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1. Descriptions are given of two ways for fitting non-linear equations by least-squares
criteria to experimental data. One depends on solving a set of non-linear simultaneous
equations, and the other on Taylor's theorem. 2. It is shown that better parameter
estimates result when an equation with two or more non-linear parameters is fitted to all
the sets of data simultaneously than when it is fitted to each set in turn.

It is fairly easy to estimate the parameters of an
enzyme-catalysed reaction so long as the rate equation
is non-linear in only one of them, typically Km (e.g.
Atkins & Nimmo, 1975). The problem becomes more
complex when there are other non-linear parameters
as well, such as the Km of a second substrate, the K1
of an inhibitor or the Hill coefficient.

Cleland (1963, 1967) has devised methods to
handle the first two of these more complex problems.
A rectangular hyperbola is fitted to a set of initial
velocities determined with one of the independent
variables (e.g. second substrate, inhibitor) held
constant, and then the coefficients of the hyperbola
are replotted against the second independent variable
to give the desired parameters ('replot method').
Alternatively, the rate equation can be fitted directly
to all the sets of data at once ('direct method').
Cleland (1963) suggested that the direct method gives
the better answers, though he did not prove it.
An inspection of the literature published during

1974 and 1975 shows quite clearly that most enzymo-
logists favour the replot method, even though it is
likely to give less reliable answers. Consequently the
majority opinion seems to be that either the additional
refinement gained from the direct method does not
justify the extra effort required to use it, or perhaps
the method is too formidable mathematically.
The present paper therefore has two objectives.

The first is to establish, by analysing simulated data,
exactly how much better the direct method is than
the replot one. The second objective is to explain how
a non-linear equation can be fitted (by least-squares
criteria) to several sets of data simultaneously. One
of the ways in which this may be done entails the
solution ofa set ofnon-linear simultaneous equations;
another, which has been described in detail by
Cleland (1967), is based on Taylor's theroem
(Courant, 1937a).
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Theory and Methods

Two sets of experiment were simulated. In the
first, initial velocities (v) were measured for a reaction
involving a single substrate and a competitive inhibi-
tor, and the relevant rate equation was fitted to all the
sets of data simultaneously by solving a set of non-
linear simultaneous equations. In the second sort of
experiment the entire progress curve was followed for
a reaction in which a single substrate was converted
into a product that was also a competitive inhibitor
with respect to the substrate. [This is essentially
the approach used by Newman (1974) to characterize
human erythrocyte acetylcholine hydrolase, EC
3.1.1.7. ] The progress curves were fitted by a technique
based on Taylor's theorem (Courant, 1937a). In
both sorts ofexperiment there are three parameters to
be estimated: K., K, (both of which are non-linear)
and V (which is linear for initial velocities and non-
linear for progress curves).

Initial velocities

The perfect data were identical with those in Fig. 3
of Cleland (1967), except that there were six observa-
tions at each of the four concentrations of inhibitor.
An experiment was simulated by adding to each of
the 24 perfect initial velocities one of a series of
normally distributed pseudo-random numbers of
mean zero and standard deviation either 0.01 or 0.05
(generated by the Edinburgh Regional Computing
Centre library program Random). The variance of v

was therefore constant, and at the lower error level
the coefficient of variation ranged from 6.0 to 1.2%.
At each error level 33 experiments were simulated.
The parameters were first estimated by using

replots, exactly as described by Cleland (1963). Then
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they were estimated directly, i.e. by using least-
squares criteria to fit to all the data the equation:

V s
v =

(+ i K)+
(1)

where s is the concentration of substrate, and i that
of inhibitor. This involves writing down the function
for the weighted sum of squares of deviations (SS):

ss= >W(V- ( Vs 2

partially differentiating it with respect toKm, K, and V,
and then setting the three partial differentials to zero.
(The weighting factor for each point, w, is the recip-
rocal of its variance.) Here:

ass v w 2(1+j-) w s(i4)=
ass K,i es

AKSSD3 v
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where D = (1 +i/Ki)Km+s and w = 1 (because the
variance of v is assumed to be constant). Any one of
the equations can be rearranged to give an expression
for V in terms of K., K, and the data, which can be
substituted into the other two equations to turn them
into expressions in Km and K, only. These equations
cannot be solved algebraically for Km. and K&, but
they can be solved numerically by any one of a
number of iterative techniques. In general such
techniques require initial estimates of the unknowns
(i.e. of Km and K1), which they then refine by succes-
sive approximations; several of them are available
from computer-program libraries as routines which
can be incorporated into larger programs (e.g. in the
United Kingdom there are two suitable routines in
the Numerical Algorithms Group library, and ano-
ther two in the Harwell one). We chose the Edinburgh
Regional Computing Centre library's routine Imp
Davden, which uses the method of Davidenko as
described by Broyden (1969). As initial estimates, we
used the answers given by the replot method.

Progress curves

When the product of a reaction is a competitive
inhibitor with respect to the substrate, the rate
equation is:

dp V (so-P)
dt ( p)1 + Km+ (so-p)

\Ki

(2)

wherep is the concentration of product at time t, and
so is the initial concentration of substrate (i.e. when
t=p = 0). The equation of the progress curve,
derived by integrating eqn. (2>, is:

V t= 1-XKP-Km 14+-in 1 -

\K K1, so!
(3)

Theperfect datawereformed by settingKm = V= 1,
Ki=0.01, 0.1, 1.0, 10 or 100, and so=0.5, 2.2, 10,
44.7 or 200, and then by using eqn. (3) to calculate t
at 31 values ofp in the range 0.05 so-0.95 so, such that
the values of t were roughly equispaced. An experi-
mental progress curve was simulated by adding to
each of the 31 perfect values ofp one of a series of
normally distributed pseudo-random numbers of
mean zero and S.D. = 0.01; the variance of p was
therefore constant. In all, 25 curves were simulated
for each pair of values of K1 and so.
Eqn. (3) could easily have been fitted to these curves

by solving a set of non-linear simultaneous equations,
as described above. However, for the purposes of
illustration, Taylor's theorem was used instead.
The parameters were first estimated by the equi-

valent of the replot method. This entails using the
iterative method of Femley (1974) to fit eqn. (4) to
a set of five progress curves, each determined at a
different substrate concentration:

V' t=p-KmAln 1- (4)

The result is five apparent values ofKm and V(K. and
V' respectively), together with their variances.
Comparison of eqn. (4) with eqn. (3) shows that K.'
depends on so, and that Km and K, can be derived
from the coefficients of the linear regression ofKm on
so (the values of Km should be weighted in inverse
proportion to their variances). Similarly V can be
derived from the (weighted) mean of V' and these
regression coefficients.
The three parameters were also estimated directly

by fitting eqn. (3) to all five progress curves at once.
This was achieved by an extension of Fernley's (1974)
method, and is based on Taylor's theorem [see
Cleland (1967) and Wilkinson (1961) for lucid
descriptions of the principles involved].
The method is as follows. Eqn. (3) can be thought of

as a function relatingp to t, so and the unknowns K.,
K, and V:

p = f(t, ,Ki K1i, V)
If K4, Kp and VO are provisional estimates of the
parameters (e.g. those found from replots), then
Taylor's theorem states that:

1976

490



RAPID PAPERS

8f
p f(t, so, Km,K?, V)+,+Km, -+

8Km
8f 8
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where AK., AKi and AVare the corrections that have
to be added to K°, K? and VO to give the improved
estimates. Putting p = f(t, so, K°m, K?, VO), eqn. (5)
becomes:

P-P#K. f + afI't afpwe A +AK*-WI+AV. TV
where

af K? ( K?) Q So)
D

Df = (1-4)2 [+soin*(-+K-)]

87K, D

8f t

soI

and

The quantity p can easily be found from eqn. (3) by
using the Newton-Raphson process (Courant, 1937b)
with p as the starting value. The multiple linear
regression (without a constant term) of (p-fi) on the
three partial derivatives then gives the corrections to
be added to the parameters. The whole process is
repeated until they become vanishingly small, which
implies that the best-fit estimates have been reached.

Results
Initial velocities

Table 1 gives the means and standard deviations of
the three parameters (Km, K, and V) and of the SS
that were calculated from the data sets with the
greater error by the replot and the direct methods.
The results for the data sets with the lower error were
qualitatively the same and have not been tabulated.
The direct method gave on average the lower SS
(in fact in every instance its SS was the lower), and
its estimates of Ki, V and (especially) K, were the
more precise. The relative values of the standard
deviations are about 0.70,0.72 and 0.42 for K., Vand
K, respectively.

Progress curves

Eqn. (4) could not be fitted to any of the error-

containing progress curves for which K,< 1.0,
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Table 1. Estimates ofK., K, and Vdeterminedby the replot
and direct-fit methods

Values are means±S.D. n= number of data sets success-
fully analysed. For the initial-velocity data the perfect
values are Km = K, = V= 1.00. For the progress curves
they are Km= V= 1.00, K, = 100. None of the means are
significantly different from their perfect values (P<about
0.05, calculated from interval estimate of median;
Campbell, 1967).

Initial velocities

Replot Direct
Km 1.03±0.20 1.05+0.14
K, 1.14+0.44 1.06+0.18
V 0.98+0.07 1.01 +0.05
102xSS 8.54±4.55 5.71+ 1.65
n 33 33

Progress curves

Replot Direct
0.96+0.07 1.00+0.03
67+ 103 103±54

1.00+0.03 1.00+0.01

21 22

K,= 10 and so010, or K,= 100 and so = 200 (this
was because the SS did not converge to a minimum).
Consequently the only curves examined had K, = 100
and so= 0.5-44.7. Even with these curves realistic
estimates were not obtained in four instances with the
replotmethodandthreewith thedirect one.Theresults
(Table 1) are qualitatively similar to those for initial
velocities. The relative standard deviations are about
0.50,0.18and 0.52 for Km, Vand K, respectively. Both
the direct and the replot methods gave large coeffi-
cients of variation for the mean value of Ki, which
suggests that the individual estimates of this para-
meter at least were not normally distributed.

Discussion
The main conclusion to be drawn from these results

might have been expected intuitively, namely that
the direct method (in which all the data sets are fitted
simultaneously) gives a closer fit, as judged by the
magnitude of the SS, and more precise parameter
estimates than does the replot method (in which they
are fitted one at a time). Atkins (1973) came to the
same conclusion about methods for fitting the Hill
equation. It seems reasonable to generalize it to
other situations as well: for instance, when the re-
action involves two substrates or a different sort of
inhibitor. Our results also suggest by how much the
use of the direct method is likely to improve the
precision of the parameter estimates, and are in-
tended to help enzymologists decide whether the
increase in precision is worth the extra computational
effort involved.
To show that it is actually quite easy to fit a non-

linear equation to data by the method of least
squares we deliberately used two of the possible
approaches. [Although one of them has been ex-
pounded by Cleland (1967), it does not seem to have
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found general acceptance and consequently has been
recapitulated here.] Neither approach is particularly
difficult mathematically, requiring only familiarity
with partial differentiation and either access to a
routine for solving non-linear simultaneous equations
(as illustrated in the initial-velocity problem) or a
knowledge of multiple linear regression (as in fitting
the progress curves). However, as both approaches
depend on iterative techniques the calculations are
tedious and are best handled by a digital computer.
We consider that it is often more efficient in terms of
computer time and space to derive specific solutions
to specific problems in this way, rather than to use
more general programmes such as those of Cleland
(1967) or Nelder & Mead (1965). We also think that,
although it is possible to calculate standard errors for
the parameters fitted by all the above methods, they
are of little value, as they cannot be interpreted
rigorously. Naturally all these least-squares direct-fit
methods should converge to the same answers. In our
experience the rapidity with which they do so depends
on factors such as the particular problem under
consideration, the number of data points and the
amount of error, so that it is difficult to say at the
outset which will be the fastest.
A by-product of the simulations is the demonstra-

tion that progress curves analysed as described above
are unlikely to be of much use in determining the
parameters ofan enzymic reaction whose product is a
competitive inhibitor, unless K1 is much larger than

Km. [One such reaction which seems to fulfil this
criterion is the hydrolysis of acetylcholine by human
erythrocyteacetylcholine hydrolase (Newman, 1974).]
However, ifK, were less than Ki, the analysis of Philo
& Selwyn (1973) could be used instead.

We thank Miss Caroline Thompson for her inestimable
assistance.
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