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Materials and Methods 718 

Participants and samples. We prospectively investigated hospitalized COVID-19 patients 719 

between April 2020 and December 2021 who initially presented with a symptomatic infection and 720 

positive SARS-CoV-2 nasopharyngeal swab polymerase chain reaction. All participants were 721 

admitted to the Centre Hospitalier de l’Université de Montréal (CHUM) and recruited into the 722 

Biobanque Québécoise de la COVID-19 (BQC19)56. Patients had no known prior exposure to 723 

SARS-CoV-2 (i.e., all infections were primary infections), were not vaccinated at the time of 724 

primary sampling (days after symptom onset [DSO] ≤ 20), and did not undergo plasma transfer 725 

therapy. Blood draws were performed during the acute phase of SARS-CoV-2 infection (defined 726 

as DSO ≤ 20 days, mean DSO = 12.1 days, DSO range = 6 - 20 days, n = 63 samples) and during 727 

various convalescent follow-up time points (defined as DSO > 20 days, mean DSO = 128.8 days, 728 

DSO range = 31 - 370 days) for a subset of individuals sampled during the acute phase (n = 39 729 

samples). Additionally, PBMCs collected prior to the COVID-19 pandemic from healthy control 730 

individuals living in Montréal, Canada (n = 18 samples) were processed for single-cell data 731 

collection in parallel with infected patient samples. We also computationally integrated a set of 732 

publicly available healthy controls (n = 90 individuals) described in Randolph et al. (2021)4, which 733 

is detailed below (“Single-cell RNA-sequencing data processing and integration”). The study was 734 

approved by the respective IRBs (multicentric protocol: MP-02-2020-8929 for BQC19 735 

participants; CHUM protocol 19.387 for control individuals) and written, informed consent was 736 

obtained from all participants or, when incapacitated, their legal guardian before enrollment and 737 

sample collection.  738 

 739 
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DNA sequencing and imputation. DNA was extracted from whole blood using the Chemagic™ 740 

DNA Blood 400 H96 kit (Perkin Elmer, CMG-1091). SNP genotyping was conducted using the 741 

Axiom™ Precision Medicine Research Array from Applied Biosystems (Applied Biosystems, 742 

902981) per the manufacturer’s instructions. The array was processed using the GeneTitan™ 743 

Multi-Channel instrument (Applied Biosystems). All samples were grouped with the Axiom 744 

Analysis Suite 5.1.1 software, and the “Best Practice Workflow” was performed using the 745 

following high-quality call rate parameters: Axiom_PMRA.r3 library and threshold configuration 746 

Human.v5 with minimum call rate of 97.0%. Marker quality control tests were performed on a 747 

subset of ancestrally homogeneous participants, who were determined via comparison to 2,504 748 

individuals across 5 super populations from the 1000 Genomes Project Phase 3 data 57. Batch effect 749 

quality control and replicate discordance checks were performed, and variants that failed either 750 

test were removed. Only single nucleotide variants with single character allele-codes (A, C, G, or 751 

T) (PLINK --snps-only ‘just-acgt’ option) were retained. Additionally, variants with low allele 752 

frequencies (minor allele frequency [MAF] < 0.001), low genotyping call rates (marker-wise 753 

missingness < 0.01), a deviation from Hardy-Weinberg equilibrium (HWE) (p-value < 1x10-6), 754 

and positioned in regions of high link disequilibrium (LD) were removed.   755 

Sample quality filtering was performed considering the set of filtered genotypes described 756 

above. Outlier samples with a high genotype missingness rate (overall missing genotype rate > 757 

0.04) or high/low principal component corrected heterozygosity rate on autosomal chromosomes 758 

(> ±3SD, respectively) were considered low quality and removed. Sex chromosome composition 759 

was determined by estimating X chromosome marker heterozygosity using PLINK (--check-sex 760 

0.4 0.7). Individuals with discordant self-reported sex and genetic sex were removed prior to 761 

genotype imputation. All other samples that passed quality control filters were used for imputation. 762 
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Genotype phasing and imputation was performed using the Michigan Imputation Server58 with the 763 

TOPMed reference panel59. After imputation, variants with a posterior genotype probability (GP) 764 

< 90% were set to missing within each individual using QCTOOL (v2.0.7, -threshold 0.9 filter). 765 

 766 

Whole blood processing. At the time of sampling, whole blood was collected in up to three tubes 767 

containing acid citrate dextrose (ACD) and processed within 6 hours of collection. Blood from the 768 

same donor was pooled and centrifuged at 400 g for 10 min at room temperature (RT). After 769 

centrifugation, plasma was collected, aliquoted, and stored at -80°C. The remaining blood was 770 

topped up to 30 ml with HBSS medium at RT. Ficoll-Paque separation was then used to isolate 771 

PBMCs. PBMCs were washed with R+ (RPMI 1640 + 0.1M HEPES + 20 U/ml Penicillin-772 

Streptomycin), resuspended in 5 ml R+ with 10% fetal bovine serum (FBS), and counted with 773 

Trypan blue. Cells were spun down at 400 g for 10 min at 4°C and resuspended in cold FBS at 20 774 

M/ml. A freezing solution of FBS with 20% DMSO was added drop-by-drop to the cell suspension 775 

while the tube was continuously agitated. Cell suspensions were transferred into cryovials (1 776 

ml/vial), immediately placed into Mr. Frosty Freezing Containers, and stored at -80°C. The 777 

following day, PBMCs were transferred to liquid nitrogen for long-term storage.  778 

 779 

Sample processing for single-cell RNA-sequencing. PBMCs were thawed in groups of 3 to 4 780 

samples (processing batch 1) or 16 to 19 samples (processing batch 2), rested for 2 hours in RPMI 781 

1640 supplemented with 10% FBS (Corning, MT35015CV), 2 mM L-glutamine (ThermoFisher 782 

Scientific, 25-030-081), and 10 ug/ml gentamicin (ThermoFisher Scientific, 15710064), and 783 

subsequently processed for single-cell collection. Cells from different samples were pooled per 784 

processing batch for a total of 29 multiplexed sample batches (n = 124 samples). For each 785 
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multiplexed cell pool, 12,000 cells were targeted for collection using the Chromium Next GEM 786 

Single Cell 3’ Reagent (v3.1 Dual Index chemistry) kit (10x Genomics, 1000268). After GEM 787 

generation, the reverse transcription (RT) reaction was performed in a thermal cycler as described 788 

(53°C for 45 min, 85°C for 5 min), and post-RT products were stored at -20°C for up to one week 789 

until downstream processing. 790 

 791 

Single-cell RNA-sequencing library preparation and sequencing. Post-RT reaction cleanup, 792 

cDNA amplification and sequencing library preparation were performed as described in the Single 793 

Cell 3’ Reagent Kits v3.1 (Dual Index) User Guide (10x Genomics). Briefly, cDNA was cleaned 794 

with DynaBeads MyOne SILANE beads (ThermoFisher Scientific, 37002D) and amplified in a 795 

thermal cycler using the following program: 98°C for 3 min, [98°C for 15 s, 63°C for 20 s, 72°C 796 

for 1 min] x 11 cycles, 72°C 1 min. After cleanup with the SPRIselect reagent kit (Beckman 797 

Coulter, B23317), libraries were constructed by performing the following steps: fragmentation, 798 

end-repair, A-tailing, double-sided SPRIselect cleanup, adaptor ligation, SPRIselect cleanup, 799 

sample index PCR (98°C for 45 s, [98°C for 20 s, 54°C for 30 s, 72°C for 20 s] x 14 cycles, 72°C 800 

1 min), and double-sided SPRIselect size selection. Prior to sequencing, all multiplexed single-cell 801 

libraries were quantified using the KAPA Library Quantification Kit for Illumina Platforms 802 

(Roche, 50-196-5234). For each processing batch (n = 2), libraries were pooled in an equimolar 803 

ratio and sequenced 100 base pair paired-end on an Illumina NovaSeq 6000 (processing batch 1 804 

average mean reads per cell = 48,613, average median genes detected per cell = 1,627; processing 805 

batch 2 average mean reads per cell = 59,246, average median genes detected per cell = 2,007). 806 

 807 
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Single-cell RNA-sequencing data processing and integration. FASTQ files from each 808 

multiplexed capture library were mapped to the pre-built GRCh38 human reference transcriptome 809 

(downloaded 10x Genomics) using the cellranger (v6.0.2) count function60. souporcell (v2.0, 810 

Singularity v3.4.0)61 in --skip_remap mode was used to demultiplex cells into samples based on 811 

genotypes from a common variants file (1000 Genomes Project samples filtered to SNPs with ≥ 812 

2% allele frequency in the population, downloaded from https://github.com/wheaton5/souporcell). 813 

For each sample batch, hierarchical clustering of the known genotypes obtained from DNA-814 

sequencing and cluster genotypes estimated by souporcell was used to assign individuals to 815 

souporcell cell clusters. All samples except for three were successfully demultiplexed; samples 816 

unable to be confidently assigned to a set of cells were removed (n samples retained = 121). After 817 

demultiplexing, Seurat (v4.3.0, R v4.0.3)62 was used to perform cell-level quality control filtering. 818 

One sample was removed due to a very low number of cells captured (n = 20 cells total), leaving 819 

a total of 120 samples. High-quality cells were retained for downstream analysis if they had: 1) a 820 

“singlet” status called by souporcell, 2) between 500 – 4000 genes detected (nFeature_RNA), 3) a 821 

mitochondrial UMI percentage < 20%, and 4) less than 25,000 total molecules (nCount_RNA), 822 

leaving 236,143 cells. Gene filtering was performed using the CreateSeuratObject min.cells 823 

parameter, in which only genes present in at least five cells were kept (n = 30,986 genes). 824 

 Due to the large discrepancy between the number of cells assayed in healthy control 825 

individuals (n = 38,663) versus acute and convalescent samples (n = 197,480) in our dataset, we 826 

integrated a publicly available set of high-quality cells derived from control, non-infected 827 

individuals (n = 124,976 cells, 90 samples) described in Randolph et al., (2021)4, hereafter referred 828 

to as the “non-infected IAV controls”. First, we removed IAV-derived transcripts (n = 10 genes) 829 

from the raw count matrix of the non-infected IAV controls. Next, we merged all datasets, split 830 
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the resulting Seurat object by dataset (“COVID batch1”, “COVID batch2” or “IAV controls”), and 831 

ran SCTransform63 to normalize and scale the UMI counts within dataset. We simultaneously 832 

regressed out variables corresponding to experiment batch, percent mitochondrial UMIs per cell, 833 

and individual label in all datasets, and additionally, regressed out sampling time point (e.g., 834 

control, acute, follow-up) in the COVID data. We then integrated the three datasets together using 835 

the SelectIntegrationFeatures, PrepSCTIntegration, FindIntegrationAnchors, and IntegrateData 836 

framework62. After integration, dimensionality reduction was performed via UMAP (RunUMAP 837 

function, dims = 1:30) and PCA (RunPCA function, npcs = 30). A Shared Nearest Neighbor Graph 838 

was constructed using the FindNeighbors function (dims = 1:20, all other parameters set to 839 

default), and clusters were subsequently called using the FindClusters algorithm (resolution = 0.5, 840 

all other parameters set to default)62. In total, our integrated dataset consisted of 361,119 high-841 

quality cells across all samples (n = 236,143 from the combined COVID datasets, n = 124,976 842 

from the non-infected IAV dataset, n = 208 samples altogether). 843 

 844 

Cell type assignment. We performed cell type annotation via label transfer to map cell type 845 

information onto our data. To perform the label transfer, we downloaded a multimodal human 846 

PBMC reference dataset derived from scRNA-seq paired with CITE-seq as described in Hao et 847 

al.15. We followed the Seurat v4 Reference Mapping workflow, consisting of the 848 

FindTransferAnchors and MapQuery functions, with the Hao et al. reference dataset used as our 849 

reference UMAP and the following parameters: normalization.method = “SCT” and 850 

reference.reduction = "spca". These fine-scale populations were then collapsed into the following 851 

broad super populations encompassing the six major cell types found in PBMCs using the 852 

predicted.celltype.l2 definitions derived from Hao et al.: CD4+ T cells = c("CD4 CTL", "CD4 853 
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Naive", "CD4 Proliferating", "CD4 TCM", "CD4 TEM", "Treg"), CD8+ T cells = c("CD8 Naive", 854 

"CD8 Proliferating", "CD8 TCM", "CD8 TEM"), NK cells = c("NK", "NK Proliferating", 855 

"NK_CD56bright"), CD14+ monocytes = "CD14_monocytes", CD16+ monocytes = 856 

"CD16_monocytes", and B cells = c("B intermediate", "B memory", "B naive"). In total, we 857 

annotated 342,127 high-quality cells falling into the major PBMC populations across all 858 

individuals and conditions (n CD4+ T cells = 153,479, CD8+ T cells = 53,562, CD14+ monocytes 859 

= 70,060, CD16+ monocytes = 5,446, B cells = 34,805, NK cells = 24,775). 860 

 861 

Calculation of pseudobulk estimates. Pseudobulk estimates were used to summarize single-cell 862 

expression values into bulk-like expression estimates within samples. This was performed for all 863 

six major cell types (CD4+ T cells, CD8+ T cells, B cells, CD14+ monocytes, CD16+ monocytes, 864 

NK cells). Within each cell type cluster for each sample, raw UMI counts were summed across all 865 

cells assigned to that sample for each gene using the sparse_Sums function in textTinyR (v1.1.3) 866 

(https://cran.r-project.org/web/packages/textTinyR/textTinyR.pdf), yielding an n x m expression 867 

matrix, where n is the number of samples included in the study (n = 208) and m is the number of 868 

genes detected in the single-cell analysis (m = 30,986) for each of the 6 clusters.  869 

 870 

Calculation of residuals for modeling. For each cell type, lowly-expressed genes were filtered 871 

using cell type-specific cutoffs (removed if they had a median logCPM < 1.0 in CD14+ monocytes, 872 

< 1.5 in CD4+ T cells, < 2.0 in B cells and CD8+ T cells, < 2.5 in CD16+ monocytes, and < 3.0 in 873 

NK cells), leaving the following number of genes per cell type: CD4+ T cells = 10,337, CD8+ T 874 

cells = 10,036, B cells = 10,179, CD14+ monocytes = 10,882, CD16+ monocytes = 9,398, and NK 875 

cells = 9,882. Within each cell type, only samples with ≥ 5 cells per sample were kept for 876 
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downstream modeling. Further, three samples were removed for downstream analysis because they 877 

consistently clustered as outliers on gene expression PCAs for multiple cell types (one COVID-19 878 

patient at the acute infection time point and two non-infected IAV controls), leaving the following 879 

number of samples per cell type:  880 

Cell type N healthy controls N patients N follow-ups 

B 106 63 38 

CD4+ T 106 63 39 

CD8+ T 106 63 39 

CD14+ monocytes 106 63 39 

CD16+ monocytes 47 44 39 

NK 63 63 39 

 881 

After removing lowly-expressed genes, normalization factors to scale the raw library sizes were 882 

calculated using calcNormFactors in edgeR (v 3.26.8)64. The voom function in limma (v3.40.6)65 883 

was used to apply these size factors, estimate the mean-variance relationship, and convert raw 884 

pseudocounts to logCPM values. The inverse variance weights calculated by voom were obtained 885 

and included in the respective lmFit call for all downstream models unless otherwise noted65. 886 

 887 

Calculation of per-individual ssGSEA scores. To construct the ssGSEA Hallmark pathway 888 

scores, we calculated single sample Gene Set Enrichment Analysis (ssGSEA) scores from the 889 

pseudobulk COVID-19 patient logCPM gene expression estimates corrected for age, sex, dataset, 890 

and the number of cells for a given cell type collected per sample using the Gene Set Variation 891 

Analysis (GSVA, v1.32.0) package in R with default parameters and method = "ssgsea"66. ssGSEA 892 
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is a method that allows you to summarize gene expression patterns for any desired target gene set, 893 

and for each sample, it will return a score representative of that gene set. These scores were 894 

calculated per cell type, and for each of the pathway-specific ssGSEA scores, the input gene set 895 

was derived from either a Hallmark or Gene Ontology (GO) Biological Process gene set22. The 896 

following gene sets were used to define the per-sample pathway scores: (1) inflammatory response 897 

score – Hallmark inflammatory response pathway, (2) TNF-α score – Hallmark TNF-α signaling 898 

via NF-κB pathway, (3) oxidative phosphorylation score – Hallmark Oxidative phosphorylation 899 

pathway, and (4) antigen processing score – GO Biological Process antigen processing and 900 

presentation pathway. 901 

 902 

Modeling SARS-CoV-2 infection effects. Only healthy controls and COVID-19 patients sampled 903 

during the primary infection time point were retained for modeling of infection effects (i.e., follow-904 

up samples were excluded). The following linear model was used to identify genes differentially 905 

expressed between healthy control individuals and COVID-19 patients: 906 

 907 

E(i,j) ~ 

{
  
 

  
 

 β
0
(i) + β

age
(i)⋅age(j) + β

sex
(i)⋅sex(j) + β

dataset
(i)⋅dataset(j) +

β
counts

(i)⋅counts(j) + εctl(i,j) if condition = ctl

 
 

 β
0
(i) + β

COVID
(i) + β

age
(i)⋅age(j) + β

sex
(i)⋅sex(j) + 

   β
dataset

(i)⋅dataset(j) + β
counts

(i)⋅counts(j) + εCOVID(i,j) if condition = COVID

 908 

 909 

Here, E(i,j) represents the expression estimate of gene i for individual j, β
0
(i) is the global intercept 910 

accounting for the expected expression of gene i in a non-infected female measured in the COVID 911 

batch 1 dataset, and β
COVID

(i) represents the global estimate of the effect of SARS-CoV-2 infection 912 

in patients per gene. Age represents the mean-centered, scaled (mean = 0, sd = 1) age per 913 
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individual, with β
age

(i) being the effect of age on expression levels, sex represents the self-914 

identified sex for each individual (factor levels = “Female”, “Male”), with β
sex

(i) capturing the 915 

effect of sex on expression, dataset represents the dataset in which the sample was obtained (factor 916 

levels = "COVID batch 1", "COVID batch 2", "IAV controls"), with β
dataset

(i) capturing the dataset 917 

effect, and counts represents the number of cells captured within that cell type for sample j, with 918 

β
counts

(i) capturing the effect of cell number on expression. Finally, εcdt represents the residuals for 919 

each respective condition (control or COVID) for each gene i, individual j pair. The model was fit 920 

using the lmFit and eBayes functions in limma65, and the estimates of the global infection effect 921 

β
COVID

(i) (i.e., the differential expression effects due to SARS-CoV-2 infection) were extracted 922 

across all genes along with their corresponding p-values. We controlled for false discovery rates 923 

(FDR) using an approach analogous to that of Storey and Tibshirani2,67, which derives the 924 

distribution of the null model empirically. To obtain a null, we performed 10 permutations, where 925 

infection status label (i.e., control/COVID) was permuted across individuals. We considered genes 926 

significantly differentially expressed upon infection if they had β
COVID

 |log2FC| > 0.5 and an FDR 927 

< 0.05. 928 

 929 

Modeling COVID-19 disease severity effects within patients. To model the effect of COVID-930 

19 disease severity on gene expression, we restricted our analyses to COVID-19 patients sampled 931 

during the primary infection time point for which we had information about disease severity (n = 932 

63). Disease severity was assessed using a five-point scale of respiratory support needed at the 933 

time of patient sampling that includes the following categories: 0-Moderate = no supplemental 934 

oxygen (n = 16); 1-Severe = nasal cannula (n = 17); 2-Critical = non-invasive ventilation (n = 9); 935 

3-Critical = intubation (n = 20); 4-Critical = extracorporeal membrane oxygenation (ECMO) (n = 936 
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1). The following model was used to evaluate the effect of severity at the time of patient sampling 937 

on expression: 938 

E(i,j) ~ β
0
(i) + β

severity

 
(i)⋅severity(j) + β

age
(i)⋅age(j) + β

sex
(i)⋅sex(j) + β

BMI
(i)⋅BMI(j)+  939 

   β
dataset

(i)⋅dataset(j) + β
counts

(i)⋅counts(j) + ε (i,j) 940 

Here, E(i,j) represents the expression estimate of gene i for individual j, β
0
(i) is the global intercept 941 

accounting for the expected expression of gene i in a female COVID-19 patient, and β
severity

 
(i) 942 

indicates the effect of severity on gene i during the primary sampling time point. Severity 943 

(severity(j)) represents respiratory support score per individual and was treated as a numeric 944 

variable. Body mass index (BMI) represents the mean-centered, scaled (mean = 0, sd = 1) BMI 945 

per individual, with β
BMI

(i) being the effect of BMI on expression levels. If BMI was not reported 946 

for an individual (n missing = 26), this missing data was filled with the average BMI across 947 

patients. All other terms in the model are equivalent to that described in “Modeling SARS-CoV-2 948 

infection effects”. The model was fit using the lmFit and eBayes functions in limma65, and the 949 

estimates of β
severity

(i) were extracted across all genes along with their corresponding p-values. 950 

We again controlled for false discovery rates (FDR) by empirically deriving the null distribution. 951 

To obtain a null, we performed 10 permutations, where respiratory support score (i.e., 0 - 5) was 952 

permuted across patients. We considered genes significantly correlated with disease severity if 953 

they had an FDR < 0.05. 954 

 955 

Gene set enrichment analyses. The R package fgsea (v1.10.1)68 was used to perform gene set 956 

enrichment analysis for the severity effects using the H hallmark gene sets23. Ranked t-statistics 957 

for each cell type were obtained directly from the topTable function in limma65, and the 958 

background set for a cell type was the set of genes sufficiently expressed (i.e., passed the lowly-959 
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expressed gene filter threshold) for that cell type. Pre-ranked t-statistics were used to perform the 960 

enrichment using fgsea with the following parameters: minSize = 15, maxSize = 500, nperm = 961 

100,000. Normalized enrichments scores (NES) and Benjamini-Hochberg adjusted p-values 962 

output by fgsea were collected for each analysis. 963 

 964 

eQTL mapping and integration with mashr. eQTL mapping was performed for each cell type 965 

using the pseudobulk expression data. A linear regression model was used to ascertain associations 966 

between SNP genotypes and expression levels. Input expression matrices were quantile-967 

normalized within each set of disease state samples (i.e., healthy controls, acute COVID-19 968 

patients, and follow-ups) prior to association testing. eQTL were mapped separately for each 969 

disease state using the R package MatrixEQTL (v2.3)69. Prior to mapping, SNPs were filtered 970 

using the following criteria in our COVID-19 dataset and the Randolph et al. dataset separately: 971 

1) keep those with a minor allele frequency > 5% across all individuals, 2) exclude those with > 972 

10% of missing data, and 3) exclude those that deviate from Hardy-Weinberg equilibrium at p < 973 

10-5 (--maf 0.05 --geno 0.10 --hwe 0.00001 PLINK v1.9 filters)70. Only SNPs that passed these 974 

filters and were present in both datasets were retained and merged across datasets (n = 4,194,100 975 

SNPs kept). Local associations (i.e., putative cis-eQTL) were tested against all SNPs located 976 

within the gene body and 100 kilobases upstream and downstream of the transcription start site 977 

(TSS) and transcription end site (TES) for each gene tested.  978 

 Within our follow-up samples, some individuals were sampled multiple times during the 979 

convalescent period. To avoid counting these genetically duplicate samples more than once when 980 

eQTL mapping, we downsampled the follow-ups to include only a single sample with DSO > 20 981 

per individual. For each individual with multiple follow-up time points, we chose to keep the 982 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2024. ; https://doi.org/10.1101/2024.12.03.626676doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.03.626676
http://creativecommons.org/licenses/by-nc-nd/4.0/


 51 

sample with the maximum DSO, which dropped our sample size from n = 39 to n = 26. This 983 

duplicate sampling structure was not present in the healthy control or acute COVID-19 samples, 984 

so the full sample set was used to map eQTL for these disease states. 985 

We accounted for unmeasured surrogate confounders by performing PCA on a correlation 986 

matrix based on the gene expression data. Subsequently, up to 15 principal components (PCs) were 987 

regressed out prior to performing the association analysis for each gene. A specific number of PCs 988 

to regress in each cell type-disease state pair, corresponding to the number of PCs that led to the 989 

detection of the largest number of eQTL in each condition, was then chosen empirically (Table 990 

S8). To avoid spurious associations resulting from population structure, the first two eigenvectors 991 

obtained from a PCA on the genotype data using SNPRelate (v1.20.1, gdsfmt v1.22.0)71 were 992 

included in the linear model. Other covariates included were age (mean-centered, scaled), sex, 993 

number of cells detected per sample, and dataset. 994 

To gain power to detect cis-eQTL effects, we implemented mashr25, which leverages 995 

sharing information across cell types and disease states. We considered a set of shared genes that 996 

were expressed across all cell types (n = 7,646). For each of these genes, we chose the single top 997 

cis-SNP, defined as the SNP with the lowest FDR across all cell types (n = 6) in the acute COVID-998 

19 patient condition, to input into mashr. We extracted the effect sizes and computed the standard 999 

errors of these betas from the Matrix eQTL outputs for each gene-SNP pair across cell types and 1000 

conditions. We defined a set of strong tests (i.e., the 7,646 top gene-SNP associations) as well as 1001 

a set of random tests, which we obtained from randomly sampling 200,000 rows of a matrix 1002 

containing all gene-SNP pairs tested merged across conditions. The mashr workflow was as 1003 

follows: i) the correlation structure among the null tests was learned using the random test subset, 1004 

ii) the data-driven covariance matrices were learned using the strong test subset (from 5 PCs), iii) 1005 
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the mash model was fit to the random test subset using canonical and data-driven covariance 1006 

matrices, and iv) the posterior summaries were computed for the strong test subset. We used the 1007 

local false sign rate (lfsr) to assess significance of our posterior eQTL effects and considered a 1008 

gene-SNP pair to have a significant eQTL effect if the lfsr was < 0.10.  1009 

 1010 

Calculation of functional cell state scores per cell. To obtain the cell state scores used for 1011 

modeling cell state-dependent single-cell eQTL, first, the raw single-cell UMI counts across all 1012 

samples were obtained per cell type. All subsequent processing steps were performed for each cell 1013 

type independently. Raw cell counts in the form of a Seurat object were split by dataset, and 1014 

SCTransform was used to normalize and scale the UMI counts within dataset, regressing the 1015 

effects of experiment batch, percent mitochondrial UMIs per cell, and age in all datasets, and 1016 

additionally, sex in the COVID batch 1 and batch 2 datasets. The SelectIntegrationFeatures, 1017 

PrepSCTIntegration, FindIntegrationAnchors, and IntegrateData pipeline was then used to 1018 

integrate cells, returning all features following integration (features.to.integrate = all_features)60. 1019 

The scaled data matrix (@scale.data slot) of the integrated data, which holds the residuals of the 1020 

corrected log-normalized integrated counts, was obtained, and these values were used to calculate 1021 

ssGSEA scores (using the same parameters described above in “Calculation of per-individual 1022 

ssGSEA scores”) per cell for our pathways of interest. Here, we applied ssGSEA to the full scaled 1023 

SCTransform gene x cell matrix, allowing us to generate cell state scores for each single cell in the 1024 

dataset. Our pathways of interest included the following immune-related and metabolism-related 1025 

pathways in the MSigDB Hallmark gene sets (n = 6)22: Apoptosis, Inflammatory response, 1026 

Interferon-α response, Interferon-γ response, Oxidative phosphorylation, and TNF-α signaling via 1027 

NF-κB. 1028 
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 1029 

Modeling cell state-genotype interaction effects. We used a poisson mixed effects model to test 1030 

for cell state-dependent eQTL because this model has previously been used to detect significant 1031 

cell state-genotype interaction effects in single-cell data7. Only COVID-19 patients sampled 1032 

during the primary infection time point were included in these analyses (n = 63). Single-cell eQTL 1033 

modeling was performed independently in each cell type; for each cell type, we tested the gene-1034 

SNP pairs for which we had evidence of a significant eQTL (lfsr < 0.10) within patients in the 1035 

pseudobulk eQTL analysis (n genes: B cells = 1,395, CD4+ T cells = 1,804, CD8+ T cells = 1,508, 1036 

CD14+ monocytes = 2,084, CD16+ monocytes = 1,410, NK cells = 1,523). For CD4+ T cells, we 1037 

downsampled the number of cells prior to constructing the model inputs to 60,000 cells due to 1038 

vector size constraints in R. To control for genetic background and latent confounders, we included 1039 

both genotype and expression PCs in our cell state eQTL models. We computed genotype PCs 1040 

using the same approach as above in “eQTL mapping and integration with mashr”. Expression 1041 

PCs were calculated from non-batch corrected integrated and scaled counts using the same method 1042 

as described in “Calculation of functional state scores per cell,” but omitting the batch correction 1043 

step (i.e., no variables were regressed in the SCTransform call). PCA was run on the cell x gene 1044 

matrix of non-corrected integrated and scaled counts subset on the top 3,000 variable features 1045 

using the prcomp_irlba function in the R package irlba (v2.3.5.1)72.  1046 

To test for interactions with cell state, we used the following poisson mixed effects 1047 

interaction model, where each gene’s UMI counts were modeled as a function of genotype as well 1048 

as additional donor-level and cell-level covariates. For each gene: 1049 

 1050 

 1051 
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log(𝐸𝑖) ~ β0
 + β

G

 𝑋𝑑,𝐺 + β
dataset

 𝑋𝑑,𝑑𝑎𝑡𝑎𝑠𝑒𝑡  + βage

 𝑋𝑑,𝑎𝑔𝑒  + β
sex

 𝑋𝑑,𝑠𝑒𝑥  + β
nUMI

 log (𝑋𝑖,𝑛𝑈𝑀𝐼) 1052 

+ β
MT

 𝑋𝑖,𝑀𝑇 + ∑ β
𝑔𝑃𝐶𝑘

 𝑋𝑑,𝑔𝑃𝐶𝑘

3

𝑘=1

+ ∑ β
𝑒𝑃𝐶𝑘

 𝑋𝑖,𝑒𝑃𝐶𝑘

5

𝑘=1

+ β
cell state

 𝑋𝑖,𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒   1053 

+ β
G x cell state

 𝑋𝑑,𝐺𝑋𝑖,𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒+ (𝜙𝑑  | d) + (𝜅𝑏 | b) + ε
  1054 

 1055 

Here, E is the expression of the gene in cell i, β
0
 is the intercept, and ε represents the residuals. All 1056 

other βs represent fixed effects for various covariates in cell i, donor d, or experimental batch b as 1057 

follows: G = genotype at the eQTL variant, dataset = dataset from which sample originates, age = 1058 

scaled age of donor, sex = sex of donor, nUMI = number of UMI per cell (accounts for sequencing 1059 

depth), MT = percent of mitochondrial UMIs per cell, gPC = genotype PCs, ePC = single-cell 1060 

expression PCs prior to batch correction, and cell state = functional cell state score per cell 1061 

(described above). Donor was modeled as a random individual effect (𝜙𝑑  | d) to account for the 1062 

fact that multiple cells were sampled per individual, and experimental batch was also modeled as 1063 

a random effect (𝜅𝑏 | b). Finally, β
G x cell state

 𝑋𝑑,𝐺𝑋𝑖,𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒 represents the cell state x genotype 1064 

interaction term of interest.  1065 

 Single-cell poisson mixed interaction models were fit using the glmer function in the lme4 1066 

R package (v 1.1-29) with the following parameters: family = "poisson", nAGQ = 0, and control 1067 

= glmerControl(optimizer = "nloptwrap")73. To determine significance, we used a likelihood ratio 1068 

test (LRT) comparing two models, one with and one without the cell state interaction term and 1069 

calculated a p-value for the test statistic against the Chi-squared distribution with one degree of 1070 

freedom. To correct for multiple hypothesis testing, we performed one permutation in which cell 1071 

state scores were permuted across all cells per pathway tested, and we obtained a null LRT p-value 1072 

distribution using the same framework as above with our permuted data. We then calculated q-1073 
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values for the cell state-genotype interaction term using the empirical p-value distribution across 1074 

all tested eQTL using the empPvals and qvalue functions from the qvalue package (v2.16.0)74. 1075 

 1076 

Colocalization of GWAS and eQTL signals. Specifically for colocalization analyses, eQTL were 1077 

remapped in each cell type-disease state pair with Matrix eQTL69 using a 1 megabase (Mb) cis-1078 

window, with all other modeling parameters kept constant, to broaden our search space and 1079 

increase our probability of detecting colocalized variants. We assessed colocalization between our 1080 

identified eQTLs in each cell type-disease state pair and the COVID-19 GWAS meta-analyses of 1081 

European-ancestry subjects from the COVID-19 Host Genetics Initiative (HGI)11 release 7 1082 

(https://www.covid19hg.org/results/r7/). We tested two outcomes: “critical illness” and 1083 

“hospitalization” (named A2 and B2, respectively by the COVID-19 HGI). A Bayesian analysis 1084 

was implemented using the coloc (v5.1.0.1)75 R package with default settings to analyze all 1085 

variants in the 1 Mb genomic locus centered on the lead eQTL in the single-cell data. We only 1086 

considered GWAS loci with associations below 1 x 10-4. We defined colocalization as PP4 > 0.8, 1087 

where PP4 corresponds to the posterior probability of colocalization between eQTL and GWAS 1088 

signals. Colocalization was visualized using the R package LocusCompareR (v1.0.0)76 with 1089 

default parameters, except for the genome parameter which was set to "hg38". LD r2 with the lead 1090 

SNP was calculated using the default "EUR" population. 1091 

  1092 
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 1093 

Fig. S1. Sampling time points and global SARS-CoV-2 infection effects. (A) Distribution of 1094 

days since symptom onset (DSO) at the time of sample collection across acute and convalescent 1095 

COVID-19 patients in our cohort. Samples were considered to be in the acute phase of infection if 1096 

DSO ≤ 20 (red line), and samples with DSO > 20 were considered follow-ups. (B) Numbers and 1097 

proportions (y-axis) of genes significantly differentially expressed (|log2FC| > 0.5, FDR < 0.05) in 1098 

COVID-19 patients compared to healthy controls. (C) Overlap between the set of significantly 1099 

differentially expressed genes upon infection (blue circle, left) and the set of genes significantly 1100 

correlated with disease severity (red circle, right). (D) Correlation between respiratory support 1101 

score and days since symptom onset (DSO). P-value and best-fit slope were determined from a 1102 

linear regression model correcting for dataset.  1103 

  1104 
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 1105 

Fig. S2. Sharing patterns among disease-state-shared eGenes. Significant eGene sharing 1106 

patterns among disease-state-shared eGenes (lfsrCTL < 0.1 and lfsrCOVID < 0.3 or lfsrCOVID < 0.1 and 1107 

lfsrCTL < 0.3) in healthy controls and COVID-19 patients across cell types.  1108 

  1109 
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Fig. S3. Cell type-specific response eQTL patterns. (A) Distribution of effect sizes for the cell 1111 

type-specific reQTL sets plotted across cell types in healthy controls (“ctl”), patients (“COVID-1112 

19”), and follow-ups (“follow-up”) for the full sample set, as well as a downsampled set in the 1113 

control (“ctl downsample”) and patient (“COVID-19 downsample”) groups. Downsampled sets 1114 

mirrored the follow-up data structure (n = 26 samples) and were derived as follows: i) for controls, 1115 

26 individuals were randomly sampled from the control group, and ii) for patients, the 21 follow-1116 

up individuals with a corresponding acute infection time point sample were included. Here, all 1117 

eQTL effect sizes are taken directly from Matrix eQTL (i.e., prior to running mash). (B) Paired 1118 

reQTL effect sizes in COVID-19 patients (“COVID”) and follow-ups (“FOLLOW”) across cell 1119 

types. The change in effect size for each gene from patient to follow-up samples is plotted as a 1120 

black line. (C) The observed mean Δ response magnitude across the 370 CD14+ monocyte-specific 1121 

reQTL (red dotted line) compared to the null expectation when permuting random sets of shared 1122 

eGenes of the same size (n = 370) and computing their mean (n permutations = 1,000, null shown 1123 

in gray). The observed mean is significantly lower (p < 0.001) than random expectation.  1124 

  1125 
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 1126 

Fig. S4. Colocalization patterns in COVID-19 follow-up samples. (A) The colocalization signal 1127 

for the lead SNP rs9636867 (IFNAR2, CD4+ T cells, GWAS: hospitalization due to severe COVID-1128 

19) is absent in follow-ups. (B) The colocalization signal for the lead SNP rs7246757 (SNRPD2, 1129 

CD14+ monocytes, GWAS: hospitalization due to severe COVID-19) is absent in follow-ups. For 1130 

both (A) and (B), the larger plot on the left shows the correlation between GWAS p-values (x-1131 

axis) and eQTL p-values (y-axis) in follow-ups. Smaller plots on the right show Manhattan plots 1132 

for the GWAS signal (top) and the eQTL signal in follow-ups (bottom). The lead SNP is depicted 1133 

as a purple diamond.   1134 
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Table S8. Gene expression principal components (PCs) regressed in the pseudobulk eQTL 1135 

analysis. PCs regressed and number of significant eQTL per cell type and disease state are 1136 

reported. 1137 

Cell type 

N Regressed PCs N genes < 0.10 FDR, Matrix eQTL 

Control COVID-19 Follow-up Control COVID-19 Follow-up 

CD14+ 

monocytes 

1 to 3 1 to 14 1 to 2 430 1286 56 

CD16+ 

monocytes 

1 1 1 10 49 6 

CD4+ T 1 to 10 1 to 4 1 to 2 1665 730 77 

CD8+ T 1 to 12 1 to 13 1 to 3 424 274 25 

B 1 to 5 1 to 8 1 285 192 9 

NK 1 to 13 1 to 6 1 to 2 74 230 9 

 1138 
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