accrue because ambient NH3 will not contribute to PM2.5 formation without H2SO4 or HNO3 to 
19 react with. In fact, marginal damages from NH3 emissions are projected to decline by 67% from 
20 2005 to 2055 28.
21 In summary, assuming that ambient NH3 remains as relatively abundant as it was in 2017 is a 
22 straightforward and reasonable approach given the discussion above. The marginal ambient 
23 PM2.5 concentrations from SO2 emissions are likely to be associated with (NH4)2SO4, both in 
24 2017 and in the future. However, we can assert with confidence that these will not increase by 
25 more than 16% by mid-century. For NOx emissions, the impacts vary by receptor location 
26 depending on the availability of free ambient NH3, but we can reasonably assume that the net 
27 damages may double by mid-century. While adjusting our baseline for future assessments could 
28 provide more precise estimates, it would introduce significant complexities and potential 
29 distortions in our results.
30 We again note that our work is comparative in nature. As with our 2017 concentrations, we 
31 can assume that any errors in our future projections will be uniformly distributed (e.g., if NOx 
32 becomes more damaging, it will be more damaging “everywhere”). The primary concern is 
33 whether there is a systematic link between agricultural activity (and NH3 emissions) and (1) 
34 changes in emissions from electric generating units and transportation or (2) the locations of the 
35 subpopulations assessed in our study. We leave such investigations and further efforts to project 
36 atmospheric chemistry conditions to future research.
37 AP3 is calibrated using EPA Air Quality System (AQS) monitoring data 41. Key statistics are 
38 the mean fractional error (MFE) and mean fractional bias (MFB), defined below—Equations S.4 
39 and S.5, respectively. Model predictions of ambient concentrations (Cm,i) are compared to 
40 observed levels of ambient concentrations (Co,i) for receptor county locations with AQS 
41 monitoring data (i):

42 𝑀𝐹𝐸 =  1𝑛∑𝑛
𝑖=1

|𝑐𝑚,𝑖 𝑐𝑜,𝑖|
𝑐𝑚,𝑖 𝑐𝑜,𝑖

2

(Equation S.4)

43 𝑀𝐹𝐵 =  1𝑛∑𝑛
𝑖=1

𝑐𝑚,𝑖 𝑐𝑜,𝑖
𝑐𝑚,𝑖 𝑐𝑜,𝑖

2

(Equation S.5)
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1
2 AP3 is calibrated using the observed data. The procedure compares AP3-modeled ambient 
3 PM2.5 concentrations to those measured at monitors and conducts several calibration steps to 
4 improve the prediction-observation fit. The primary calibration step is an iterative approach that 
5 reduces the MFE and the MFB by adjusting calibration coefficients applied alongside the source-
6 receptor matrices. A secondary calibration step is also taken to adjust the share of ambient PM2.5 
7 from primary PM2.5 emissions for the 2.5th percentile of counties with the greatest absolute 
8 difference between modeled and monitored pollution. Subsequently, in a tertiary calibration step, 
9 neighboring counties surrounding the secondary calibration-adjusted counties are also considered 

10 for adjustment, where monitoring data and modeling estimates support such decisions.
11
12
13 Table S.3: Performance metrics for AP3 following calibration. Note: monitored data are 
14 from the Environmental Protection Agency’s Air Quality System 41. r = Pearson’s correlation 
15 coefficient. n = number of AQS-monitored counties for each pollutant. Calibration efforts are 
16 from 42,43.

Performance Metrics
Year Ambient Pollutant

MFE MFB r n
Total PM2.5 0.292 0.012 0.523 603
Sulfate 0.329 -0.105 0.699 255
Nitrate 0.492 0.070 0.624 251
Organic Aerosols 0.398 -0.043 0.450 247

2017

Ammonium 0.996 0.995 0.546 132
17
18 These calibration efforts were conducted as part of the 2017 NEI update to AP3. We attribute 
19 the calibration work to Tschofen et al. (2023) 42 and Tschofen (2023) 43. Furthermore, the 
20 calibration procedure built upon previous work 25,37,44. Table S.3 summarizes the performance 
21 metrics for AP3 following calibration. AP3 performs within the performance standards set by the 
22 literature and summarized below 45,46:
23 Boylan & Russell (2006): According to 45, a MFE ≤ +50% and a MFB ≤ ±30% suggests that 
24 a model has met its performance goal. 45 also notes that an MFE ≤ +75% and an MFB ≤ ±60% 
25 are acceptable for modeling and that minor species should have less stringent requirements. The 
26 Intervention Model for Air Pollution (InMAP) model 47 also considers this performance 
27 standard.
28 • Morris et al. (2005): According to 46, an MFE ≤ +35% and an MFB ≤ ±15% suggests that 
29 a model achieves “excellent” performance. 46 also classified an MFE ≤ +50% and an 
30 MFB ≤ ±30% (i.e., the main standard from 45) as “good” performance. The Estimating 
31 Air pollution Social Impact Using Regression (EASIUR) model 48 also considers this 
32 performance standard.
33
34 For total PM2.5 and sulfate, AP3 meets the “excellent” performance standard from Morris et 
35 al. (2005) 46. Nitrate and organic aerosols meet the standard from Boylan & Russell (2006) 45. 
36 Ammonium is the one subspecies that has a lower performance. We again emphasize that 45 
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1 noted that minor species should have less stringent requirements and that ammonia is not a focus 
2 of this study.
3 AP3 builds out a pollution baseline, but its outputs are the marginal impacts of emissions—
4 e.g., additional PM2.5 concentrations in downwind locations from a small increase in emissions 
5 from a particular source. In other words, once the baseline concentrations are determined by 
6 modeling all emissions 12, policy analyses are conducted by running emissions experiments as 
7 outlined in the following steps:
8
9 1. Set the model to its baseline (i.e., PM2.5 in every county from all emissions).

10 2. Add one short ton of emissions for one pollutant from an individual source.
11 3. Compute the marginal concentrations in every receptor county by subtracting baseline 
12 concentrations from the new concentrations with the marginal short ton added.
13 4. Reset the model to its baseline.
14 5. Repeat 2-4 for each source and pollutant combination.
15
16 Marginal concentrations of PM2.5 are the output of AP3’s air quality modeling for this study. 
17 Then, we multiply total (avoided) emissions by their associated marginal concentrations for total 
18 (avoided) PM2.5 concentrations in every receptor county. This is an approach based on that 
19 conducted in previous work—e.g., 6,8,25,49.
20
21 V. Mortality Risk and Scenarios
22 We use a dose-response function from the epidemiological literature, shown in Equation S.6, 
23 to associate exposure to ambient PM2.5 with premature mortality risk. The dose-response 
24 function models the expected change in mortality rates across populations from a change in 
25 PM2.5. The inputs to the function are a β coefficient, the baseline mortality rate of the exposed 
26 population (𝑦0), and the change in ambient PM2.5 pollution (∆𝑃𝑀). β is further defined in 
27 Equation S.7. β is the natural log of the relative risk (𝑅𝑅) with a change in PM2.5. Multiplying the 
28 expected change in mortality rate (∆𝑦) by the corresponding population, depicted in Equation 
29 S.8, yields the premature mortality associated with the change in PM2.5.

30 ∆𝑦 = 𝑦0 1 ― 1
𝑒𝑥𝑝(𝛽×∆𝑃𝑀)

 (S.6)

31 𝛽 = 𝑙𝑛(𝑅𝑅)
∆𝑃𝑀 (S.7)

32 ∆𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 = ∆𝑦 × 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (S.8)

33 Table S.4 shows the mortality scenarios used in this study. Krewski et al. (2009) reported 
34 information for populations of 30 or older 50. The study reported relative risk (i.e., the chances of 
35 an event occurring in an exposed group vs. the chances of it happening in a control group) of all-
36 cause mortality associated with a 10 μg/m3 increase in ambient PM2.5 exposure. This relative risk 
37 is used in Scenario 1 of Table S.4.
38
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1 Table S.4: Input parameters for concentration-response function. Note: relative risk and 
2 baseline mortality are held constant across model time periods due to data availability.

 Relative risk [source] Baseline mortality

Scenario 1
1.06 [ACS: Krewski et al. (2009)]

Changes with race-
ethnicity and age

Scenario 2

Black non-Hispanic: 1.208
White non-Hispanic: 1.063
Hispanic: 1.116
Other: 1.096
[Di et al. (2017)]

Changes with race-
ethnicity and age

Scenario 3 1.06 [ACS: Krewski et al. (2009)] Changes with age
3
4 Di et al. (2017) reported information for populations of 65 or older 51. The study also 
5 reported relative risk of all-cause mortality associated with a 10 μg/m3 increase in ambient PM2.5 
6 exposure. However, Di et al. (2017) also reported relative risk differentiated by race/ethnicity 
7 subpopulation. As discussed in the manuscript, we assume these differentiated relative risks to 
8 apply not only to the studied population (i.e., 65 or older) but also to other adults found to 
9 experience damage by Krewski et al. (2009) (i.e., 30 or older). We assert that this methodology 

10 is not informed by the epidemiological literature but rather by the reasonable assumption that 
11 disparities existing for older age intervals may also exist for younger age intervals. These relative 
12 risks are used in Scenario 2 of Table S.4.
13 County-level mortality rate data are derived using population and mortality data from the 
14 CDC’s WONDER 52,53. Data are reported by county, age group, and, optionally, race/ethnicity. 
15 Where data are not available to compute mortality rates, first the state average, then the US 
16 Health and Human Services region average, and then the national average mortality rates are 
17 substituted in, as necessary. Table S.4’s Scenario 1 and Scenario 2 consider mortality rates by 
18 county, age group, and race/ethnicity. Table S.4’s Scenario 3 considers mortality rates by only 
19 county and age group.
20 A critical caveat for this study is that we only use mortality rates in 2017. Since our analysis 
21 extends far into the future, we miss potentially notable changes in baseline mortality rates. These 
22 could be related to various trends (e.g., changes in the health care system). Future work could 
23 further incorporate expected future mortality rates into prospective analyses such as that 
24 conducted herein.
25

26 VI. Marginal Damages by Effective Height
27 Because we model all EGUs from the medium stacks bin of AP3 (250 meters < effective 
28 height < 500 meters), it is important to explore the differences in impacts from various bin 
29 heights and consider how our results might change when using the low stacks or tall stacks bins 
30 instead of our default medium stacks procedure. Table S. presents emissions-weighted marginal 
31 damages (in deaths per short ton) for NOx, primary PM2.5, and SO2 from all sources of pollution 
32 across the contiguous U.S. in 2017, as reported by the NEI 12. The concentration-response 
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1 function uses relative risk from Krewski et al. (2009) 50 and all-person population counts and 
2 baseline mortality rates, both differentiated by age, provided by the CDC 52,53. 
3
4 Table S.5: Marginal damages (in deaths per short ton) by AP3 bin. Note: marginal damages are 
5 emissions-weighted from all sources of pollution across the contiguous U.S. in 2017 as reported 
6 by the National Emissions Inventory 12.

Pollutant
Variable AP3 Bin

NOx PM2.5 SO2

Low 1.89E-03 1.54E-02 7.44E-03

Medium 1.05E-03 8.77E-03 4.29E-03Marginal Damages
(Deaths/Short Ton)

Tall 9.55E-04 5.00E-03 4.11E-03

Low +80% +76% +73%Versus
Medium Tall -9.0% -43% -4.2%

7
8 Facilities in AP3’s low bin have significantly higher marginal damages on average 
9 compared to the medium bin. Specifically, deaths per ton of NOx, primary PM2.5, and SO2 are 

10 81%, 76%, and 73% greater, respectively. Conversely, facilities in the tall bin have lower 
11 marginal damages on average than those in the medium stacks bin, with deaths per ton of NOx, 
12 primary PM2.5, and SO2 being 9%, 43%, and 4% lower, respectively. Marginal damages from 
13 taller facilities are typically lower because their smokestacks are designed to disperse 
14 concentrated pollution away from ground-level populations, whereas lower facilities tend to have 
15 the opposite effect.
16 While Table S.5 demonstrates that low or tall facilities/emissions attributed to the 
17 medium bin could be notably mischaracterized, we again highlight that the goal of our paper is 
18 comparative in nature. Our focus is on how air quality changes for different populations under 
19 different pathways. In short, where we error, we error the same for all pathways. While the 
20 marginal concentrations and marginal damages from EGUs with lower effective heights may be 
21 higher and from EGUs with higher effective heights may be lower, we can assume that they will 
22 do so uniformly or randomly. We note that this is not a strictly valid assumption if there is a 
23 correlation between low or tall facilities/emissions and (1) where EGU emissions change 
24 (relative to other EGU emissions) or (2) where the subpopulations assessed herein live. 
25 However, we leave that investigation as well as any further efforts to evaluate our atmospheric 
26 transport assumptions to future work.
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