Supporting Information for

Quantification of *Salmonella enterica* serovar Typhimurium Population Dynamics and Bottlenecks in Murine Infection Using a Highly Diverse Barcoded Library

Julia A. Hotinger, Ian W. Campbell, Karthik Hullahalli, Akina Osaki, Matthew K. Waldor

Matthew K. Waldor Email: mwaldor@bwh.harvard.edu

This file includes:

Figures S1 to S9 Table S1 SI References

Other supporting materials for this manuscript include the following:

Dataset S1

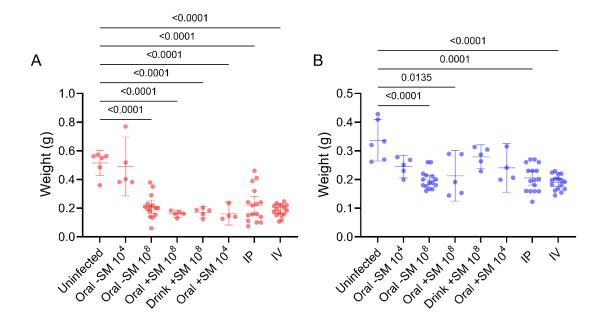
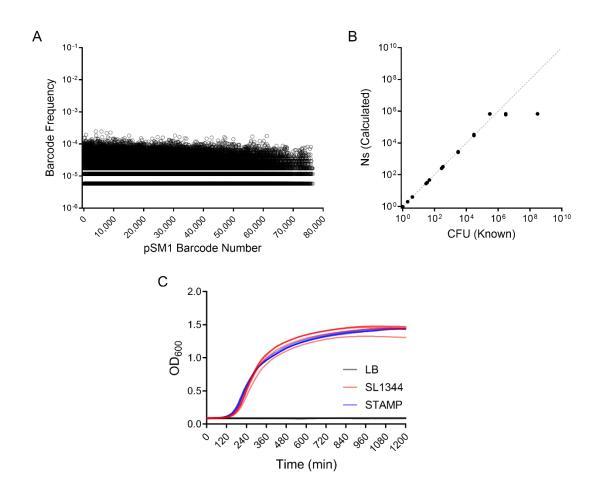
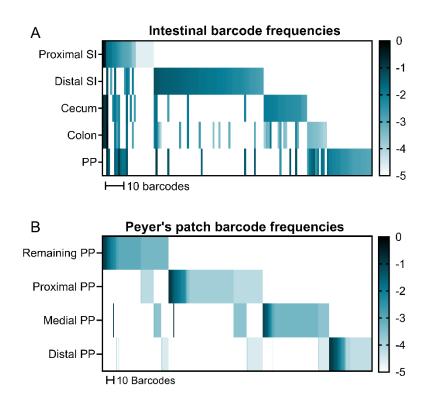




Fig. S1. Weight of cecum (A) and colon (B) after different infection schemes. Mann-Whitney tests were used for statistical analyses.

Fig. S2. S. Typhimurium barcoded library diversity and standard curve. A) Barcodes in *S* Typhimurium library were mapped to the barcodes in the donor library (pSM1) and the frequency of barcodes in the *S*. Typhimurium library were distributed relatively evenly. **B)** Calibration curve indicating the library has an Ns resolution limit of $~7x10^5$. **C)** Growth of barcoded STAMP library in LB supplemented with SM is not different than the parent strain (SL1344). Significance was tested with Mann-Whitney test and growth curves were performed 5 times. Curves displayed with 50% opacity.

Fig. S3. Barcodes from different regions of the intestine and Peyer's patches from a single animal are largely distinct. A) Barcode frequencies of different regions of the intestine and **B)** individual Peyer's patches (PP) of an untreated mouse after orogastric gavage of *S*. Typhimurium. "Remaining PP" sample contains the PP from the animal not taken for individual analysis. Frequencies of barcodes are displayed as heatmaps (each box represents a barcode and darker colors represent increased frequency within the sample) and sorted by abundance in each sample sequentially.

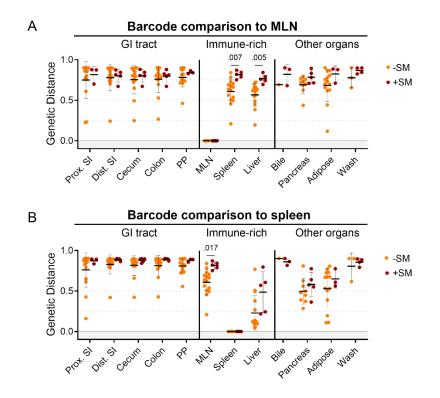


Fig. S4. S. Typhimurium disseminates to the MLN and spleen prior to substantial replication in the intestine. Genetic distance from the MLN (A) and spleen (B) after orogastric inoculation of S. Typhimurium with (+SM) or without (-SM) streptomycin pretreatment. -SM n =16 (8 males & 8 females), +SM n = 5 (female). Mann-Whitney tests were used for statistical analyses. Values with p < 0.1 shown. Abbreviations: GI, gastrointestinal; MLN, mesenteric lymph node; PP, Peyer's patches; SI, small intestine.

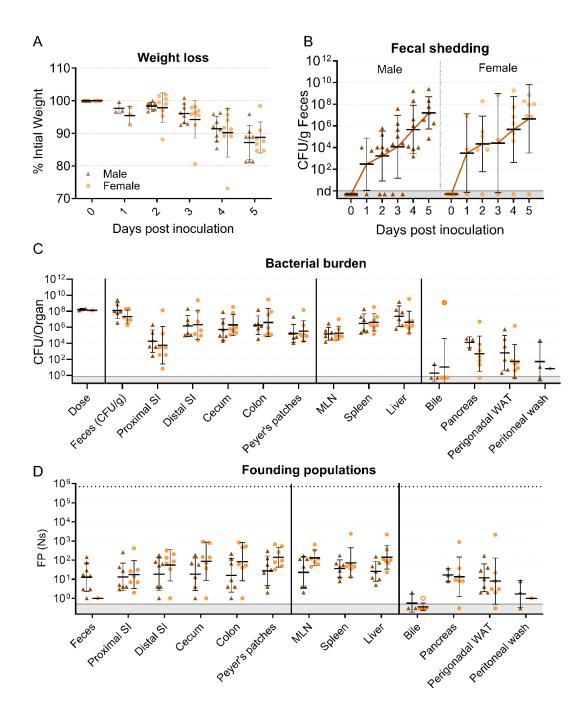


Fig. S5. Sex-disaggregated data in mice inoculated through orogastric gavage. A) Percentage of initial weight over time; means and standard deviations shown. B) Bacterial burden in feces. C) Bacterial burden in organs and fluids, open circles indicate when the whole gallbladder was taken instead of bile. D) Founding populations (Ns) in organs and fluids. Geometric means and geometric standard deviations are used unless otherwise noted. -SM female n = 8, -SM male n = 8

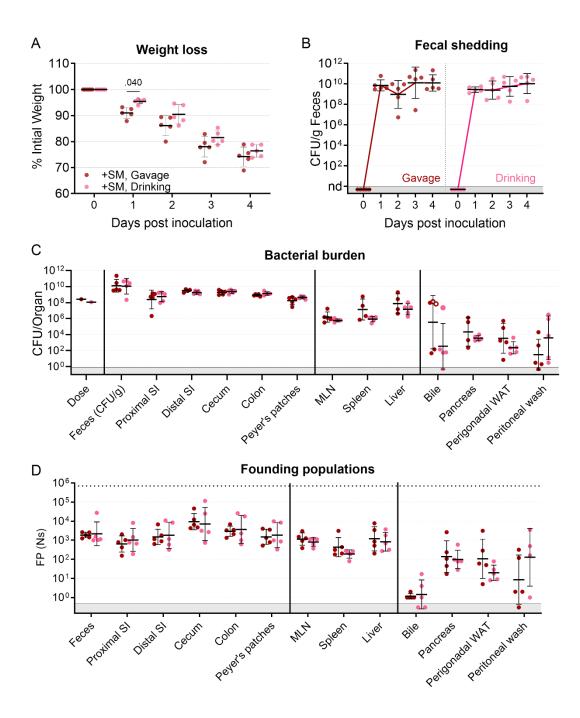


Fig. S6. Extended data for streptomycin pretreated mice inoculated through orogastric gavage and drinking. A) Percentage of initial weight over time; means and standard deviations shown. B) Bacterial burden in feces. C) Bacterial burden in organs and fluids, open circles indicate when the whole gallbladder was taken instead of bile. D) Founding populations (Ns) in organs and fluids. Geometric means and geometric standard deviations are used unless otherwise noted. +SM, Gavage female n = 5, and +SM, Drinking female n = 5. Mann-Whitney tests were used for statistical analyses. Values with p < 0.1 shown.

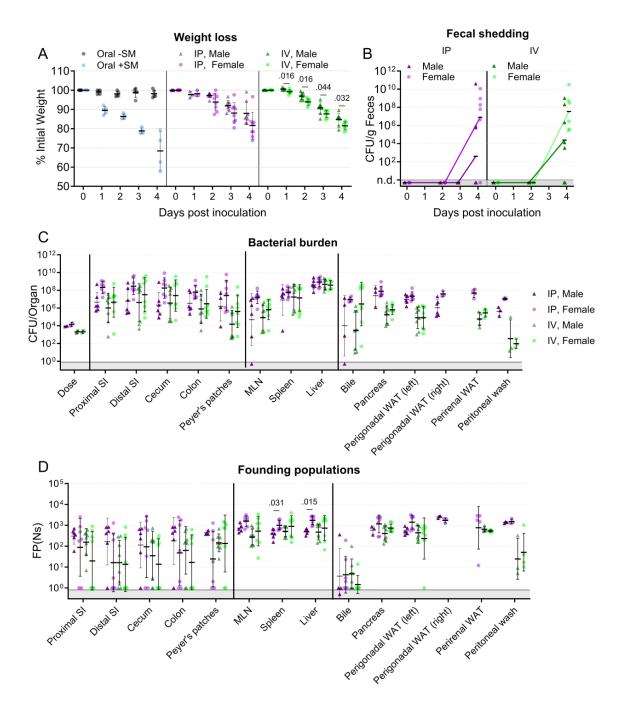
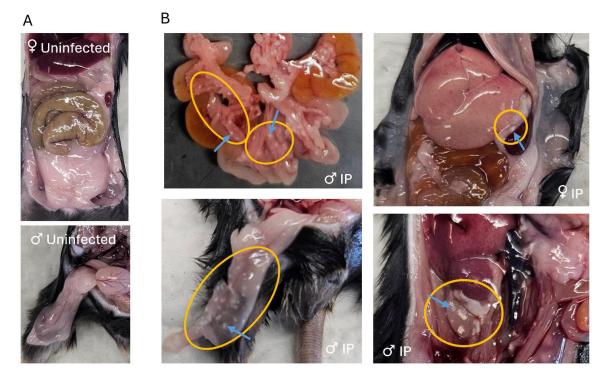
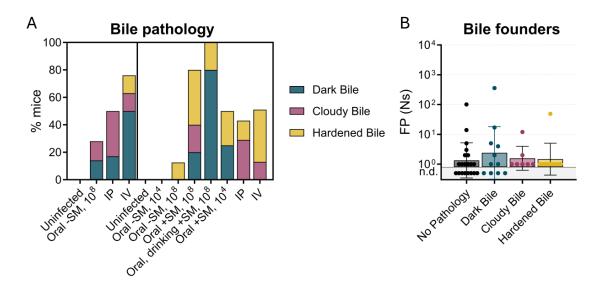




Fig. S7. Sex-disaggregated data in mice after inoculation with 10^3 - 10^4 CFU S. Typhimurium through different routes. A) Percentage of initial weight over time; means and standard deviations shown. B) Sex-disaggregated bacterial burden in feces. C) Bacterial burden in organs and fluids. D) Founding populations (Ns) in organs and fluids. Geometric means and geometric standard deviations are used unless otherwise noted. Oral -SM female n = 5, Oral +SM n = 5, IP male n = 8, IV male n = 8, and IV female n = 8. Statistical analysis is a Mann-Whitney test. Values with p < 0.1 are shown.

Fig. S8. Pathology observed in mouse adipose tissue. A) Images of uninfected adipose. **B)** Images of white spots on mesenteric (top left), upper mesenteric (top right), perigonadal (bottom left) and perirenal (bottom right) adipose in mice. Yellow circles outline areas with pathology. Blue arrows point to focal lesions. Abbreviations: IV, intravenous; IP, intraperitoneal

Fig. S9. Bile pathology correlates with the bile re-seeding pathway. A) Percentage of observed biliary pathology. **B)** Founding population of bile disaggregated by biliary pathology. Abbreviations: IV, intravenous; IP, intraperitoneal; SM, streptomycin; SI, small intestine

Name	Sequence				
Forward					
	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTAATGATGGG				
var21	TTAAAAAGGATCGATCC				
	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGCGATGG				
var22	GTTAAAAAGGATCGATCC				
	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTTGCACGATG				
var23	GGTTAAAAAGGATCGATCC				
	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTTCATTCGAT				
var24	GGGTTAAAAAGGATCGATCC				
var25	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTGAATCGAGA				
	TGGGTTAAAAAGGATCGATCC				
var26	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTGTCAACTTG				
	ATGGGTTAAAAAGGATCGATCC				
	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTCGGCGTGGC				
var27	GATGGGTTAAAAAGGATCGATCC				
	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTCCTGTACCT				
var28	TGATGGGTTAAAAAGGATCGATCC				
Reverse l	Primers				
	CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT				
AD001	CCTTGGCGGCAAGAAA				
	CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT				
AD002	CCTTGGCGGCAAGAAA				
10000	CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT				
AD003					
40004	CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT				
AD004	CCTTGGCGGCAAGAAA CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT				
AD005	CCATGGCGGCAAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT				
AD003	CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT				
AD006	CCTTGGCGGCAAGAAA				
7.0000	CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT				
AD007	CCTTGGCGGCAAGAAA				
	CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT				
AD008	CCTTGGCGGCAAGAAA				
	CAAGCAGAAGACGGCATACGAGATCTGATCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT				
AD009	CCTTGGCGGCAAGAAA				
	CAAGCAGAAGACGGCATACGAGATAAGCTAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT				
AD010	CCTTGGCGGCAAGAAA				
	CAAGCAGAAGACGGCATACGAGATGTAGCCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT				
AD011	CCTTGGCGGCAAGAAA				
	CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT				
AD012	CCTTGGCGGCAAGAAA				
AD013	CAAGCAGAAGACGGCATACGAGATTTGACTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT				
	CCTTGGCGGCAAGAAA				
AD014	CAAGCAGAAGACGGCATACGAGATGGAACTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT				
	CAAGCAGAAGACGGCATACGAGATTGACATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT				
AD015					
AD016	CAAGCAGAAGACGGCATACGAGATGGACGGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT CCTTGGCGGCAAGAAA				
	CAAGCAGAAGACGGCATACGAGATGCGGACGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT				
AD018	CCATGGCGGCAAGAAGACGGCAAGAIGCGGACGIGACIGGAGIICAGACGIGIGCICIICCGAICAGAI				
	0011000000m10mm1				

Table S1.	Primer	sequences	for	PCR.
-----------	--------	-----------	-----	------

	CAAGCAGAAGACGGCATACGAGATTTTCACGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT
AD019	CCTTGGCGGCAAGAAA
	CAAGCAGAAGACGGCATACGAGATGGCCACGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT
AD020	CCTTGGCGGCAAGAAA
	CAAGCAGAAGACGGCATACGAGATCGAAACGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT
AD021	CCTTGGCGGCAAGAAA
	CAAGCAGAAGACGGCATACGAGATCGTACGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT
AD022	CCTTGGCGGCAAGAAA
	CAAGCAGAAGACGGCATACGAGATCCACTCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT
AD023	CCTTGGCGGCAAGAAA
	CAAGCAGAAGACGGCATACGAGATATCAGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT
AD025	CCTTGGCGGCAAGAAA
	CAAGCAGAAGACGGCATACGAGATAGGAATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT
AD027	CCTTGGCGGCAAGAAA

Dataset S1 (separate file). Barcode counts for all samples in manuscript.