Supplementary Tables for the paper entitled:

Early-branching cyanobacteria grow faster and up-regulate superoxide dismutase activity under a simulated early Earth anoxic atmosphere.

Supplementary Table 1: Primer sequences. Primers specific for the superoxide dismutase genes, *sodA* (MnSOD), *sodB* (FeSOD) and *sodC* (Cu/ZnSOD), identified in *Pseudanabaena* sp. PCC7367 were designed as indicated below, as well as the reference gene primer pair targeting the *rpoC1* gene encoding the RNA polymerase beta subunit (Enzingmüller-Bleyl et al., 2022).

Gene of interest	Region in genome CP003592.1	Corresponding protein (NCBI Accession)	Locus	Primer direction	Sequence $(5^{\prime} \rightarrow 3^{\prime})$	Tm [°C]	GC content (%)	Product length in base pairs (bp)
sodA	770,159 to 770,920	WP_015163874.1	Pse7367_0 596	Forward	GCGCTCATGCCTGCTAAA TC	60.04	55	167
				Reverse	CCTGATGACCCGTTTACG CT	60.11	55	
sodB	3,547,029 to 3,547,598	WP_015166022.1	Pse7367_2 813	Forward	ACTGGCGCTTTGGCTAGT AA	57.3	50	165
				Reverse	GGGATTTTCAGCGTTGCC AG	60.11	56.4	
sodC	505,866 to 506,558	WP_015163683.1	Pse7367_0 398	Forward	GCTGCTATGGGAGTTGTG GT	60.04	55	198
				Reverse	TTGGAGGTGATCGTTGAG GC	60.04	55	
				809R	GCTTCGGCACGGCTCG GGTCGATA	69,5	66,7	
rpoC1	n/a	n/a	Pse7367_0 455	Forward	TGTTGGGTAAACGGGTTG AC	57.3	50	136
				Reverse	CGAATCAGGCGATTAATC ACAAA	57.31	39.1	

Supplementary Table 2: Primer binding efficiencies. The binding efficiency of the primers designed to detect the SOD genes were determined for both genomic DNA (gDNA) and copy DNA (cDNA) reverse transcribed from RNA extracted from *Pseudanabaena* sp. PCC7367.

Genes targeted for analysis are the *sodA* (MnSOD), *sodB* (FeSOD) and *sodC* (Cu/ZnSOD) genes with the *rpoC1* gene as reference gene (Enzingmüller-Bleyl et al., 2022). The primer efficiencies were determined using genomic DNA of *Pseudanabaena* sp. PCC 7367 ranging from 10 000 000 copies to 1 copy of the targeted gene, as well as dilutions of cDNA. All genes targeted were present in a single copy on the genome of *Pseudanabaena* sp. PCC 7367.

Gene of Interest	gDNA	cDNA	Primer Efficiency %	Primer Efficiency % with
	Dilutions	Dilutions	with gDNA	cDNA
rpoC1	10 ng	10 ng	107.70	102.68
sodA	10 ng	10 ng	95.79	88.7
sodB	10 ng	10 ng	89.30	88.7
sodC	10 ng	10 ng	98.02	97.88

Supplementary Table 3: Secretory pathways encoded in *Pseudanabaena* sp. PCC7367. The presence of genes encoding putative *sec* (Russo & Zedler, 2021; Supplementary Tables S2 & S3) and *tat* (Russo & Zedler, 2021) (Supplementary Table S4) pathways were obtained through a similarity search using the characterised protein sequences obtained from *E. coli* K12 MI1665 or *Synechocystis* sp. PCC6803.

Gene name	Bait organism	Bait gene	<i>Pseudanabaena</i> PCC 7367 uniprotkb	BLASTp E value
secA	<i>E. coli</i> K12 MI1665	P10408 SecA	K9SFH1	6.81e-63
secD	<i>E. coli</i> K12 MI1665	P0AG90 SecD	K9SFP1	1.34e-61
secF	<i>E. coli</i> K12 MI1665	P0AG93 SecF	K9SFP1	1.81e-06
secF	<i>E. coli</i> K12 MI1665	P0AG93 SecF	K9SEI8	2.52e-31
secY	<i>E. coli</i> K12 MI1665	P0AGA2 SecY	K9SHY3	1.44e-107
secE	Synechocystis sp. PCC6803	P38382 SecE	K9SDF3	1.46e-16
secG	Synechocystis sp. PCC6803	P74508 SecG	K9SFY9	5.96e-21
tatA	<i>E. coli</i> K12 MI1665	P69428 TatA	K9SKB5	2.24e-05
tatA	<i>E. coli</i> K12 MI1665	P69428 TatA	K9SI06	5.16e-05
tatC	<i>E. coli</i> K12 MI1665	P69423 TatC	K9SCK0	2.55e-27

Supplementary Table 4: Metal transporters in *Pseudanabaena* sp. PCC7367. The presence of metal transporters encoded by *Synechocystis* PCC6803 for the metal cofactors required for the SOD isoforms investigated in this study, is indicated in the table below (modified from Sharon *et al.*, 2014). The characterized protein sequences from *Synechocystis* sp. PCC6803 (NC_000911.1) were used to search for similarity homologues in the genome of *Pseudanabaena* sp. PCC7367 (NC_019701.1) using tblastn (Altschul, 1991).

Metal	Gene	Description	Synechocystis	Synechocystis	Pseudanabaena	Description	BLASTp
	name		6803	6803	PCC 7367		E value
			NC_000911.1	Protein ID	NC_019701.1		
			Gene locus tag		Gene locus tag		
Mn	mntC	PsaA, metal ABC	SGL_RS08820	WP_010872546.1	WP_015163932.1	zinc ABC	4e-44
		transporter substrate				transporter	
		binding domain				substrate-binding	
						protein	
	mntA	Inorganic Mn ²⁺ /Zn ²⁺⁺	SGL_RS08815	WP_010872545.1	WP_015163931.1	metal ABC	8e-59
		ion transporter ATPase				transporter ATP-	
		component				binding protein	
	mntB	ABC 3 transporter	SGL_RS0881	WP_010872544.1	WP_015166116.1	ABC-type	1e-59
		permease				Mn^{2+}/Zn^{2+}	
						transport system,	
						permease	
Zn	znuB	ABC-type Mn ²⁺ /Zn ²⁺	SGL_RS04625	WP_010871740.1	WP_015163931.1	ABC-type	1e-43
		transport system, ATP-				Mn^{2+}/Zn^{2+}	
		binding protein				transport system,	
						ATPase	
	znuC	hypothetical	SGL_RS04630	WP_010871742.1	/		No hit
	znuB	zinc ABC transporter	SGL_RS04620	WP_010871739.1	WP_015166551.1	zinc ABC	3e-28
	(ZntC?)	substrate-binding				transporter	
		protein				substrate-binding	
						protein	
Cu	ctaA	putative Cu binding	SGL_RS12475	WP_010873238.1	WP_051038173.1	copper-	0.0
		site & ATP binding site				translocating P-	
						type ATPase	
	pacS	copper-translocating P-	SGL_RS05435	WP_010871897.1	WP_015164254.1	copper-	0.0
		type ATPase				translocating P-	
						type ATPase	

Supplementary Table 5: Potential genes involved in the reduction of H₂O₂, the product of SOD dismutation of O₂.

The presence of genes potentially encoding peroxidases or peroxiredoxins were obtained from the KEGG database (Kanehisa et al., 2022) for the genome of *Pseudanabaena* sp. PCC7367 (NC_019701.1). The presence of a glutathione synthase and glutathione reductase were also confirmed.

Description	<i>Pseudanabaena</i> sp. PCC7367 KEGG entry	Description	BLAST against the protein data bank and manual sequence inspection
Peroxiredoxin	Pse7367_1682	thioredoxin-dependent peroxiredoxin	BCP-type enzyme (alternative reductants)
Peroxiredoxin	Pse7367_2013	thioredoxin-dependent peroxiredoxin	Prx1-type enzyme (thioredoxin as a reductant)
Peroxiredoxin	Pse7367_2293	thioredoxin-dependent peroxiredoxin	BCP-type enzyme (alternative reductants)
Redoxin domain protein	Pse7367_2374	thioredoxin-dependent peroxiredoxin	Prx5-type enzyme (alternative reductants)
1-Cys peroxiredoxin	Pse7367_3020	thioredoxin-dependent peroxiredoxin	Prx6-type enzyme (reductant unknown)
Oxidoreductases	Pse7367_2328	peroxidase	Heme-containing peroxidase
Glutathione peroxidase	Pse7367_3393	glutathione peroxidase	Trx-dependent GPx (thioredoxin as a reductant)
Glutathione synthase	Pse7367_3280		
Glutathione reductase	Pse7367_0547	NADPH-glutathione reductase	

Supplementary Table 6: Results of One-way repeated measure ANOVA and/or ANOVA on ranks with environmental treatment condition as factor and Post-Hoc all pairwise multiple comparison procedures using Turkey Test and/or Holm-Sidak method for biomass parameters (Fig. 2 Suppl Fig 1). Bold numbers indicate significant differences with minimum $p \le 0.05$. Number of replicates = 3.

One-Way repea	ated me	asure bio	mass j	paramete	r				
	One-way repeated measure ANOVA					ANOVA on ranks			
		F		р	DF	0	Chi-square	р	Df
Chlorophyll a							22,00	≤0.001	2
Carotenoid	8,	,443	0,	,002	2				
Chl a: carotenoid ratio	1.	.642	0.	.219	2				
Protein					2		15.048	≤0.001	2
Glycogen	cogen 7,01		0,004		2				
Growth	214	4,102 ≤0		.001	2				
Post-Hoc pairw	vise mul	tiple com	pariso	on					
		LC	vs. Ar	chean	LC v	s. H	C	HC vs. A	rchean
		<i>q/t</i>		р	<i>q/t</i>		р	q/t	р
Chlorophyll a		6.35	1	<0.001	3.175		0.064	3.175	0.064
Carotenoide		5.80	4	0.001	3.15		0.087	2.655	0.167
Protein		4.71	5	0.002	1.109		0.713	3.606	0.029
Glycogen		5.10	3	0.004	1.328		0.622	3.776	0.035
Growth		18.93	30	<0.001	2.227		0.068	16.703	<0.001

Supplementary Table 7: Results of One-way repeated measure ANOVA with environmental treatment condition as factor for growth media oxygen concentration (Suppl. Fig.2). In case of significant differences, Post-Hoc analysis using Holm-Sidak method was applied to identify differing groups: Bold numbers indicate significant differences with minimum $p \le 0.05$. Number of replicates = 3.

One-Way rep	eated me	asure for grow	th media ox	ygen concentr	ation						
Time after	One-	One-way repeated measure ANOVA									
monitoring		F		р		DF					
2h		3.399		0.137		2					
14h		2.826		0.172		2					
18h	17.941			0.01		2					
22h	7.411			0.045		2					
19h stirred		125.449		<0.001		2					
Post-Hoc pair	wise mu	tiple comparis	on								
Time after on	set of	LC vs. Archean		LC vs. HC		HC vs. Archean					
monitoring		t	р	t	р	t	р				
2h		n.s.									
14h			n.s.								
18h		5.988	0.012	2.872	0.045	3.117	0.07				
22h		5.401	0.04	2.102	0.388	3.299	0.161				
19h stirred		15.575	<0.001	5.289	0.006	10.286	0.001				

Supplementary Table 8 : Results of repeated measure two way ANOVA using environmental treatment condition (Arch, HC, LC) as well as sampling time (Fig. 3, A-D) as factor for SOD gene expression, SOD protein activity and dissolved O_2 in the growth media. In case of significant differences, pairwise multiple comparison procedure using Duncan's Method for treatment (A) and time (B) as factor was applied to identify the respective groups of parameters that differ significantly. Bold numbers indicate significant differences with minimum $p \le 0.05$. Number of replicates = 3.

	Treatment		Т	ime	Treatment x Time						
	F-value	р	F-value	р	F-value	р					
qPCR sodA	5,156	0,078	9,183	0,004	24,669	<0.001					
(MnSOD)											
qPCR sodB (FeSOD)) 105,979	<0.001	61,534	<0.001	27,317	<0.001					
qPCR sodC	125,71	<0.001	21,583	<0.001	6,632	<0.001					
(CuZnSOD)											
qPRC sodABC Sum	102,919	<0.001	22,448	<0.001	4,189	0,007					
SOD enzyme activity	y 85,075	<0.001	540,712	<0.001	158,534	<0.001					
Dissolved O ₂	11,069	0,023	112,171	<0.001	3,167	0,024					
	r os	st-noc pan	wise multiple o	comparison							
A) Factor Treatment	t										
	LC vs. A	rchean	LC vs.	LC vs. HC		s. Archean					
	q	р	q	р	q	р					
qPCR sodA (MnSOD)	4,534	0,035	2,486	0,154	2,048	0,221					
qPCR sodB (FeSOD)) 16,783	<0.001	1,938	0,243	18,721	<0.001					
qPCR sodC	22,423	<0.001	11,361	0,002	11,063	0,002					
(CuZnSOD)											
qPRC sodABC Sum	18,704	<0.001	2,543	0,147	16,162	<0.001					
SOD enzyme activity	y 17,118	<0.001	2,603	0,14	14,514	<0.001					
Dissolved O ₂	6,652	0,01	3,484	0,07	3,167	0,089					
b) ractor line											
	qPCR sodA (N	/InSOD)	qPCR so	dB (FeSOD)	qPCR sod(C (CuZnSOD)					
	\overline{q}	р	\overline{q}	p	\overline{q}	p					
14.000 vs. 18.000	0.0145	0.992	12.15	<0.001	0.187	0.898					
14.000 vs. 19.000	4.041	0.025	19.701	<0.001	11.234	<0.001					
14.000 vs. 2.000	0.0272	0.985	17.263	<0.001	4.438	0.019					
14.000 vs. 22.000	4.521	0.015	16.668	<0.001	1.943	0.224					

18.000 vs. 19.000	4.056	0.028	7.552	0.001	11.047	<0.001
18.000 vs. 2.000	0.0416	0.979	5.113	0.008	4.251	0.02
18.000 vs. 22.000	4.507	0.013	4.519	0.013	1.756	0.25
2.000 vs. 19.000	4.014	0.022	2.439	0.123	6.796	0.002
22.000 vs. 19.000	8.563	<0.001	3.033	0.074	9.291	<0.001
22.000 vs. 2.000	4.549	0.017	0.594	0.685	2.495	0.116
	qPRC sodABC Sum		SOD enzy	me activity	Dissolved O ₂	
	q	р	q	p	<i>q</i>	р
14.000 vs. 18.000	0.0145	0.992	12.15	<0.001	0.187	0.898
14.000 vs. 19.000	4.041	0.025	19.701	<0.001	11.234	<0.001
14.000 vs. 2.000	0.0272	0.985	17.263	<0.001	4.438	0.019
14.000 vs. 22.000	4.521	0.015	16.668	<0.001	1.943	0.224
18.000 vs. 19.000	4.056	0.028	7.552	0.001	11.047	<0.001
18.000 vs. 2.000	0.0416	0.979	5.113	0.008	4.251	0.02
18.000 vs. 22.000	4.507	0.013	4.519	0.013	1.756	0.25
2.000 vs. 19.000	4.014	0.022	2.439	0.123	6.796	0.002
22.000 vs. 19.000	8.563	<0.001	3.033	0.074	9.291	<0.001
22.000 vs. 2.000	4.549	0.017	0.594	0.685	2.495	0.116

Supplementary Table 9: Pearson's correlation of parameters monitored during 24 h sampling (Fig. 3). Bold numbers indicate significant differences with minimum $p \le 0.05$. Abrev. r= correlation coefficient, n= number of samples. Number of replicates = 3.

				_ ~ ~	qPCR		
		qPCR	qPCR	qPCR	sodABC	SOD enzyme	
	-	sodA	sodB	sodC	sum	activity	medium O ₂
	r	0.0796	-0.0238	-0.00657	0.0209	-0.0844	-0.0417
Time	р	0.603	0.877	0.966	0.892	0.582	0.785
	n	45	45	45	45	45	45
	r		-0.149	0.521	0.47	0.349	0.234
qPCR sodA	р		0.327	0.000242	0.00114	0.0186	0.122
-	n		45	45	45	45	45
	r			0.382	0.797	0.071	0.651
qPCR sodB	р			0.00958	5.71E-11	0.643	0.00000127
	n			45	45	45	45
	r				0.725	0.0142	0.675
qPCR sodC	p				1.79E-08	0.926	0.00000376
	n				45	45	45
aDCD	r					0.242	0.751
qPCK	p					0.11	2.81E-09
SOUADC SUM	n					45	45
SOD on when	r						0.202
sob elizyille	p						0.183
activity	n						45

References:

- Altschul, S. F. (1991). Amino acid substitution matrices from an information theoretic perspective. *Journal of molecular biology*, 219(3), 555-565.
- Enzingmüller-Bleyl, T. C., Boden, J. S., Herrmann, A. J., Ebel, K. W., Sánchez-Baracaldo, P., Frankenberg-Dinkel, N., & Gehringer, M. M. (2022). On the trail of iron uptake in ancestral Cyanobacteria on early Earth. *Geobiology*.
- Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., & Ishiguro-Watanabe, M. (2022). KEGG for taxonomy-based analysis of pathways and genomes. *Nucleic acids research*, *51*(D1), D587-D592. https://doi.org/10.1093/nar/gkac963
- Russo, D. A., & Zedler, J. A. (2021). Genomic insights into cyanobacterial protein translocation systems. *Biological chemistry*, 402(1), 39-54.