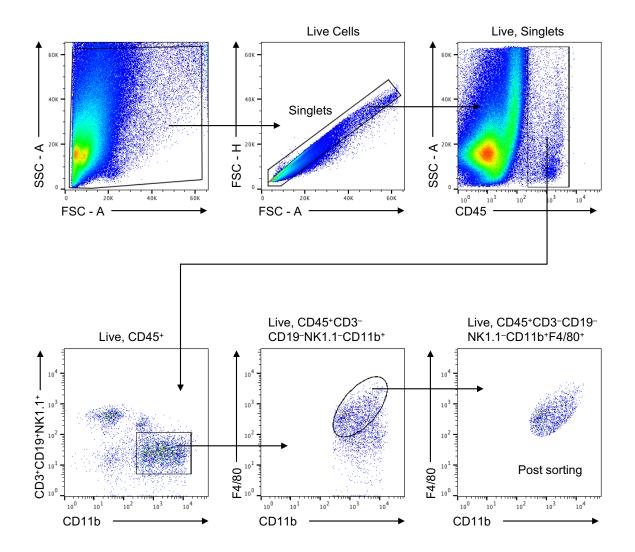


Supplementary Figure S1: Trif is dispensable for melanoma tumor progression.

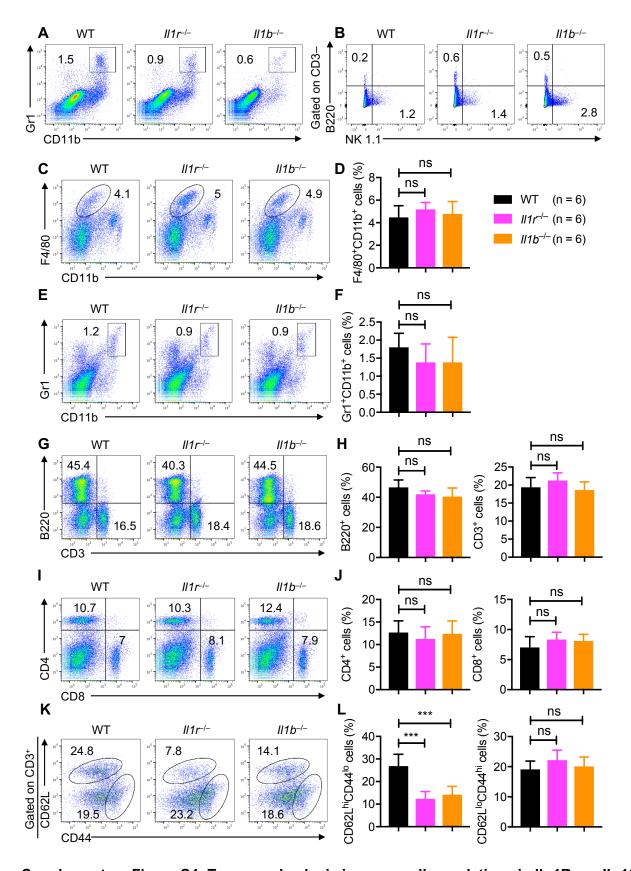
A–D, B16-F10 melanoma cells were injected into WT and $Trif^{-/-}$ mice. **(A)** Mean tumor volume in WT (n = 15) and $Trif^{-/-}$ (n = 10) mice. **(B)** Tumor weights of WT (n = 15) and $Trif^{-/-}$ (n = 10) mice, 2 weeks after tumor cell injection. **(C)** Representative pictures of tumors from WT and $Trif^{-/-}$ mice. **(D)** Immunohistochemistry staining of tumors with F4/80 harvested from WT (n = 5) and $Trif^{-/-}$ (n = 5) mice. (Scale bar, 100 µm).

Data are presented as mean \pm SD. **(A)** Two-way ANOVA with Sidak's multiple comparison test and **(B)** unpaired *t*-test with Welch's correction were used to determine the significance between the two groups analyzed. ns, not significant **P < 0.01.


Supplementary Figure S2: Tumor and splenic immune cell populations in MyD88^{-/-} mice

bearing melanoma.

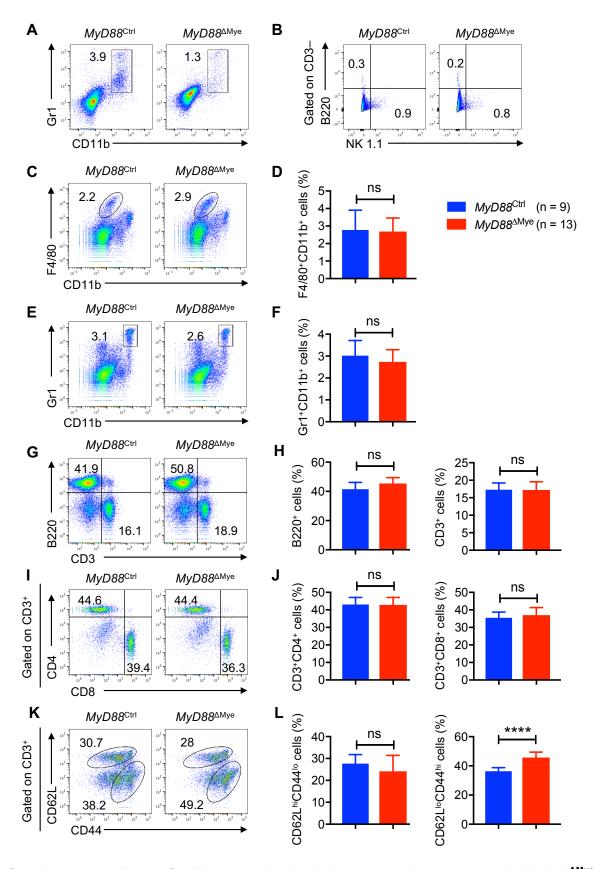
A–B, Flow cytometry analysis of immune cell populations in tumors harvested from WT (n = 7) and $MyD88^{-/-}$ (n = 7) mice. **(A)** Pseudocolor plots of the Gr1⁺CD11b⁺ granulocyte population. **(B)** Pseudocolor plots of B220⁺ B-cell and NK1.1⁺ NK-cell populations.


C–L, Flow cytometry analysis of immune cell populations in spleens harvested from WT (n = 7) and *MyD88*^{-/-} (n = 7) mice. **(C)** Pseudocolor plots of F4/80⁺CD11b⁺ macrophage population. **(D)** Quantification of the F4/80⁺CD11b⁺ macrophage population. **(E)** Pseudocolor plots of the Gr1⁺CD11b⁺ granulocyte population. **(F)** Quantification of the Gr1⁺CD11b⁺ granulocyte population. **(G)** Pseudocolor plots of the B220⁺ B-cell and CD3⁺ T-cell populations. **(H)** Quantification of the B220⁺ B-cell and CD3⁺ T-cell populations. **(I)** Pseudocolor plots of the CD3⁺CD4⁺ and CD3⁺CD8⁺ T-cell populations. **(J)** Quantification of the CD3⁺CD4⁺ and CD3⁺CD4^{hi} effector T-cell populations. **(K)** Pseudocolor plots of the CD62L^{hi}CD44^{lo} naïve and CD62L^{lo}CD44^{hi} effector T-cell populations. **(L)** Quantification of the CD62L^{hi}CD44^{lo} naïve and CD62L^{lo}CD44^{hi} effector T-cell populations.

Data are presented as mean \pm SD. Unpaired *t*-test, with Welch's correction, was used to determine the statistical significance between the two groups analyzed. ns, not significant, *P < 0.05, ***P < 0.001.

Supplementary Figure S3: FACS gating strategy for sorting the TAM population in tumors.

Debris and doublets were removed, then TAMs were sorted as the CD45⁺CD3⁻CD19⁻NK1.1⁻CD11b⁺F4/80⁺ population.



Supplementary Figure S4: Tumor and splenic immune cell populations in IL-1R– or IL-1β–

deficient mice bearing melanoma.

A–B, Flow cytometry analysis of immune cell populations in tumors harvested from WT (n = 6), $II1r^{-/-}$ (n = 6) and $II1b^{-/-}$ (n = 6) mice. **(A)** Pseudocolor plots of the Gr1⁺CD11b⁺ granulocyte population. **(B)** Pseudocolor plots of B220⁺ B-cell and NK1.1⁺ NK-cell populations.

Data are presented as mean \pm SD. Unpaired *t*-test, with Welch's correction, was used to determine the statistical significance between the two groups analyzed. ns, not significant, ***P < 0.001.

Supplementary Figure S5: Tumor and splenic immune cell populations in *MyD88*^{△Mye} mice

bearing melanoma.

A–B, Flow cytometry analysis of immune cell populations in tumors harvested from $MyD88^{Ctrl}$ (n = 9) and $MyD88^{\Delta Mye}$ (n = 13) mice. **(A)** Pseudocolor plots of the Gr1⁺CD11b⁺ granulocyte population. **(B)** Pseudocolor plots of B220⁺ B-cell and NK1.1⁺ NK-cell populations.

C–L, Flow cytometry analysis of immune cell populations in spleens harvested from *MyD88*^{Ctrl} (n = 9) and *MyD88*^{ΔMye} (n = 13) mice. **(C)** Pseudocolor plots of the F4/80⁺CD11b⁺ macrophage population. **(D)** Quantification of the F4/80⁺CD11b⁺ macrophage population. **(E)** Pseudocolor plots of the Gr1⁺CD11b⁺ granulocyte population. **(F)** Quantification of the Gr1⁺CD11b⁺ granulocyte population. **(G)** Pseudocolor plots of the B220⁺ B-cell and CD3⁺ T-cell populations. **(H)** Quantification of the B220⁺ B-cell and CD3⁺ T-cell populations. **(I)** Pseudocolor plots of the CD3⁺CD4⁺ and CD3⁺CD8⁺ T-cell populations. **(J)** Quantification of the CD3⁺CD4⁺ and CD3⁺CD4^{hi} effector T-cell populations. **(K)** Pseudocolor plots of the CD62L^{hi}CD44^{lo} naïve and CD62L^{lo}CD44^{hi} effector T-cell populations. **(L)** Quantification of the CD62L^{hi}CD44^{lo} naïve and CD62L^{lo}CD44^{hi} effector T-cell populations.

Data are presented as mean \pm SD. Unpaired *t*-test, with Welch's correction, was used to determine the statistical significance between the two groups analyzed. ns, not significant, ****P < 0.0001.

Supplementary Table S1: Average FPKM values of genes in the study analyzed in various cancers.

	Melanoma n = 102	Breast Cancer n = 1075	Colorectal Cancer n = 597	Ovarian Cancer n = 373	Lung Cancer n = 994	Stomach Cancer n = 354
MYD88	16.2	18.3	22.5	18.6	17.5	26
TIRAP	2.3	2.6	2.3	1.3	2.1	3.6
TICAM1	10.5	10.6	14.9	10.4	11.4	18.3
TICAM2	0	0	0	0	0	0