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Reduction of the chromophores of mitochondrial NADH-ubiquinone reductase by
NADPH reaches only 50% ofthe extent ofreduction byNADH, monitored at450nm. This
effect is due to autoxidation of an enzyme component at a higher rate than its reduction
by NADPH.

Besides catalysing nicotinamide nucleotide trans-
hydrogenase activity, submitochondrial particles
and isolated Complex I (NADH-ubiquinone reduct-
ase) (Hatefi et al., 1962) are also capable of oxidizing
NADPH in the absence ofNAD+ (Hatefi&Hanstein,
1973). Although the rate of oxidation of NADPH
byNADH dehydrogenase is extremely low compared
with the rate of NADH oxidation (Hatefi &
Hanstein, 1973), this enzyme is in such kinetic excess
compared with the rest of the respiratory chain that
NADPH oxidase activity catalysed by submito-
chondrial particles is quite significant compared with
NADH oxidase activity, and, moreover, is a phos-
phorylating pathway (Hatefi & Hanstein, 1973).
It is of some interest therefore to establish whether
the pathway of NADPH oxidation is identical with
that of NADH oxidation. Hatefi and associates
(Hatefi & Hanstein, 1973; Djavadi-Ohaniance &
Hatefi, 1975) have proposed that the pathways are
not identical, on the basis of the following: (a)
NADPH causes a smaller extinction decrease in the
450nm region ofthe spectrum ofComplex I than does
NADH; (b) NADPH cannot reduce e.p.r. (electron-
paramagnetic-resonance) centre 1 of Complex I;
(c) NADH oxidase activity and NADPH oxidase
activity of submitochondrial particles are inactivated
at different rates bytrypsin. In this report, these results
are re-examined and shown to be consistent with the
alternative suggestion (Rydstrom et al., 1973;
Ragan et al., 1974) that NADH and NADPH are
oxidized via the same pathway but at widely different
rates.

Materials and Methods

Complex I was prepared by the method of Hatefi
et al. (1962). D-3-Hydroxybutyrate dehydrogenase
(EC 1.1.1.30) and L-lactate dehydrogenase (EC
1.1.1.27) were obtained from Boehringer Corp.
(London) Ltd., London W.5, U.K. Dual-wavelength
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spectroscopic measurements were performed with a
Perkin-Elmer dual-wavelength spectrophotometer.
NADH- and NADPH-K3Fe(CN)6 reductase activi-
ties were measured at 420nm in 1 ml final volume
containing 0.67M-sucrose, 50mM-Tris/HCI, pH7.0
at 22°C, 0.1 % Triton X-100, 1 mM-K3Fe(CN)6,
0.1 mM-NADH or 0.1 mM-NADPH and enzyme.
NADH oxidase was measured at 340nm in 1 ml
final volume containing sucrose/Tris buffer as above,
0.1 % Triton X-100, 0.1 mM-NADH and enzyme.
Glucose oxidase (EC 1.1.3.4) was obtained from
Sigma Chemical Co., Kingston-upon-Thames,
Surrey, U.K. Protein was determined by the method
of Lowry et al. (1951).

Results and Discussion

In Fig. 1, the bleaching of Complex I by NADPH
and NADH is compared. Only a partial reduction
by NADPH was observed compared with that by
NADH (Fig. la), which could be increased to the
maximal extent (i.e. that obtained with NADH)
bysubsequentaddition ofNAD+ (Fig. 1 b). Thesecond
phase of the reduction was due to NADH, produced
by transhydrogenation from NADPH. These results
are very similar to those of Hatefi & Hanstein (1973).
The alternative explanation that partial reduction
byNADPH is a result ofthe very low rate ofoxidation
was tested by restricting the rate of entry of reducing
equivalents fromNADH, to see ifthe results obtained
with NADPH could be reproduced. Fig. I also shows
the effect of reducing Complex I with an excess of
DL-3-hydroxybutyrate in the presence of NAD+
and limiting amounts of D-3-hydroxybutyrate de-
hydrogenase. Fig. l(c) shows that full reduction of
Complex I could be obtained by this system, despite
the somewhat higher mid-point potential of the DL-3-
hydroxybutyrate/acetoacetate couple compared with
the NADH/NAD+ couple. In fact, since DL-3-
hydroxybutyrate was present at such a high con-
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Fig. 1. Reduction ofComplex I by NADHandNADPH
In each experiment, Complex I (0.5mg) was diluted to 1 ml with 0.67M-sucrose, 50mM-Tris/HCI, pH7, 0.1% Triton X-100
(at room temperature) in a cuvette of 1cm light-path. Additions as indicated were NADH (0.1 mM), NADPH (0.1 mM),
NAD+ (0.1mM), DL-3-hydroxybutyrate (5mM) and D-3-hydroxybutyrate dehydrogenase: (c) 50ug; (d) 5,ug; (e) 1.5,pg;
(f) 0.5,ug.

centration (5mM), the effective reducing potential was
probably much closer to that obtained with NADH
(0.1 mM) than the mid-point potentials would suggest.
On decreasing the concentration of D-3-hydroxy-
butyrate dehydrogenase, the reduction became
biphasic and incomplete (Fig. id), and eventually
only partial reduction of Complex I was obtained
(Figs. le and If). The extent of reduction in Figs.
l(e) and 1(J) was identical with that obtained with
NADPH (Fig. lb). Moreover, it is clear thatNADPH

was a more effective reductant than the system witb
1.5,ug of D-3-hydroxybutyrate dehydrogenase, but
less effective (i.e. slower and less complete reduction)
than the system with 5,ug of D-3-hydroxybutyrate
dehydrogenase.
To confirm that the extent ofreduction ofComplex

I depended only on the rates of input of reducing
equivalents, these were determined by measuring
the rates in Complex I of the reduction offerricyanide
by NADH, NADPH and DL-3-hydroxybutyrate
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Table 1. Rates ofinput ofreducing equivalents to Complex I

NADH- and NADPH-K3Fe(CN)6 reductase activities
were measured as described in the Materials and Methods
section. Rates with D-3-hydroxybutyrate dehydrogenase
were measured by the rate of reduction of K3Fe(CN)6
in the presence of excess of Complex I (54ug of protein).
Results are presented as the input rates for 0.5mg of
Complex I in 1 ml (conditions of Fig. 1).

D-3-Hydroxy-
butyrate

Substrate dehydrogenase Input rate
(jig of protein) (nequiv./min)

NADH - 53800
NADPH - 9.2
NADPH+NAD+ - 18.0
DL-3-Hydroxybutyrate + 0.5 1.4
NAD+

DL-3-Hydroxybutyrate + 1.5 4.2
NAD+

DL-3-Hydroxybutyrate + 5.0 14.0
NAD+

DL-3-Hydroxybutyrate + 50 140
NAD+

with various amounts of D-3-hydroxybutyrate
dehydrogenase. These are presented in Table 1.
The input rates are calculated for the amount of
Complex I present in each of the experiments of Fig.
1. In agreement with the previous conclusions, the
rates of input from NADPH lay between those ob-
tained with 1.5,ug and 5pg of D-3-hydroxybutyrate
dehydrogenase. Moreover, in the presence of
NADPH and NAD+, the rate of input exceeded
that obtained with 5.ug of D-3-hydroxybutyrate
dehydrogenase, explaining the full reduction of
Complex I under these circumstances (Fig. lc).

After reduction of Complex I by NADH as in
Fig. l(a), but in the presence of 20pg of L-lactate
dehydrogenase, addition of pyruvate caused only
partial reoxidation, indicating the presence of an
NADH-reducible species of relatively high mid-
point potential (probably greater than -200mV).
After reduction by NADPH in the presence of L-
lactate dehydrogenase, addition of pyruvate and
NAD+ caused no change in the extent of reduction,
and further addition of NADH caused only a
transient further reduction. These experiments
show that the NADPH-reducible species is of high
potential, whereas the low-potential component, i.e.
that reoxidizable by pyruvate and NAD+, is not
reduced by NADPH. Therefore at low rates of input
of reducing equivalents from NADH or NADPH
the high-potential component(s) of Complex I is
reduced, whereas reduction of the low-potential pool

requires entry rates in excess of28 nequiv./min per mg
of Complex I (from Table 1). The rate of oxidation
ofNADH by Complex I in the absence ofany electron
acceptorotherthanoxygenwasfound to be 30nequiv./
min per mg of Complex I protein. Moreover, in an
experiment similar to those of Fig. 1 the extent of
bleaching of Complex I by NADPH was increased
from 50% of that obtained with NADH to 91 %, by
inclusion of 10mm-D-glucose and 7 x 10gkat of
glucose oxidase to maintain conditions close to
anaerobic.
Thus the above findings may be explained by aut-

oxidation of a low-potential component of Complex
I. The explanation proposed probably accounts for
the reduction of e.p.r. centre 2 (high-potential)
by NADPH, but not e.p.r. centre 1 (low-potential)
(Hatefi & Hanstein, 1973).
Although Djavadi-Ohaniance & Hatefi (1975)

reported that the NADPH oxidase activity of sub-
mitochondrial particles was inactivated by trypsin
(EC 3.4.21.4), and NADH oxidase was not, the
NADH- and NADPH-K3Fe(CN)6 reductase activi-
ties ofComplex I are inactivated atequal rates (Ragan,
1976). Since NADPH interaction with the dehydro-
genase is rate-limiting forNADPH oxidase (Hatefi &
Hanstein, 1973), whereas the interaction of the
dehydrogenase with the rest of the respiratory chain
is rate-limiting for NADH oxidase (Gutman &
Singer, 1970), trypsin inactivation of the dehydro-
genase would inhibit NADPH oxidase, but would
have no effect on NADH oxidase until the residual
dehydrogenase became rate-limiting.

In conclusion therefore the evidence that NADPH
is oxidized by a distinct pathway can be adequately
explained on the basis of the low rate of oxidation of
NADPH by NADH dehydrogenase, without the
need to postulate an alternative NADPH-dehydro-
genation system.
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