
1

Supplementary materials

Generalized Singular Value Decomposition
(GSVD) algorithm

For the original data X ∈ RNi×M×K , the slice matrix

dimension of a tensor X is Ni ×M , each row dimension of the

matrix data may be different and dimensions of the columns

are the same. When performing singular value decomposition,

GSVD algorithms are used to calculate singular values. The

difference between GSVD algorithm and traditional SVD

algorithm is that, GSVD does not directly perform singular

value algorithm on each positive slice matrix X (:, :, i) of X .

Instead, it first preprocesses the positive slice matrix X (:, :, i),

transposes the slice matrix product, and then calculates the

arithmetic mean to obtain a common subspace matrix S of

the same size. Then, its eigenvector matrix V is calculated for

S, then U , Σ are obtained, and hence obtain an approximate

estimate of SVD.

The main steps for GSVD are as follows:

1. Define Di ∈ RNi×M as follows:

D1 = U1Σ1V
T
,

D2 = U2Σ2V
T
,

.

.

.

DN = UNΣNV
T
.

2. Define the common subspace matrix S for these matrices.

Ai = D
T
i Di,

Sij =
1

2
(AiA

−1
j + AjA

−1
i ), i 6= j

S ≡
1

N(N − 1)

N∑
i=1

N∑
j>i

(AiA
−1
j + AjA

−1
i )

=
2

N(N − 1)

N∑
i=1

N∑
j>i

Sij .

3. Obtain the singular value decomposition U , Σ, V from the

matrix S constructed above.

SV = V Λ, V = (v1, v2, . . . , vn),

Λ = diag(λk).

after giving V , obtain U and Σ by calculating matrix B:

V B
T
i = D

T
i ,

Bi ≡ (bi,1, . . . , bi,n), i = 1, 2, . . . , N,

σi,k = ‖bi,k‖ ,

Σi = diag(σi,k),

Bi = UiΣi.

Through the above calculations, singular value decomposition

can be obtained for N matrices Di with different dimensions. In

the decomposition, all matrices have the same V but different

U , Σ.

Irregular tensor nuclear norm(ITNN)

For irregular tensors X ∈ RNi×M×K , the nuclear norm,

which represents the sum of singular values, can be effectively

computed using Generalized Singular Value Decomposition

(GSVD). While Singular Value Decomposition (SVD) is

typically suitable for square matrices, GSVD accommodates

non-square and sparse matrices, making it advantageous for

numerical stability in high-dimensional and sparse datasets

discussed in this context. Based on GSVD, the nuclear norm

of the new irregular tensor (ITNN) in this paper is defined as:

‖X‖∗ =
K∑
k=1

‖X (:, :, i)‖∗ =
K∑
k=1

∑
j

|σj(X (:, :, i))| .

here, σj(X (:, :, i)) denotes the i-th singular value of X (:, :, i).

Based on the aforementioned GSVD algorithm and nuclear

norm definition, the following properties hold for the irregular

tensors discussed in this paper:

(1) Positive definiteness

For any irregular tensor X , we have ‖X‖∗ ≥ 0,

Since the generalized singular values σ obtained from

the GSVD are derived from B and are non-negative, their

summation is also non-negative. ‖X‖∗ = 0 if and only if X = 0.

(2) Homogeneity

For any real number a and irregular tensor X , we assume

that the irregular tensor X is composed of k matrices X, Define

Xi ∈ RNi×M . For aX , we have

Ai = aX
T
i × aXi,

Sij =
1

2
(a

2
Ai × (a

2
Aj)
−1

+ a
2
Aj × (a

2
Ai)
−1

)

=
1

2
(AiA

−1
j + AjA

−1
i ), i 6= j

When calculating the singular values we get

B
T
i = aXiV

−T
,

σi,k = ‖bi,k‖ .

For X , we have

B
T
i = XiV

−T
,

σi,k = ‖bi,k‖ .

Therefore, we get

‖aX‖∗ = |a| ‖X‖∗ .

(3) Trigonometric inequality

For any irregular tensor X and Y, in the section

”Convergence analytic decomposition of irregular tensor

decompositions” we proved that ‖X + Y‖∗ ≤ ‖X‖∗ + ‖Y‖∗.
By verifying that the generalized singular value decomposition

(GSVD)-based nuclear norm satisfies all the defining properties,

we can confirm that this nuclear norm is a valid and consistent

definition for tensors.

Optimizing L, E , Y and µ

In the following, we try to optimize L and E using the

ADMM for the GSTRPCA method. For irregular tensor X ∈
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RNi×M×K , based on the L1 norm, the objective function of

TRPCA is as follows:

min
L,E

‖L‖∗ + λ ‖E‖1

s.t. X = L+ E,
(3.1)

To solve the objective function, we encounter a polynomial

optimization challenge. Then we introduces ‖E‖1 as the norm

for regularization of sparse terms, employing the ADMM

algorithm to achieve the model’s optimal solution. Augmented

Lagrangian multipliers are utilized to reformulate Equation

(3.1), the objective function becomes:

P (L, E,Y, µ) = ‖L‖∗ + λ ‖E‖1 + < Y,L+ E − X >

+
µ

2
‖L+ E − X‖2F ,

(3.2)

where Y is the dual variable and µ is the introduced equilibrium

parameter.

Under the ADMM framework, the formula for updating

variables Lk+1 and Ek+1 can be expressed in the following

forms:

Lk+1
= arg min

L
P (L, Ek,Yk, µk)

= arg min
L

‖L‖∗ +
µk

2

∥∥∥∥∥L+ Ek − X +
Yk

µk

∥∥∥∥∥
2

F

,

(3.3)

Ek+1
= arg min

E
P (Lk+1

, E,Yk, µk)

= arg min
E

λ ‖E‖1 +
µk

2

∥∥∥∥∥Lk+1
+ E − X +

Yk

µk

∥∥∥∥∥
2

F

.

(3.4)

Then update irregular low-rank tensor L:

1. Apply the Generalized Singular Value Thresholding

(GSVT) algorithm to the frontal slice X (:, :, i) of each

irregular tensor data X

{
U

(i)
, S

(i)
, V

(i)
}K
i=1

= GSVD(X (:, :, i)). (3.5)

2. Construct threshold factors related to matrix S

C = max[S
(i) −

1

(S(i) − ξ)1−p
, 0]. (3.6)

3. Construct an irregular low-rank tensor L

L(:, :, i) = U
(i) × C(i) × (V

(i)
)
T
. (3.7)

Following the above process, the updating rule for L can be

obtained as follows:

Lk+1
= DL

(
X − Ek −

Yk

µk

)
. (3.8)

When seeking the optimal solution for Ek+1, we fix the irregular

low-rank tensor Lk+1 and Lagrange multiplier Yk, which are

not updated temporarily. Solving this optimization problem

requires the use of threshold processing operations.

Ek+1
= proxµ

(
X − Lk+1 −

Yk

µk

)
, (3.9)

proxµ(x) = max(x− µ, 0) + min(x+ µ, 0).

Afterwards, update the dual variable Yk+1:

Yk+1
= Yk + µ

k × (Lk+1
+ Ek+1 − X ). (3.10)

After completing one iteration update of the above variables,

establish a new balancing parameter µk+1 for the subsequent

iteration update and adjust it using a fixed step size.

µ
k+1

= min(ρµ
k
, µ
max

). (3.11)

The framework of the algorithm is shown as Algorithm 1.

Algorithm 1 GSTRPCA Algorithm

Input: Given X ∈ RNi×M×K , µ = 1e − 5, ξ, µmax = 1e + 5

and set k = 1;

1: While certain stopping criterion is not reached, do

2: Update primary variable

Lk+1
= DL

(
L − Ek −

Yk

µk

)
.

Ek+1
= proxµ

(
X − Lk+1 −

Yk

µk

)
.

3: Compute the lagrangian multipliers

Yk+1
= Yk + µ

k
(Lk+1

+ Ek+1 − X ).

4: Update step size

µ
k+1

= min(ρµ
k
, µ
max

).

5: Set k := k + 1.

Output: Lk+1,Ek+1.

Parameter analysis

In the study of this paper, we use the threshold parameter

p in Eq.(3.6) to construct the singular value matrix in

irregular low-rank tensor decomposition. This approach allows

for a significant penalization of very small singular values,

effectively diminishing the impact of noise on data analysis. In

our experiments, the choice of the singular value truncation

parameter p affects the results of our method, and we go

through the results of the subsequent downstream cluster

analyses to determine the final choice of parameter p. In the

GSTRPCA model, we control the range of values within [0,1)

by grid search. Experimental parameter selection across various

datasets yields results as depicted in Figure 1. Parameter

analysis for five single-cell multi-omics datasets enables the

determination of optimal algorithm settings. In the solution

of the irregular low-rank tensor presented in Eq.(3.6), the

parameter p is used to control the sensitivity to the data

characteristics. For instance, the real dataset 10X inhouse, the
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parameter threshold p is selected to be 0.25, this is because the

two types of data size is too different and data sparse, when

the value of p is taken to a smaller value, it will maximise the

suppression of the noise during the data processing process,

which is usually used in data If the value of p is 0, then the

behaviour of the shrinkage function will be too strong leading

to the destruction of the data structure, so the inappropriate

value of p will greatly affect the performance of the subsequent

prediction. We determined the optimal parameter selection for

different datasets through clustering experiments, details are

shown in Table 1.

During the iterative process, the augmented lagrangian

function is used to update alternately. In each updating step,

we calculate the errors separately for the low-rank component

and the sparse component. The algorithm achieves convergence

when errors are less than a predefined minimum error. Figure

2 compares the convergence curves of GSTRPCA and the

competing methods on five datasets. We can see that the errors

of GSTRPCA are much less than the ones of other methods on

these five datasets. In particular, GSTRPCA converges in the

third iteration on the real datasets, indicating that GSTRPCA

is much more precise and faster than the typical methods.

Therefore, we can conclude that GSTRPCA accelerates the

speed of convergence.

Time analysis

Time analysis is the process for evaluating the efficiency of the

algorithms. Table 2 compares the running time of GSTRPCA

and the competing methods on different datasets and we can

see that the running time of the GSTRPCA is much less than

the ones for other methods.

Feature selection

On the Specter dataset, we utilize Principal Component

Analysis (PCA) [1] to select the top 50 significant genes from

the irregular sparse tensor E obtained through GSTRPCA

decomposition. The main steps for PCA are as follows:

1. Normalize the raw data.

2. Compute the covariance matrix of the standardized data.

3. Perform eigenvalue decomposition on the covariance

matrix to obtain eigenvalues (representing variance) and

eigenvectors (representing principal components).

4. Select principal components based on the magnitude of

their eigenvalues, where larger eigenvalues correspond to

capturing more data variance.

5. Compute scores for each sample on the selected principal

components.

Table 3 summarizes detailed information on the top 50 co-

expressed genes identified through PCA in the Specter dataset.

Figure 3 presents a heatmap depicting the expression profiles

of the top 50 co-expressed genes. In this heatmap, the color

gradient transitions from left to right, indicating relative gene

expression levels, with the left side representing high expression

and the right side representing low expression. The rows

correspond to different genes.

Convergence analysis for irregular tensor
decomposition

For the iterative updating of irregular tensors L and

E, the updating rule at each step determines the global

convergence of the algorithm. In general ADMM alternating

iterations, proximal alternating linearization minimization

methods establish the global convergence of algorithms through

the concept of auxiliary functions in their update rules [2].

Sparse coding algorithms demonstrate their global convergence

through proofs of error boundedness, continuity, and

monotonicity [3]. In semi-algebraic problems, the regularized

Gauss-Seidel method is a common iterative solving technique

used for solving systems of linear equations [4]. Based on

the Kurdyka −  Lojasiewicz property, a convergence analysis

framework is derived [5].

The objective function for irregular tensor decomposition is

as follows:
min
L,E

‖L‖∗ + λ ‖E‖1

s.t. X = L+ E,

where, X ∈ RNi×M×K , L ∈ RNi×M×K , E ∈ RNi×M×K . Now,

we introduce the K  L function used to prove the convergence of

the Algorithm 1.

Definition 1 (Kurdyka- Lojasiewicz property [5]): Let f :

Rd −→ (−∞,+∞] be proper and lower semi-continuous. We

have the K  L property at x̄ ∈ dom(∂f) :=
{
x ∈ Rd : ∂f 6= ∅

}
if there exist η ∈ (0,+∞], a neighborhood U of x̄, and a

continuous concave function ϕ : [0, η) −→ [0,+∞) such that:

(1)ϕ(0) = 0;

(2)ϕ is C1 on (0, η) and continuous at 0;

(3)ϕ′(s) > 0, s ∈ (0, η);

Such that for all

u ∈ U ∩ [f(x̄) < f(x) < f(x̄) + η],

the following inequality holds:

ϕ
′
(f(x)− f(x̄))dist(0, ∂f(x)) ≥ 1.

If f satisfies the K  L property at each point of dom (∂f), then

f is called a K  L function.

The principal instrument for the proof is the following

theorem.

Theorem 1: Assuming the existence of sequence
{
Lk, Ek

}
is K  L function. If the sequence

{
Lk, Ek

}
from Algorithm

1 satisfies the following conditions, then the sequence will

globally converge to a critical point of equation (3.2).

(1) The function P (L, E,Y, µ) satisfies the K  L property at

each point.

(2) The sequence
{
Lk, Ek

}
satisfies the sufficient decrease

property.

(3) The sequence
{
Lk, Ek

}
satisfies the Relative error

property.

(4) The sequence
{
Lk, Ek

}
satisfies the continuity property.

Before verifying these conditions, we provide following

lemmas.

In Lemma 1, we establish that the ‖·‖1 defined based on

irregular tensors satisfies convexity properties.
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Fig. 1. Sensitivity analysis of GSTRPCA parameter p in five different dataset.

Table 1. The determination for p on different datasets.

Dataset Parameter p ACC ARI AMI NMI

Sim1 0.45 99.76 99.28 99.06 99.08

Sim2 0.95 94.98 88.67 91.35 91.57

SCGEM 0.45 92.86 82.76 83.86 84.47

Specter 0.65 70.24 56.83 68.37 68.83

10X inhouse 0.25 95.44 92.28 92.25 92.24

Table 2. Run time(s) analysis of GSTRPCA and the competing methods on five datasets.

LRTV LLRGTV t-TRPCA LRTD TT-TRPCA GSTRPCA

Sim1 7.21 83.47 34.72 97.53 59.17 5.75

Sim2 6.42 69.65 21.34 127.65 29.70 0.92

SCGEM 0.11 2.11 0.18 2.38 0.16 0.05

Specter 23.89 137.89 176.81 160.28 155.87 21.67

10X inhouse 101.26 799.17 442.07 828.95 836.59 27.84

Table 3. The top 50 genes with the highest scores on the Specter dataset and their scores.

Rank Gene Score Rank Gene Score

1 hg19 MED8 41.66 2 hg19 RPA2 38.94

3 hg19 ZFP69 35.32 4 hg19 KDM1A 35.18

5 hg19 LUZP1 34.11 6 hg19 TMEM69 29.61

7 hg19 CAPZB 29.59 8 hg19 NMNAT1 27.52

9 hg19 OTUD3 27.01 10 hg19 C1orf167 26.89

11 hg19 EXTL1 26.62 12 hg19 LINC01715 25.16

13 hg19 KIAA1522 23.29 14 hg19 TMEM50A 23.07

15 hg19 LINC01646 22.91 16 hg19 SLC25A34 22.78

17 hg19 LINC01648 22.74 18 hg19 SLC6A9 22.19

19 hg19 NUDC 21.44 20 hg19 PADI2 20.94

21 hg19 CATSPER4 20.17 22 hg19 CMPK1 19.52

23 hg19 RNF207 19.37 24 hg19 BTBD19 19.27

25 hg19 DRAXIN 18.98 26 hg19 KIAA2013 18.93

27 hg19 FAM183A 18.81 28 hg19 PADI4 18.58

29 hg19 GPR3 18.26 30 hg19 PHF13 18.13

31 hg19 ATAD3B 17.36 32 hg19 TPRG1L 16.92

33 hg19 KCNQ4 15.71 34 hg19 LINC01141 15.59

35 hg19 PADI1 15.53 36 hg19 PLA2G2D 15.33

37 hg19 GPN2 15.19 38 hg19 ANKRD65 15.12

39 hg19 CROCC 14.83 40 hg19 RAB42 14.72

41 hg19 FAM138A 14.66 42 hg19 KHDRBS1 14.64

43 hg19 NCDN 14.40 44 hg19 UTP11 14.39

45 hg19 FAM229A 14.38 46 hg19 TAS1R2 13.81

47 hg19 ICMT 13.67 48 hg19 TNFRSF14-AS1 13.60

49 hg19 ZBTB48 13.51 50 hg19 MINOS1 13.46
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Fig. 2. The convergence speed of LRTV, LLRGVT, t-TRPCA, LRTD, TT-TRPCA and GSTRPCA when the number of iterations increases from 1 to

100 on five datasets.

Lemma 1 : The ‖·‖1 defined in this paper is a convex

function.

Proof The ‖·‖1 is defined as:

‖X‖1 =

Ni∑
i1=1

M∑
i2=1

K∑
i3=1

|xi1i2i3 | .

Where, xi1i2i3 represents an element of the irregular tensor X

at a specific index, with Ni, M and K denoting the sizes of the

tensor along each respective dimension.

(1) Positive definiteness

For any irregular tensor X , the sum of the absolute values

of each element is non-negative, therefore, ‖X‖1 ≥ 0.

(2) Homogeneity

For any real number k and irregular tensor X , we have

‖kX‖1 =

Ni∑
i1=1

M∑
i2=1

K∑
i3=1

|kxi1i2i3 | .

= |k|
Ni∑
i1=1

M∑
i2=1

K∑
i3=1

|xi1i2i3 | . = |k| ‖X‖1

(3) Trigonometric inequality

For any two irregular tensors X and Y, we have

‖X + Y‖1 =

Ni∑
i1=1

M∑
i2=1

K∑
i3=1

|xi1i2i3 + yi1i2i3 | .
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Fig. 3. Statistical Analysis Results of the Heatmap for top 50 genes.

Applying absolute value trigonometric inequalities, then

‖X + Y‖1 ≤
Ni∑
i1=1

M∑
i2=1

K∑
i3=1

(|xi1i2i3 |+ |yi1i2i3 |)

≤
Ni∑
i1=1

M∑
i2=1

K∑
i3=1

|xi1i2i3 |+
Ni∑
i1=1

M∑
i2=1

K∑
i3=1

|yi1i2i3 |

= ‖X‖1 + ‖Y‖1 .

We have proved that the ‖·‖1 satisfies three properties of the

norm. Therefore, the ‖·‖1 is a norm. Obviously, the ‖·‖1 is a

convex function. �

We use GSVD to establish ‖L‖∗. In Lemma 2 we prove

the convexity property of ‖L‖∗. The ‖·‖∗ is defined as follows:

utilizing the common subspace S, which is derived from solving

K linear systems based on the eigenvalues of S and the irregular

tensor data X to calculate matrix B. The columns of B are

normalized to obtain the sum of singular values of the irregular

tensor.

Lemma 2 : The ‖·‖∗ defined for generalized singular value

decomposition in this paper is a convex function.

Proof Based on the irregular tensor, we take

X ∈ R(N1,N2,...,NK)×M×K , Y ∈ R(N1,N2,...,NK)×M×K ,

Z ∈ R(N1,N2,...,NK)×M×K , and Z = λX + (1− λ)Y, λ ∈ (0, 1).

According to the definition of generalized singular value

decomposition, we have

AX = X (:, :, i)
T × X (:, :, i),

AY = Y(:, :, i)
T × Y(:, :, i),

AZ = Z(:, :, i)
T × Z(:, :, i)

= λ
2X (:, :, i)

T × X (:, :, i) + ((1− λ)Y(:, :, i))
T × λX (:, :, i)

+ (λX (:, :, i))
T × (1− λ)Y(:, :, i)

+ (1− λ)
2Y(:, :, i)

T × Y(:, :, i).

Calculate S and normalize the columns of S, then we have

SX =
1

K(K − 1)

K∑
i=1

K∑
j>i

(AX (:, :, i)AX (:, :, j)
−1

+

AX (:, :, j)AX (:, :, i)
−1

),

SY =
1

K(K − 1)

K∑
i=1

K∑
j>i

(AY(:, :, i)AY(:, :, j)
−1

+

AY(:, :, j)AY(:, :, i)
−1

),

SZ =
1

K(K − 1)

K∑
i=1

K∑
j>i

(AZ(:, :, i)AZ(:, :, j)
−1

+

AZ(:, :, j)AZ(:, :, i)
−1

).

Compute the right singular vectors V and eigenvalues Λ of X ,Y,

and Z, normalize V , where the eigenvalues Λ and eigenvectors

V are real numbers[6].

SXVX = VXΛX ,

SYVY = VYΛY ,

SZVZ = VZΛZ .

Where ‖VX‖ = 1, ‖VY‖ = 1, ‖VZ‖ = 1. And the eigenvalues

satisfy

M∑
i=1

ΛZ(i, i) =
M∑
i=1

ΛλX+(1−λ)Y(i, i)

≤ λ
M∑
i=1

ΛX (i, i) + (1− λ)
M∑
i=1

ΛY(i, i).

After obtaining V , we compute B by solving K linear systems:

VXBTX = X (:, :, i)
T
,

VYBTY = Y(:, :, i)
T
,

VZBTZ = Z(:, :, i)
T
.
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Normalize the columns of B to obtain matrix σ, and then derive

the singular value matrix Σ

σXi = ‖BX‖ ,

σYi = ‖BY‖ ,

σZi = ‖BZ‖ ,

ΣX = diag(σXi),

ΣY = diag(σYi),

ΣZ = diag(σZi).

By using the eigenvalue relationship of X ,Y, and Z, the

corresponding singular values can be obtained as follows:

M∑
i=1

ΣZ(i, i) =
M∑
i=1

ΣλX+(1−λ)Y(i, i)

≤ λ
M∑
i=1

ΣX (i, i) + (1− λ)
M∑
i=1

ΣY(i, i), λ ∈ (0, 1).

Based on the above inequality, we can conclude that the ‖·‖∗
is a convex function. �

Now, we prove the convergence analysis of the proposed

algorithm as follows.

Lemma 3 (K  L Lemma): function P (L, E, y, µ) satisfies the

K  L property at each point.

Proof Based on Lemma 1 and Lemma 2, we have demonstrated

that the objective function is convex. A convex function can be

regarded as a semi-algebraic function, inherently satisfying the

so-called K  L property [5]. �

Next, we show P (L, E,Y, µ) satisfies three main lemmas.

Lemma 4 (Sufficient decrease property): there exists positive

constant ρ1, ρ2, such that

P (Lk+1
, Ek+1

,Yk, µk)− P (Lk+1
, Ek,Yk, µk)

≤ −ρ1
∥∥∥Ek+1 − Ek

∥∥∥2
F
,

P (Lk+1
, Ek,Yk, µk)− P (Lk, Ek,Yk, µk)

≤ −ρ2
∥∥∥Lk+1 − Lk

∥∥∥2
F
.

Proof According to the definition of P (L, E, y, µ) in Algorithm

1, we have

P (L, E,Y, µ) = ‖L‖∗ + λ ‖E‖1 +
µ

2

∥∥∥∥L+ E − X +
Y
µ

∥∥∥∥2
F

−
µ

2

∥∥∥∥Yµ
∥∥∥∥2
F

.

Therefore, we have

P (Lk+1
, Ek+1

,Yk)− P (Lk+1
, Ek,Yk)

= λ
∥∥∥Ek+1

∥∥∥
1

+
µk

2

∥∥∥∥∥Lk+1
+ Ek+1 − X +

Yk

µk

∥∥∥∥∥
2

F

− λ
∥∥∥Ek∥∥∥

1
−
µk

2

∥∥∥∥∥Lk+1
+ Ek − X +

Yk

µk

∥∥∥∥∥
2

F

= µ
k
< Lk+1 − X +

Yk

µk
, Ek+1 − Ek > +

λ(
∥∥∥Ek+1

∥∥∥
1
−
∥∥∥Ek∥∥∥

1
) +

µk

2
(
∥∥∥Ek+1

∥∥∥2
F
−
∥∥∥Ek∥∥∥2

F
)

= λ(
∥∥∥Ek+1

∥∥∥
1
−
∥∥∥Ek∥∥∥

1
) + µ

k
<
Yk

µk
− Ek+1

, Ek+1 − Ek >

+
µk

2
(
∥∥∥Ek+1

∥∥∥2
F
−
∥∥∥Ek∥∥∥2

F
)

≤ −µk < Ek+1 − Ek, (Ek+1 − Ek) + Ek >

+
µk

2
(
∥∥∥Ek+1

∥∥∥2
F
−
∥∥∥Ek∥∥∥2

F
) + α1(

∥∥∥Ek+1
∥∥∥
2
−
∥∥∥Ek∥∥∥

2
)

≤ −µk
∥∥∥Ek+1 − Ek

∥∥∥2
F

+ µ
k
< Ek+1 − Ek,−Ek >

+
µk

2
< Ek+1 − Ek, Ek+1

+ Ek > +α1

∥∥∥Ek+1 − Ek
∥∥∥
2

≤ −µk
∥∥∥Ek+1 − Ek

∥∥∥2
F

+
µk

2

∥∥∥Ek+1 − Ek
∥∥∥2
F

+ α1

∥∥∥Ek+1 − Ek
∥∥∥2
F

= −
µk

2

∥∥∥Ek+1 − Ek
∥∥∥2
F

+ α1

∥∥∥Ek+1 − Ek
∥∥∥2
F
.

The above three inequalities are applied to absolute value

inequality, equivalence of norm, relationship between ‖·‖2 and

‖·‖2F . For the norm ‖·‖α and ‖·‖β on any two finite dimensional

linear spaces V , there exist constant C1 and C2, for γ ∈ V , such

that

‖γ‖α ≤ C1 ‖γ‖β ,

‖γ‖β ≤ C2 ‖γ‖α .

Besides,

‖A‖ − ‖B‖ ≤ ‖A− B‖ ,∥∥∥Ek+1 − Ek
∥∥∥
2
≤
∥∥∥Ek+1 − Ek

∥∥∥2
F
.

When µk

2 > α, ρ1 = µk

2 − α > 0, we have

P (Lk+1
, Ek+1

,Yk, µk)− P (Lk+1
, Ek,Yk, µk)

≤ −ρ1
∥∥∥Ek+1 − Ek

∥∥∥2
F
.

Similarly,

P (Lk+1
, Ek,Yk)− P (Lk, Ek,Yk)

=
∥∥∥Lk+1

∥∥∥
∗
−
∥∥∥Lk∥∥∥

∗
+
µk

2

∥∥∥∥∥Lk+1
+ Ek − X +

Yk

µk

∥∥∥∥∥
2

F

−
µk

2

∥∥∥∥∥Lk + Ek − X +
Yk

µk

∥∥∥∥∥
2

F

=
∥∥∥Lk+1

∥∥∥
∗
−
∥∥∥Lk∥∥∥

∗
+
µk

2
(
∥∥∥Lk+1

∥∥∥2
F
−
∥∥∥Lk∥∥∥2

F
)

+ µ
k
< Lk+1 − Lk, Ek − X +

Yk

µk
>

=
∥∥∥Lk+1

∥∥∥
∗
−
∥∥∥Lk∥∥∥

∗
+
µk

2
(
∥∥∥Lk+1

∥∥∥2
F
−
∥∥∥Lk∥∥∥2

F
)

+ µ
k
< Lk+1 − Lk,

Yk+1

µk
− Lk+1

+ Ek − Ek+1
>

≤ β1

∥∥∥Lk+1 − Lk
∥∥∥
2

+
µk

2
(
∥∥∥Lk+1

∥∥∥2
F
−
∥∥∥Lk∥∥∥2

F
)

+ µ
k
< Lk+1 − Lk,−Lk+1

> +β2

∥∥∥Lk+1 − Lk
∥∥∥
2
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= (β1 + β2)
∥∥∥Lk+1 − Lk

∥∥∥
2

+
µk

2
< Lk+1 − Lk,Lk+1

+ Lk >

− µk < Lk+1 − Lk,Lk+1 − Lk + Lk >

≤ (β1 + β2)
∥∥∥Lk+1 − Lk

∥∥∥
2

+
µk

2

∥∥∥Lk+1 − Lk
∥∥∥2
F

− µk
∥∥∥Lk+1 − Lk

∥∥∥2
F

= (β1 + β2)
∥∥∥Lk+1 − Lk

∥∥∥2
F
−
µk

2

∥∥∥Lk+1 − Lk
∥∥∥2
F
.

If µk

2 > β1 + β2, when ρ2 = µk

2 − β1 − β2 > 0, we have

P (Lk+1
, Ek,Yk, µk)− P (Lk, Ek,Yk, µk)

≤ −ρ2
∥∥∥Lk+1 − Lk

∥∥∥2
F
.

The proof of the sufficient decrease lemma has been completed.

�

Next, we show the sequence generated by the algorithm 1

satisfies the relative error property.

Lemma 5 (Relative error property): find other positive

constants ρ3 and ρ4, such that∥∥∥ωk+1
1

∥∥∥
F
≤ ρ3

∥∥∥Lk+1 − Lk
∥∥∥
F
, ω

k+1
1 ∈ ∂P (Lk+1

),∥∥∥ωk+1
2

∥∥∥
F
≤ ρ4

∥∥∥Ek+1 − Ek
∥∥∥
F
, ω

k+1
2 ∈ ∂P (Ek+1

).

Proof For each subproblem PL(Lk+1) and PE(Ek+1), we have
0 =

∂(‖L‖∗)
∂L

+ µ(Lk+1
+ Ek − X +

Yk

µk
),

0 =
∂(λ ‖E‖1)

∂E
+ µ(Lk+1

+ Ek+1 − X +
Yk

µk
).

Substitute and scale using the following formula,

Yk+1
= Yk + µ

k × (Lk+1
+ Ek+1 − X ),

we have

µ
k
(Lk+1 − Lk) = −

∂(‖L‖∗)
∂L

− µk(
Yk

µk
+
Yk − Yk−1

µk−1
),

µ
k
(Ek+1 − Ek) = −

∂(λ ‖E‖1)

∂L
− µk

Yk

µk−1
.

Where, we define V1 and V2,
V
k+1
1 := −

∂(‖L‖∗)
∂L

− µk(
Yk

µk
+
Yk − Yk−1

µk−1
),

V
k+1
2 := −

∂(λ ‖E‖1)

∂L
− µk

Yk

µk−1
.

Then,

ω
k+1
1 : = V

k+1
1 +5LPL(Lk+1

) ∈ ∂P (Lk+1
),

ω
k+1
2 : = V

k+1
2 +5EPE(Ek+1

) ∈ ∂P (Ek+1
).

There exists ρ3 > 0 and ρ4 > 0, such that∥∥∥ωk+1
1

∥∥∥
F
≤ ρ3

∥∥∥Lk+1 − Lk
∥∥∥
F
, ω

k+1
1 ∈ ∂P (Lk+1

),∥∥∥ωk+1
2

∥∥∥
F
≤ ρ4

∥∥∥Ek+1 − Ek
∥∥∥
F
, ω

k+1
2 ∈ ∂P (Ek+1

).

The proof of the relative error property lemma has been

completed. �

Lemma 6 (Continuity): Assuming infP > −∞, show that

exists two subsequences
{
Lkt

}
t∈N

and
{
Ekt
}
t∈N

, let t→ +∞,

such that
Lkt −→ L̄, P (Lkt) −→ P (L̄),

Ekt −→ Ē, P (Ekt) −→ P (Ē).

Proof Assuming there are two convergent subsequences Lkt and

Lkt−1 that satisfy the sufficient decrease property of Lemma 3,

Lkt → L̄, Lkt−1 → K̄, for positive parameter ρ5, we have

ρ5

∥∥∥L0 − L1
∥∥∥2
F
≤ P (L0

)− P (L1
),

ρ5

∥∥∥L1 − L2
∥∥∥2
F
≤ P (L1

)− P (L2
),

.

.

.

ρ5

∥∥∥Lt−1 − Lt
∥∥∥2
F
≤ P (Lt−1

)− P (Lt).

By summing the above equations, we can obtain

ρ5

t∑
k=0

∥∥∥Lk − Lk+1
∥∥∥2
F
≤ P (L0

)− P (Lt+1
).

According to the conditions, it can be inferred that,
{
P (Lt)

}
is

decreasing and infP > −∞, there exist P̄ . Let t→ +∞, then

P (Lt) −→ P (L̄), and we have

t∑
k=0

∥∥∥Lk − Lk+1
∥∥∥2
F
≤ P (L0

)− P̄ < +∞.

we can infer that

lim
∥∥∥Lk − Lk−1

∥∥∥
F

= 0.

And we have lim
∥∥∥Lkt+1 − Lkt

∥∥∥
F

= 0.

Based on the assumed conditions, it can show that L̄ = K̄.

We denote subsequences L̄ = (L̄1, L̄2, · · · , L̄N ), then for all

Li, we have∥∥∥Lk+1
i

∥∥∥
∗

+ λ
∥∥∥Ek∥∥∥

1
+
µk

2

∥∥∥∥∥Lk+1
i + Ek − X +

Yk

µk

∥∥∥∥∥
2

F

−
µk

2

∥∥∥∥∥Ykµk
∥∥∥∥∥
2

F

≤ ‖Li‖∗ + λ
∥∥∥Ek∥∥∥

1
+
µk

2

∥∥∥∥∥Li + Ek − X +
Yk

µk

∥∥∥∥∥
2

F

−
µk

2

∥∥∥∥∥Ykµk
∥∥∥∥∥
2

F

.

Let k = kt − 1, Li = L̄i and t→ +∞, then

Lk+1
i = Lkti = L̄,

Li = L̄i = K̄.

And we can see that P (Lkt) −→ P (L̄), t→ +∞.

Similarly, there is a similar conclusion for E : show that

exists a subsequence
{
Ekt
}
t∈N

, let t→ +∞, such that

Ekt −→ Ē, P (Ekt) −→ P (Ē).

The proof of the continuity lemma has been completed. �

Now, we prove the Theorem 1.

Proof Lemma 3 establishes that the function P (L, E,Y, µ)

satisfies the K  L property, according to Lemma 4, Lemma 5

and Lemma 6, we prove the sequence
{
Lk, Ek

}
satisfies the

sufficient decrease, relative error and continuity properties.

Therefore, the sequence
{
Lk, Ek

}
globally converges to a

critical point of equation (3.2). The proof of theorem 1 is

completed. �
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Supplementary figures

The Figure 4-11 are the supplementary figures for the main

manuscripts.
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a b c

d e f
Fig. 4. Visualization of cell clusters after dimension reduction for different methods on Sim1. (a) TT-TRPCA, (b) LRTD, (c) LLRGTV, (d) t-TRPCA,

(e) LRTV and (f) GSTRPCA

a b c

d e f
Fig. 5. Visualization of cell clusters after dimension reduction for different methods on Sim2. (a) TT-TRPCA, (b) LRTD, (c) LLRGTV, (d) t-TRPCA,

(e) LRTV and (f) GSTRPCA
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a b c

d e f
Fig. 6. Visualization of cell clusters after dimension reduction for different methods on SCGEM. (a) TT-TRPCA, (b) LRTD, (c) LLRGTV, (d) t-TRPCA,

(e) LRTV and (f) GSTRPCA

a b c

d e f
Fig. 7. Visualization of cell clusters after dimension reduction for different methods on Specter. (a) TT-TRPCA, (b) LRTD, (c) LLRGTV, (d) t-TRPCA,

(e) LRTV and (f) GSTRPCA
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Fig. 8. Comparison of evaluation metrics performance of GSTRPCA and competing methods on five datasets.
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Fig. 9. Boxplots of GSTRPCA and other competing algorithms on five datasets.
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Fig. 10. Comparison of clustering performance between the GSTRPCA decomposition of irregular tensor and fill-GSTRPCA decomposition of regular

tensor on datasets Sim2, SCGEM and Specter.
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Fig. 11. Performance comparison of fill-GSTRPCA and t-STRPCA decomposition methods on datasets Sim2, SCGEM and Specter.
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