import pandas as pd import numpy as np # FILE_LIST = ["aapl", "amgn", "ba", "dis", "intc", "ko", "mcd", "msft", "trv", "v"] # for file in FILE_LIST: df = pd.read_csv('OriginalData\\' + 'adx_balance.csv') # 计算每日收益率 r_t = (P_t - P_{t-1}) / P_{t-1} df['daily_return'] = df['balance_hybrid_without_adx'].pct_change() print(df['daily_return'][0:500]) df = df.dropna() def sharpe_ratio(returns, risk_free_rate=0.1): mean_return = np.mean(returns) print(mean_return) std_return = np.std(returns) print(std_return) sharpe_ratio = (mean_return - risk_free_rate) / std_return return sharpe_ratio returns = df['daily_return'][0:500].values risk_free_rate = 0.01 sharpe = sharpe_ratio(returns, risk_free_rate) print(f"夏普率: {sharpe}")