SUPPLEMENTARY MATERIAL: Nanocluster Formation Process in Peptide Solutions: Dynamics and Bioactivity Implications

Dimitar Kaynarov^a, Karina Marinova^a, Rossitsa Marinova^{b,*}, Peicho Petkov^b, Lyudmila Velkova^{a,*}, Aleksandar Dolashki^a, Petar Petrov^a, Leandar Litov^b, Elena Lilkova^c, Nevena Ilieva^c, Pavlina Dolashka^a

^aInstitute of Organic Chemistry with Centre of Phytochemistry at the Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 9, Sofia, 1113, , Bulgaria ^b Sofia University "St. Kl. Ohridsky", Physics Faculty, 5, James Bourchier Blvd, Sofia, 1164, , Bulgaria

^c Institute of Information and Communication Technologies at the Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 2, Sofia, 1113, , Bulgaria

Figure S1: The average cluster size in the (a) p1, resp. (b) p3 mono-component solutions at a concentration of 10 mg/mL.

Figure S2: SASA of the aromatic residues in the (a) p1, resp. (b) p3 mono-component solutions at a concentration of 10 mg/mL.

*Corresponding author

Email addresses: rosie.marinova@gmail.com (Rossitsa Marinova), Lyudmila.Velkova@orgchm.bas.bg (Lyudmila Velkova) Preprint submitted to Biochemistry and Biophysics Reports

Figure S3: SASA of the hydropbic (blue), polar (green), and charged (red) residues in the (a) p1, resp. (b) p3 mono-component solutions at a concentration of 10 mg/mL.

Figure S4: The largest clusters in the (a) p1 and (b) p3 monocomponent solutions at a concentration of 10 mg/mL in surface/VdW representation; basic residues are coloured in blue, acidic — in red, polar — in green, and non-polar — in white.

1	LEU 4	ne en se terre a l'entre d'anne de la service de la se							
14	LEU á	A CANADA A A A A A A A A A A A A A A A A A							
10	LEO P								
6	GLN d								
2	PHE C								
15	IRP C								
11	VAL e								
7	GLY 1								
3	GLY Q								
16	ARG q								
12	GLY 1								
8	GLY i								
4	GLY ;								
17	LYŜ j								
13	GLY)								
9	GLY 1								
5	HIS 3								
1	LEU 7								
14	LEU r								
10	LEU d								
6	GLN p								
2	PHE C								
15	IRP C	The second se							
11	VAL 1								
7	GLY s								
3	GLY t								
16	ARG t								
12	GLY U								
8	GLY V	· 我们最高级的,你是你们就是你们的,你们就是你的,你们也是你的你。""你是你们,你们就是你能能了。""你们,你们就是你们,你们就是你们,你们就是你们。""你们,							
4	GLY W								
17	LYŜ W								
13	GLY >								
9	GLY 5								
5	HIS 2								
1	LEO 1								
17	LYS A	a series de la serie de la s							
α-helixextended-β3-10 helixcoilturn									
	0 40 89 146 212 279 345 411 477 543 609 675 741 807 873 939 1014 1097 1180 1263 1347 1430 1513 1597 1680 1263 1943								
	(frame number)								

Figure S5: Evolution of the secondary structure of the p3 monocomponent solution.

(frame number)

Figure S6: Evolution of the secondary structure of the p1+p3 multicomponent solution.

Figure S7: Number of residues involved in the four main secondary-structure elements in the p1 solution.

Figure S8: Number of residues involved in the four main secondary-structure elements in the p3 solution.

Figure S9: Final conformation (clusters formed) by the end of the multicomponent simulation.

Figure S10: The largest cluster in the multi-component p1+p3 simulation, in surface representation: (a) coloured by residue type, basic residues in blue, acidic – in red, polar – in green, non-polar – in white; (b) coloured by peptide type, p1 in blue, p3 in yellow, Trp residues highlighted in red.

Figure S11: SASA of the Trp and Phe residues in the multicomponent solution.

Figure S12: Percentage of the π - π stacking conformations in the peptide mixture simulation: (a) by kind per aromatic pairs; (b) by kind per amino acid type pairs.

Figure S13: Fluorescence emission spectra of p1, p3, and p1+p3 compared to hydrophobic amino acid tryptophan (concentration of 10 mg/mL) at $\lambda_{ex} = 295$ nm immediately after the digestion of the peptides in a phosphate buffer (asymmetric quartz cuvette with 4/10 mm optical length at 22°C).

Concentration	p1		p3		p1+p3		bombinin	
[mg/ml]	Inhibition [%]	Std. Dev.						
11.4	63.3	4.2	100.0	3.5	100.0	3.2	100.0	4.2
5.7	55.0	3.0	100.0	4.6	100.0	4.1	100.0	4.3
2.8	52.8	3.9	100.0	3.5	100.0	3.3	99.0	5.5
1.4	54.7	4.8	100.0	4.8	100.0	2.5	86.8	4.7
0.7	50.1	3.8	99.5	4.7	79.0	5.2	68.1	6.1
0.4	47.2	3.4	77.4	4.4	33.8	3.4	37.1	3.0
0.2	38.6	3.3	45.6	3.2	28.5	3.3	34.4	6.3
0.1	30.8	3.8	47.4	3.8	22.9	4.1	22.6	5.5

Table S1: Inhibition of B. subtilis growth by p1, p3, (p1+p3) combination, and bombinin at different concentrations.

Table S2: Inhibition of *E. coli* 3458 growth by p1, p3, (p1+p3) combination, and bombinin at different concentrations.

Concentration	pl		р3		p1+p3		bombinin	
[mg/ml]	Inhibition [%]	Std. Dev.						
11.4	100.0	4.2	100.0	3.2	96.6	3.3	100.0	3.2
5.7	49.5	6.7	100.0	3.4	100.0	4.4	100.0	4.4
2.8	53.6	3.0	100.0	3.3	100.0	3.8	100.0	4.3
1.4	33.8	3.8	100.0	4.2	100.0	3.4	85.9	4.2
0.7	34.8	3.8	99.3	3.3	54.6	5.8	42.9	3.3
0.4	42.8	4.3	57.0	5.4	35.1	5.0	18.4	6.4
0.2	28.0	4.4	55.0	3.2	39.3	4.3	60.8	3.2
0.1	30.9	5.5	45.7	4.6	54.8	5.8	47.9	3.6