
Supplementary Materials for
An alternate route for cellulose microfibril biosynthesis in plants

Eric M. Roberts et al.

Corresponding author: Alison W. Roberts, aroberts@uri.edu

Sci. Adv. 10, eadr5188 (2024)
DOI: 10.1126/sciadv.adr5188

The PDF file includes:

Supplementary Text
Figs. S1 to S8
Table S1
Legends for movies S1 and S2
References

Other Supplementary Material for this manuscript includes the following:

Movies S1 and S2



Supplementary Text: 

CESA-deficient P. patens lines 
We tested for CRISPR-mediated induction of a deletion in CESA5 (Phytozome ID: 
Pp3c2_13330V3.1) in the cesa6/7/3/8/10/4KO-41 background (15) by PCR and sequencing to 
confirm three independent septuple cesa6/7/3/8/10/4/5KO lines (Fig. S1). Amplification and 
sequencing of five off-target sites predicted by CRISPOR (60) identified no edits. Inactivation of 
CESA5 abolished gametophore development but had little effect on protonemal growth (Fig. 1). 
We tested for CRISPR-mediated induction of a deletion of CESA1 (Pp3c9_11990V3.1) in the 
cesa6/7/3/8/10/4/5KO-2 background by PCR and sequencing to confirm three independent 
octuple cesa6/7/3/8/10/4/5/1KO lines (Fig. S2). We observed no obvious additional effect on 
phenotype (Fig. 1). There were no predicted off-target sites. For the sextuple KO background 
line, CRISPR-mediated deletions and resulting frameshifts were verified by amplifying across 
the deletions and sequencing the PCR products (15). As a further verification of complete CESA 
knockout, we designed primers to amplify within the CRISPR-mediated deletions. These primer 
pairs amplified products for all CRISPR-mutated CESAs in P. patens wild type, but not the 
cesa6/7/3/8/10/4/5/1KO CESA-deficient lines (Fig. S3). We amplified with control primers 
targeting CSLD3 (Table S1) to verify DNA quality for both lines. The background line used for 
the first round of CRISPR mutagenesis (15) was cesa6/7KO-1 produced by homologous 
recombination (18), and deletion of these two genes was also verified by PCR (Fig. S1) in the 
CESA-deficient lines. Finally, we amplified and sequenced the CESA3 (Pp3c8_7420V3.1), 
CESA4 (Pp3c9_2550V3.1), CESA6 (Pp3c15_7120V3.1), CESA7 (Pp3c15_7150V3.1), CESA8 
(Pp3c3_34520V3.1), and CESA10 (Pp3c9_2670V3.1) loci to verify the deletions reported 
previously for cesa6/7KO-1 (18) and cesa6/7/3/8/10/4KO-41 (15) in the CESA-deficient lines 
(Figs. S4 and S5). 

Other CESA sequences in the P. patens genome include CESA2 (Pp3c1_22600V3.1), which 
contains frameshift mutations as detected in the genome sequence and verified by sequencing of 
an independent genomic clone (69), and CESA9 (Pp3c10_10270V3.1), an expressed, apparently 
non-coding gene containing a small CESA fragment. A blastp search of the gene models from 
the near telomere-to-telomer sequence of P. patens using PpCESA5 as a query returned 35 hits 
with E-values <10. All 25 corresponding gene models matched gene models from the 
Physcomitrium patens v. 3.3 genome in Phytozome (https://phytozome-next.jgi.doe.gov/) and 
included the eight CESAs that we targeted for knockout as described above, the known CESA2 
pseudogene (Pp3c1_22600V3.1) (14), two known CESA fragments (Pp3c10_10270V3.1, 
Pp3c16_15210V3.1) (45), the eight known CSLD genes (Pp3c2_1280V3.1, Pp3c25_12650V3.1, 
Pp3c1_41250V3.1, Pp3c1_41400V3.1, Pp3c14_26100V3.1, Pp3c6_4060V3.1, 
Pp3c2_1330V3.1, Pp3c17_22380V3.1) (10), and six additional genes that lacked a 
glycosyltransferase 2-like domain (IPR001173) and were annotated with other functions 
(Pp3c12_24670V3.1, Pp3c11_23510V3.1, Pp3c23_19630V3.1, Pp3c3_12270V3.1, 
Pp3c1_3280V3.1, Pp3c9__3670V3.1). No additional CESA gene models were identified. 

https://phytozome-next.jgi.doe.gov/


Fig. S1. PCR and sequencing-based genotyping of CESA5 KO in cesa6/7/3/8/10/4KO-41. 
(A) Schematic showing PCR genotyping strategy with primers (black arrows) designed to
amplify across two sgRNA target sites (blue arrows). (B) PCR products from amplification of
genomic DNA extracted from lines selected for transient antibiotic resistance following
transformation of cesa6/7/3/8/10/4KO-41 (15) with a vector targeting CESA5. For lines 1, 2, 6,
8, and 11-15, primer pair CESA5_CRdel-F/R (Table S1) amplified a small product consistent
with CRISPR-induced deletions in CESA5. Deletion of sequence including 60% of the CESA5
catalytic domain (Y345-D719) and introduction of a frameshift were verified by sequencing for
lines 2, 6, 8 and 11.
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Fig. S2. PCR and sequencing-based genotyping of CESA1 KO in cesa6/7/3/8/10/4/5KO-2. 
(A) Schematic showing PCR genotyping strategy with primers (black arrows) designed to
amplify across two sgRNA target sites (blue arrows). (B) PCR products from amplification of
genomic DNA extracted from lines selected for transient antibiotic resistance following
transformation of cesa6/7/3/8/10/4/5KO-2 with a vector targeting CESA1. For lines 1, 2, 4, 5, 7-
13, 18, 20 and 21, primer pair CESA1_CRdel-F/R (Table S1) amplified a small product
consistent with CRISPR-induced deletions in CESA1. Deletion of sequence including the first
half of the CESA1 catalytic domain (L95-K444) and introduction of a frameshift were verified
by sequencing for lines 1, 9 and 11.
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Fig. S3. PCR-based genotyping of the CESA1, CESA3, CESA4, CESA5, CESA8, and 
CESA10 loci in final CESA-deficient P. patens lines. (A) Schematic showing the genomic 
sequences with deletions reported previously (15) for CESA3, CESA4, CESA8, and CESA10 and 
reported here for CESA1 and CESA5 with locations of primers used to verify deletions (black 
arrows). (B) PCR products from amplification of genomic DNA extracted from wild type and 
cesa6/7/3/8/10/4/5/1KO-1 with primers targeting sequences in CESA1, CESA3, CESA4, CESA5, 
CESA8, and CESA10 (Table S1). Five primer pairs amplified the expected product from wild 
type DNA and failed to amplify cesa6/7/3/8/10/4/5/1KO-1 DNA. The primer pair targeting 
CESA10 amplified the expected product (423 bp) in wild type and weakly amplified a smaller 
product in cesa6/7/3/8/10/4/5/1KO-1, consistent with the presence of similar primer binding sites 
in CESA4 (upstream of the CESA4 deletion) with a predicted amplicon size of 401 bp. DNA 
quality for cesa6/7/3/8/10/4/5/1KO-1 was confirmed by amplification with control primers 
CSLD3_CRdel-F/ CSLD3_CRdel-R (Table S1). (C) PCR products from amplification of 
genomic DNA extracted from wild type and cesa6/7/3/8/10/4/5/1KO-1 with primers targeting 
CESA6. (D) PCR products from amplification of genomic DNA extracted from wild type and 
cesa6/7/3/8/10/4/5/1KO-1 with primers targeting CESA7. Both CESA6 and CESA7 were deleted 
in their entirety as reported previously (18) and shown in Fig. S5. 
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Fig. S4. PCR and sequencing-based genotype confirmation of deletions in the CESA3, 
CESA4, CESA8, and CESA10 loci in CESA-deficient lines. Schematics showing primers 
flanking the deletion (black arrows) are shown above sequencing results verifying the deletions 
reported previously (15) for (A) CESA3, (B) CESA4, (C) CESA8 and (D) CESA10. 
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Fig. S5. PCR and sequencing-based genotype confirmation of deletion of the CESA6 and 
CESA7 loci in CESA-deficient lines. (A) Schematic of the CESA6/CESA7 tandem repeat 
showing genomic coordinates of CESA6 and CESA7 from the P. patens genome (v6.1, 
https://phytozome-next.jgi.doe.gov/), primers flanking the deletion (black arrows), CESA6 start 
codon, and CESA7 stop codon. The deleted region is shaded in green and flanking regions are 
shaded in gray. (B) Schematic of the same locus following replacement of CESA6 and CESA7 
with a selection cassette by homologous recombination (HR) and subsequent removal of the 
selection cassette by cre-lox recombination. (C) Sequencing results labeled with the last 
remaining nucleotides upstream and downstream of the deletion reported previously (18). The 
flanking regions are shaded in gray and the remains of the HR vector, including the lox 
recombination site, are shaded in yellow. 
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Fig. S6. X-ray diffractograms and Pontamine Fast Scarlet 4B (S4B) staining of cell walls 
isolated from (A, C) CESA-deficient and (B, C) wild-type P. patens protonemal filaments. 
Tissue was extracted sequentially with 1 N NaOH and acetic-nitric reagent each at 100°C. (A, B) 
The 110 (15.7°), 200 (22.6°) and 004 (35.19°) peaks are characteristic of cellulose. (C, D) 
Staining intensity of extracted cell walls with S4B, a fluorescent dye with high affinity for 
cellulose (21), is similar for wild type and CESA-deficient protonemata and highest in cross 
walls. Specimens were photographed with epifluorescence optics under identical conditions. We 
did not detect fibrillar staining when these specimens were examined with confocal laser 
scanning microscopy. Scale bar = 25 µm.  

A

B
Wild-type P. patens

CESA-deficient P. patens

C D



Fig. S7. Higher magnification views of rosettes marked in Figs. 3B and 3C. (A) Image from 
Fig. 3B with rosettes (arrowheads) and magenta box marking the area of interest. Scale bar = 100 
nm. (B) Higher magnification view of rosettes within the magenta box in A. Scale bar = 50 nm. 
(C) Image from Fig. 3C with rosettes (arrowheads) and magenta box marking the area of
interest. Scale bar = 100 nm (B) Higher magnification view of rosettes within the magenta box in
C. Scale bar = 50 nm.



Fig. S8. Amino acid alignment of PpCSLD1, PpCESA5 and a CESA/CSLD-like sequence 
from Chlorokybus atmophyticus. The C. atmophyticus sequence (Chrsp134508684) (46) is 
more similar to PpCSLD1 in the N-terminus (black box) and RING-domain (orange box) and 
more similar to PpCESA5 in the plant-conserved region (cyan box). All three sequences are 
highly similar in the transmembrane regions (grey boxes). The alignment was constructed with 
CLUSTAL Omega (70). 



Table S1. Oligonucleotides used for vector construction and genotype analysis. 

Primer pair Sequences Amplicon 
size (bp) 

Annealing 
temperature 

Amplified region 

CES5_gRna789r_s 
CES5_gRna789r_a 

ccatTCGAGACGTACACTAGCCTG 
aaacCAGGCTAGTGTACGTCTCGA NA NA Protospacer 

targeting CESA5 
CES5_gRna1819r_s 
CES5_gRna1819r_a 

ccatCTACGGAACCCAAAGCCCAC 
aaacGTGGGCTTTGGGTTCCGTAG NA NA Protospacer 

targeting CESA5 
CESA5_CRdel-F 
CESA5_CRdel-R 

CAACCGCGAGACATACTTGG 
TGCTTGTTTGGAAGTGACGG 

2146 
1115 53°C CESA5 CRISPR 

target 
CESA1_CRdel-F 
CESA1_CRdel-R 

GAAGCCTGTGAAAAGTCCGG 
AGGCTGCACTCTATCCTTCA 

3056 
191 60°C CESA1 CRISPR 

target 
CESA1gap-F 
CESA1gap-R 

CGGAAGGAGGTCAGCTTCAA 
CGCAGATCACAGATGTCAGC 622 58°C CESA1 deletion 

test   
CESA3gap-F 
CESA3gap-R 

TCAACAACAGCAAGGCCATC 
TCTTACCCTTCTTGCGTCGT 457 58°C CESA3 deletion 

test   
CESA4gap-F 
CESA4gap-R 

GGGTCGTATGGGTATGGGAG 
GGTAGATCTGAGCAGTCCTGG 155 58°C CESA4 deletion 

test   
CESA5gap-F 
CESA5gap-R 

TTCAACAGGAAGGCGCTCTA 
CCGCAACTGATGACGTGAAT 377 58°C CESA5 deletion 

test   
CESA8gap-F 
CESA8gap-R 

AAGAGGCCGGGATTCAATCA 
CTCCTAAAGACACACCCCGT 456 58°C CESA8 deletion 

test   
CESA10gap-F 
CESA10gap-R 

GCAATGCAGCCTACGTATCC 
GGTGCCAATGTCGCTGTAAG 423 58°C CESA10 deletion 

test   
CSLD3_CRdel-F 
CSLD3_CRdel-R 

CGACAAGGAGAAGGAGGAGG 
GCGTGGTCAAAATCCGTAGT 791 58°C DNA quality 

control 
CESA6TargetF 
CESA6TargetR 

GTGAGGTGCGAGGAAGAAAG 
TTCCCTAACTCCACCACTGC 142 60°C CESA6 deletion 

test   
CESA7TargetF 
CESA7TargetR 

CTTGTGAGGAAGTGCGGGAA 
ACATTACTCAACGGCCTCGG 1254 60°C CESA7 deletion 

test   
CESA5_OffT_1F 
CESA5_OffT_1R 

GGTCAGGGTCACTTGGATCA 
TTGTCGGCATGCTTTGGAAA N.A. 51°C Predicted off-

target site 1 
CESA5_OffT_2F 
CESA5_OffT_2R 

AAGACAGACTCGGGACAAGG 
TCAACTGCCATTACTCTGCA N.A. 51°C Predicted off-

target site 2 
CESA5_OffT_3F 
CESA5_OffT_3R 

CAACGCAATGCAGTCTCAGA 
AAGACATTCCAGGGGCAGC N.A. 53°C Predicted off-

target site 3 
CESA5_OffT_4F 
CESA5_OffT_4R 

ATGCGACAGGGGAGAGTATG 
TTTCTCGTGGTGTTGCTGTG N.A. 53°C Predicted off-

target site 4 
CESA5_OffT_5F 
CESA5_OffT_5R 

CCAAGTGCCGGCAGTATTAC 
GAGGACGTTGACAGTGGAGA N.A. 54°C Predicted off-

target site 5 
CESA3_CRdel-F 
CESA3_CRdel-R 

CCAAATGGCTCCCGATTCAG 
CGTAGCCACAACTGATGACG N.A. 60°C CESA3 CRISPR 

target 
CESA8_CRdel-F 
CESA8_CRdel-R 

CCGTTTAGTGGTGTTGGCAT 
GCAATGCCTACTGAGCGAAA N.A. 60°C CESA8 CRISPR 

target 
CESA4_CRdel-F2 
CESA4_CRdel-R2 

ACATCCCCAGATCATCAAGCT 
GGGGCTCGATGTTGAACTT N.A. 52°C CES4 CRISPR 

target 
CESA10_CRdel-F 
CESA10_CRdel-R 

ACTCCGACGACCTAGACAAC 
CTCCCTCTCCACTTGCTTGA N.A. 54°C CES10 CRISPR 

target 
C6KO_F2 
CESA7KOFlankR2 

GCTTCAATGCTGTACCACAAACCAC 
AAGCCCTAACTTCCAGCACC N.A. 55°C CES6/7 deletion 



Supplementary auxiliary files: 

Movie S1. Time lapse of gametophore bud development in CESA-deficient P. patens. 
Imaging commenced after several cell divisions when the developing rhizoid was approximately 
50 µm long (time stamp in upper left corner = 00:00 hr:min). Cells ruptured at 5:20 hr:min and 
8:50 hr:min and buds turned brown after the second cell rupture (9:00 hr:min). The time lapse 
interval = 10 min. See also Fig. 1. 

Movie S2. Time lapse of gametophore bud development in CESA-deficient P. patens. 
Imaging commenced at the 4-cell stage (time stamp in upper left corner = 00:00 hr:min) and the 
developing rhizoid reached approximately 50 µm at 31:40 hr:min. Cell rupture occurred at 45:35 
hr:min. The time lapse interval = 5 min. 
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