Supplementary materials

Generalized Singular Value Decomposition
(GSVD) algorithm

For the original data X € RN:XMxK
dimension of a tensor X is N; X M, each row dimension of the

the slice matrix

matrix data may be different and dimensions of the columns
are the same. When performing singular value decomposition,
GSVD algorithms are used to calculate singular values. The
difference between GSVD algorithm and traditional SVD
algorithm is that, GSVD does not directly perform singular
value algorithm on each positive slice matrix X(:,:,¢) of X.
Instead, it first preprocesses the positive slice matrix X (:,:, 1),
transposes the slice matrix product, and then calculates the
arithmetic mean to obtain a common subspace matrix S of
the same size. Then, its eigenvector matrix V is calculated for
S, then U, ¥ are obtained, and hence obtain an approximate
estimate of SVD.

The main steps for GSVD are as follows:

1. Define D; € RN XM a5 follows:

D, =U s, V7T,

Dy = Uy, V7T

Dy =UnEnV7T

2. Define the common subspace matrix S for these matrices.

A; =DI'D;,
1 —1 —1 . .
Sij = E(AiAj +A;AT), i#]

S = N(N ZZ(AA + A;ATY

i=1j5>1
= Z > s
i=1j>1
3. Obtain the singular value decomposition U, ¥, V from the

matrix S constructed above.

SV =VA,V = (vi,v2,...,00),
A = diag(Ag).

after giving V, obtain U and X by calculating matrix B:

T T
vBT = DT,

BiE(bi,l,...,bi’n), 1::1,2,...,N,
oik = lIbikll

Ei = diag(oi,k),

Through the above calculations, singular value decomposition
can be obtained for N matrices D; with different dimensions. In
the decomposition, all matrices have the same V but different
U, .

Irregular tensor nuclear norm(I'TNN)

For irregular tensors X € RN:XMXK,
which represents the sum of singular values, can be effectively

the nuclear norm,

computed using Generalized Singular Value Decomposition
(GSVD). While Singular Value Decomposition (SVD) is
typically suitable for square matrices, GSVD accommodates
non-square and sparse matrices, making it advantageous for
numerical stability in high-dimensional and sparse datasets
discussed in this context. Based on GSVD, the nuclear norm
of the new irregular tensor (ITNN) in this paper is defined as:

K
=2 > loi(X( )]

k=1 j

1. ZIIX( 5

here, o;(X(:,:,1)) denotes the i-th singular value of X(:,:,1).

Based on the aforementioned GSVD algorithm and nuclear
norm definition, the following properties hold for the irregular
tensors discussed in this paper:

(1) Positive definiteness

For any irregular tensor X, we have | X[, > 0,

Since the generalized singular values o obtained from
the GSVD are derived from B and are non-negative, their
summation is also non-negative. ||X||, = 0 if and only if X = 0.

(2) Homogeneity

For any real number a and irregular tensor X, we assume
that the irregular tensor X is composed of k matrices X, Define
X; € RNiXM For aX, we have

A =aX] X aXy,
1
Sij = E(G/QAj X (aQA]-)71 + a2Aj X (azAi)il)
1 -1 -1 . .
= J(AAT AT, i
When calculating the singular values we get

BT =ax,v— 7T

i

oik = [[bikll -
For X, we have
B = x,v~ 7,
oik = bkl -
Therefore, we get
laX|l, = lal X1,

(3) Trigonometric inequality

For any irregular tensor X and Y,
”Convergence analytic decomposition of irregular tensor
decompositions” we proved that [|X + Y|, < || X|[, + [|V]l.-

By verifying that the generalized singular value decomposition

in the section

(GSVD)-based nuclear norm satisfies all the defining properties,
we can confirm that this nuclear norm is a valid and consistent
definition for tensors.

Optimizing £, £, Y and p

In the following, we try to optimize £ and &£ using the
ADMM for the GSTRPCA method. For irregular tensor X €



RN:XMXK  fased on the L norm, the objective function of
TRPCA is as follows:

min L], + A€,
: (3.1)
st. X =L+ E,

To solve the objective function, we encounter a polynomial
optimization challenge. Then we introduces ||£]|; as the norm
for regularization of sparse terms, employing the ADMM
algorithm to achieve the model’s optimal solution. Augmented
Lagrangian multipliers are utilized to reformulate Equation
(3.1), the objective function becomes:

P(L,E.Y.p) = Ll + MEN + <V L+E-X >
(3.2)
+Llc+e— a3,

where Y is the dual variable and p is the introduced equilibrium
parameter.

Under the ADMM framework, the formula for updating
variables £*t! and £*t! can be expressed in the following
forms:

£t = argamin P(L, ek Yk, uk)

2 3.3
- Sl e 63
=argmin||L||, + — || L+ E" =X + —| ,
c 2 puk
F
ghtt — arg min P(£k+1,5, V. uk)
£
k k)2 (34)
:argmin)\HSHlJrH— £k+1+57X+y—
£ 2 puk
F
Then update irregular low-rank tensor L:
1. Apply the Generalized Singular Value Thresholding

(GSVT) algorithm to the frontal slice X(:,:,4) of each
irregular tensor data X

{U(1>75<z)’v<z)} = GSVD(X(:,:,1)). (3.5)
=1

2. Construct threshold factors related to matrix S

; 1
— (@) _
C = max[S GO i 0]. (3.6)
3. Construct an irregular low-rank tensor £
L£(,:1) =UD x @ x (vO)T, (3.7)

Following the above process, the updating rule for £ can be
obtained as follows:

k
£t =D, <X —gk— L) . (3.8)

When seeking the optimal solution for £¥1, we fix the irregular

Ek+1

low-rank tensor and Lagrange multiplier Y*, which are

not updated temporarily. Solving this optimization problem

requires the use of threshold processing operations.
YF
EF = prow, | X — £FT! — 7) , (3.9)
m

prox,(x) = max(z — p,0) + min(x + u, 0).

Afterwards, update the dual variable Y*+1:

YL kR (£k+1 4ogktt _ X). (3.10)

After completing one iteration update of the above variables,

k41

establish a new balancing parameter p for the subsequent

iteration update and adjust it using a fixed step size.

k+1 . k
p* = min(pp®, p

maz)

(3.11)

The framework of the algorithm is shown as Algorithm 1.

Algorithm 1 GSTRPCA Algorithm

Input: Given X € RViXMXK ) — 1e —5, ¢, p™%® =1le+5
and set k = 1;
1: While certain stopping criterion is not reached, do
2: Update primary variable

k
L =D, (cfg’&y—)
k
ghtt = pProx, <X — kTt y—) .

3: Compute the lagrangian multipliers
YL Pk Rkt gkt ey,

4: Update step size

k+1 . k
p* = min(pp®, 1

maz)

5: Set k:=k + 1.
Output: ckt1 gkt

Parameter analysis

In the study of this paper, we use the threshold parameter
p in Eq.(3.6) to construct the singular value matrix in
irregular low-rank tensor decomposition. This approach allows
for a significant penalization of very small singular values,
effectively diminishing the impact of noise on data analysis. In
our experiments, the choice of the singular value truncation
parameter p affects the results of our method, and we go
through the results of the subsequent downstream cluster
analyses to determine the final choice of parameter p. In the
GSTRPCA model, we control the range of values within [0,1)
by grid search. Experimental parameter selection across various
datasets yields results as depicted in Figure 1. Parameter
analysis for five single-cell multi-omics datasets enables the
determination of optimal algorithm settings. In the solution
of the irregular low-rank tensor presented in Eq.(3.6), the
parameter p is used to control the sensitivity to the data
characteristics. For instance, the real dataset 10X _inhouse, the



parameter threshold p is selected to be 0.25, this is because the
two types of data size is too different and data sparse, when
the value of p is taken to a smaller value, it will maximise the
suppression of the noise during the data processing process,
which is usually used in data If the value of p is 0, then the
behaviour of the shrinkage function will be too strong leading
to the destruction of the data structure, so the inappropriate
value of p will greatly affect the performance of the subsequent
prediction. We determined the optimal parameter selection for
different datasets through clustering experiments, details are
shown in Table 1.

During the iterative process, the augmented lagrangian
function is used to update alternately. In each updating step,
we calculate the errors separately for the low-rank component
and the sparse component. The algorithm achieves convergence
when errors are less than a predefined minimum error. Figure
2 compares the convergence curves of GSTRPCA and the
competing methods on five datasets. We can see that the errors
of GSTRPCA are much less than the ones of other methods on
these five datasets. In particular, GSTRPCA converges in the
third iteration on the real datasets, indicating that GSTRPCA
is much more precise and faster than the typical methods.
Therefore, we can conclude that GSTRPCA accelerates the
speed of convergence.

Time analysis

Time analysis is the process for evaluating the efficiency of the
algorithms. Table 2 compares the running time of GSTRPCA
and the competing methods on different datasets and we can

see that the running time of the GSTRPCA is much less than
the ones for other methods.

Feature selection

On the Specter dataset, we utilize Principal Component
Analysis (PCA) [1] to select the top 50 significant genes from
the irregular sparse tensor £ obtained through GSTRPCA
decomposition. The main steps for PCA are as follows:

1. Normalize the raw data.
2. Compute the covariance matrix of the standardized data.

3. Perform eigenvalue decomposition on the covariance
matrix to obtain eigenvalues (representing variance) and
eigenvectors (representing principal components).

4. Select principal components based on the magnitude of
their eigenvalues, where larger eigenvalues correspond to
capturing more data variance.

5. Compute scores for each sample on the selected principal
components.

Table 3 summarizes detailed information on the top 50 co-
expressed genes identified through PCA in the Specter dataset.
Figure 3 presents a heatmap depicting the expression profiles
of the top 50 co-expressed genes. In this heatmap, the color
gradient transitions from left to right, indicating relative gene

expression levels, with the left side representing high expression
and the right side representing low expression. The rows
correspond to different genes.

Convergence analysis for irregular tensor
decomposition

For the iterative updating of irregular tensors £ and
£, the updating rule at each step determines the global
convergence of the algorithm. In general ADMM alternating
iterations, proximal alternating linearization minimization
methods establish the global convergence of algorithms through
the concept of auxiliary functions in their update rules [2].
Sparse coding algorithms demonstrate their global convergence
through proofs of error boundedness, continuity, and
monotonicity [3]. In semi-algebraic problems, the regularized
Gauss-Seidel method is a common iterative solving technique
used for solving systems of linear equations [4]. Based on
the Kurdyka — Lojasiewicz property, a convergence analysis
framework is derived [5].

The objective function for irregular tensor decomposition is

as follows:
min 2], + A€,

st. X =L+ E,

where, X € RNiXMXK = p o gRNixMXK o o RNixMXK _ Now,
we introduce the KL function used to prove the convergence of
the Algorithm 1.

Definition 1 (Kurdyka-Lojasiewicz property [5]): Let f :
RY — (=00, +00] be proper and lower semi-continuous. We
have the KL property at £ € dom(9f) := {a: € RY:0f # @}
if there exist n € (0,+o0], a neighborhood U of Z, and a
continuous concave function ¢ : [0,) — [0, +00) such that:

(1) (0) = 05

(2)p is C! on (0,n) and continuous at 0;

(3)¢'(s) >0, s € (0,m);

Such that for all

uw € UN[f(@) < flz) < f(&@)+n],

the following inequality holds:

@' (f(x) — £(2))dist(0,0f(x)) > 1.

If f satisfies the KL property at each point of dom (9f), then
f is called a KL function.

The principal instrument for the proof is the following
theorem.

Theorem 1: Assuming the existence of sequence {ﬁk,gk}
{e*.e*}

1 satisfies the following conditions, then the sequence will

is KL function. If the sequence from Algorithm
globally converge to a critical point of equation (3.2).

(1) The function P(L,E,Y, p) satisfies the KL property at
each point.

(2) The sequence {Lk, 8’“} satisfies the sufficient decrease
property.

(3) The sequence {Lk, 8’“} satisfies the Relative error
property.

(4) The sequence {Ck, ex

Before verifying these conditions, we provide following

} satisfies the continuity property.

lemmas.
In Lemma 1, we establish that the ||-||; defined based on
irregular tensors satisfies convexity properties.
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Fig. 1. Sensitivity analysis of GSTRPCA parameter p in five different dataset.
Table 1. The determination for p on different datasets.
Dataset Parameter p ACC ARI AMI NMI
Sim1 0.45 99.76 99.28 99.06 99.08
Sim?2 0.95 94.98 88.67 91.35 91.57
SCGEM 0.45 92.86 82.76 83.86 84.47
Specter 0.65 70.24 56.83 68.37 68.83
10X_inhouse 0.25 95.44 92.28 92.25 92.24
Table 2. Run time(s) analysis of GSTRPCA and the competing methods on five datasets.
LRTV LLRGTV t-TRPCA LRTD TT-TRPCA GSTRPCA
Sim1 7.21 83.47 34.72 97.53 59.17 5.75
Sim2 6.42 69.65 21.34 127.65 29.70 0.92
SCGEM 0.11 2.11 0.18 2.38 0.16 0.05
Specter 23.89 137.89 176.81 160.28 155.87 21.67
10X _inhouse 101.26 799.17 442.07 828.95 836.59 27.84
Table 3. The top 50 genes with the highest scores on the Specter dataset and their scores.
Rank Gene Score Rank Gene Score
1 hgl9_MEDS8 41.66 2 hgl9_RPA2 38.94
3 hgl9_ZFP69 35.32 4 hgl9_ KDMI1A 35.18
5 hgl19_LUZP1 34.11 6 hgl19_-TMEM69 29.61
7 hgl9_CAPZB 29.59 8 hgl9_NMNAT1 27.52
9 hg19_.OTUD3 27.01 10 hgl19_Clorfl67 26.89
11 hgl9_EXTL1 26.62 12 hgl9_LINCO01715 25.16
13 hgl9_KIAA1522 23.29 14 hgl9_ TMEMS50A 23.07
15 hg19_LINC01646 22.91 16 hgl9_SLC25A34 22.78
17 hgl19_LINC01648 22.74 18 hgl19_SLC6A9 22.19
19 hgl9_NUDC 21.44 20 hgl9_PADI2 20.94
21 hgl9_CATSPER4 20.17 22 hgl19_.CMPK1 19.52
23 hgl9_RNF207 19.37 24 hgl19_BTBD19 19.27
25 hgl9_DRAXIN 18.98 26 hgl9_KIAA2013 18.93
27 hgl9_FAMI183A 18.81 28 hgl9_PADI4 18.58
29 hgl19_-GPR3 18.26 30 hgl19_PHF13 18.13
31 hgl9_ATAD3B 17.36 32 hgl9_TPRGI1L 16.92
33 hgl19_KCNQ4 15.71 34 hgl9_LINCO01141 15.59
35 hgl9_PADI1 15.53 36 hgl9_PLA2G2D 15.33
37 hgl19_GPN2 15.19 38 hgl9_ANKRD65 15.12
39 hg19_.CROCC 14.83 40 hgl9_RAB42 14.72
41 hgl9_FAM138A 14.66 42 hgl9_ KHDRBS1 14.64
43 hgl9_NCDN 14.40 44 hgl19_UTP11 14.39
45 hgl9_FAM229A 14.38 46 hgl19_TAS1R2 13.81
47 hgl19_ICMT 13.67 48 hgl9_TNFRSF14-AS1 13.60
49 hgl19_ZBTB48 13.51 50 hgl19_MINOS1 13.46
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Fig. 2. The convergence speed of LRTV, LLRGVT, t-TRPCA, LRTD, TT-TRPCA and GSTRPCA when the number of iterations increases from 1 to

100 on five datasets.

Lemma 1 : The ||-||; defined in this paper is a convex

function.

Proof The ||-||; is defined as:

N, M

Z Z i |wi1i2i3

i1=1iy=11i3=1

i, =

Where, x;,;,:, represents an element of the irregular tensor X
at a specific index, with N;, M and K denoting the sizes of the
tensor along each respective dimension.

(1) Positive definiteness

For any irregular tensor X, the sum of the absolute values
of each element is non-negative, therefore, ||X||; > 0.

(2) Homogeneity

60 0 80 % 0

For any real number k and irregular tensor X, we have

kXl

N;
i=1

M
ir=1
N;
Ikl >
ii=1

i

i
M
o=

(3) Trigonometric inequality

K
3=
1

|k, i,
1

K

S miiginl - = K IX]],
ig=

For any two irregular tensors X and ), we have

N;
X+, =

M K
Z Z |Tiyinis + Yirigisl -

i1=11dp=1i3=1



Score

Fig. 3. Statistical Analysis Results of the Heatmap for top 50 genes.

Applying absolute value trigonometric inequalities, then

N, M K
X+ Y, < DD Umirisy |+ [sri0s,|)
i1=1ip=17i3=1
N, M K N,
= 5D D SINES 3B b SIN
ir=1ig=1i5=1 iy=11dy=11i3=1
=X + 1Yy -

We have proved that the ||-||; satisfies three properties of the
norm. Therefore, the ||-||; is a norm. Obviously, the |-||, is a

O

convex function.

We use GSVD to establish ||L||,. In Lemma 2 we prove
. The |||, is defined as follows:
utilizing the common subspace S, which is derived from solving

the convexity property of ||L]|,

K linear systems based on the eigenvalues of S and the irregular
tensor data X to calculate matrix B. The columns of B are
normalized to obtain the sum of singular values of the irregular
tensor.
Lemma 2 : The |||,

decomposition in this paper is a convex function.

defined for generalized singular value

Proof Based on the irregular tensor, we take

XGR(NI’N2 ..... Ng)XMXK yER(Nl’N2 ..... NK)><M><K

Z e RV N2 NK)XMXK, and Z = AX + (1 — \)Y, A € (0,1).
According to the definition of generalized singular value

decomposition, we have

Ax = X(, 507 x X(:, 1, 1),
Ay = V(50T X V(:10),
Az = Z(:,1, )T x Z(;,1,4)
= N6 X X (58 + (L= NV ))T X AX 3 6)

+ (AX(G )T x (1= NV, 9)

F (1= N2V )T X V().

> 5
& \;9&@»3’ &

o
RS
N
6«@&“

Calculate S and normalize the columns of S, then we have

S = (A (a vl)A (’ *y )
X K(K ;; X X J
Ax (i) Ax ()7,

S = (A (» 7Z)A (7 .y )_
hY% K(K ;Jz;l v h% J

Ay(l,:,j)Ay(l,Z,’L’)il),

S = < (A ( ’ 71)A ( 30 )
=z K(K ;; =z z J

Az(:,:,j)Az(:,:,i)_l).

Compute the right singular vectors V and eigenvalues A of X', ),
and Z, normalize V', where the eigenvalues A and eigenvectors
V' are real numbers[0].

SxVx = VxAx,
SyVy = VyAy,
SzVz =VzAz.

Where [|[Vx||
satisfy

=1, [[Vy]| =1, ||[Vz|| = 1. And the eigenvalues

M M
D oAz =Y Axra-xny(ii)
i=1 =1
M M
SAD Ax(iyi) + (1= X)) D Ay (i, ).
1=1 =1

After obtaining V', we compute B by solving K linear systems:

VaBE = x(:,5,0)7
VyB§ = y(:7 ) Z)T

VeBL = 2, ., )7



Normalize the columns of B to obtain matrix o, and then derive
the singular value matrix 3

ox, = |I1Bx|,
oy, = 1By,
oz, =Bzl

Yx = diag(ox,),
Yy = diag(oy,),
EZ = diag(azl).

By using the eigenvalue relationship of X,), and Z, the
corresponding singular values can be obtained as follows:

M M
D> Bz(i1) =Y Saxga-ny (i)

i=1 i=1
M M
<MD Sa(i i)+ (1 =N D Sy(i,6), A € (0,1).
i=1 1=1

Based on the above inequality, we can conclude that the |||,
is a convex function. 0O

Now, we prove the convergence analysis of the proposed
algorithm as follows.

Lemma 3 (KL Lemma): function P(L, &, y, u) satisfies the
KL property at each point.

Proof Based on Lemma 1 and Lemma 2, we have demonstrated
that the objective function is convex. A convex function can be
regarded as a semi-algebraic function, inherently satisfying the
so-called KL property [5]. O

Next, we show P(L,E,Y, 1) satisfies three main lemmas.
Lemma 4 (Sufficient decrease property): there exists positive
constant p1, p2, such that

A (AR T

2
)

<ol - e
P(ﬁk"'l,é'k,yk,,uk) _ P(ﬁk,gk,yk,uk)

2
S Ca
F

Proof According to the definition of P(L, £, y, 1) in Algorithm
1, we have

u Y2
P(L,&,Y,m) = LI + A€l + 5 £+5*X+;

F

_eY
2l p

2
F
Therefore, we have

P(£k+1,£k+l,yk) _ P(£k+175k,yk)

2

:/\HngHl_'_%kHﬁkﬂ_’_gkﬂ_X_i_%:
F
e, - e ver - 22|
F

k
:u’“<z:’““—X+y—k,£k“—£k>+
o

Y R S el A

P

—adle - et )+t < %: gt gt _gh s

N e

< 7P‘k < gkt _ gk7 (5k+1 _ gk) +&F >

P e+ endfe, - el

< 7uk Hgk-u _ ngi +Mk < ERHL gk gk
Mk

+ 7 < gk+1 78k’8k+1 Jrgk > toy H8k+1 o ngz

IN

R e e e

k 2 2
S G P Canbt v
2 F F

The above three inequalities are applied to absolute value
inequality, equivalence of norm, relationship between ||-||, and
||I-|I% . For the norm |||, and ||- || 5 on any two finite dimensional
linear spaces V, there exist constant C; and Cs, for v € V, such
that

7l < Cullvllg

Ivlls < C2 07l -

Besides,
Al = 1Bl < [|1A = BJl,

ghtt _ gkl < |lgmtr _ gk|)?

When%k>a,p1:“7k—a>0,wehave

P(EMTH R YR, ub) — PeRT €, 98, )
2
<o e
F
Similarly,

PN e Yh) — Pk, g8, vF)

2

k k
:Hﬁk+1 _Hl:k A o R P
* * 2 ,uk =
k k|2
S o
2 R L

= e+ e e

-[l

k
+Mk<Lk+l_£k7gk_X+%>

= e+ e e

-[l

k k+1 kyk+1 k+1 k k+1
A S M AT A

B e e

<p et -t -
2 F

+'uk < LRTY gk _pktl s g H£k+1 _EkH2



k
:(B1+62)“£k+1_ﬁku2+%<£k+1_£k,£k+1+£k>
_,uk < [kt _ﬁk’Lk+1 _Ek+£k >

2

< (B + B2) HL"'“ — g’“H + %k H£k+1 _ EkHF

e
F

2

=Gt et - e - et - e
It 4° > B1 + fo, when po = %4 — 81 — f2 > 0, we have
PLFFY R YR uky — PR ER VR, i)
<o et -2

The proof of the sufficient decrease lemma has been completed.

O

Next, we show the sequence generated by the algorithm 1
satisfies the relative error property.

Lemma 5 (Relative error property): find other positive
constants pz and p4, such that

o] < el =t i e opeety,

o, < oo o], o copte

Proof For each subproblem P, (£*t1) and Pg(£%11), we have

a(ll£ll,) kb1, ok y*
0= 2= L e —x + ),
5L + u( + + #N
O IENL) kb1l | kil Yk
0= "1 C ghtl _x 4 2.
DE + nu( + + u’“)

Substitute and scale using the following formula,

PREL — Yk R (oR g gR ),

we have
all£ll.) RN Vi
k k+1 k * k
cht_phy= 222l b
p( ) OL u(uk+ 1 )s
o Elly) R
k k+1 k 1 k
ghtl _ghy=— - .
e ( ) 3L W

Where, we define V7 and Vs,

yht1 _ _od£ll) k(yik+yk*yk71)
1 T EYs K uk k=1 ’
o(XE€lly) y*
k+1 1 k
V, = — DL — P

Then,
with o= VT L g P (LM € aP(LM T,
WhHL = v L e Pe (R € aP(ERTY).
There exists p3 > 0 and ps > 0, such that
ool <ot -2, ot corene
P R [

The proof of the relative error property lemma has been
completed. O

Lemma 6 (Continuity): Assuming infP > —oo, show that
exists two subsequences {Ek‘} and {Ek‘} , let t — 400,
teN teN
such that

£ — £, PP — P(D),

g 4, P(E™) — P(&).

Proof Assuming there are two convergent subsequences £** and
L%~ that satisfy the sufficient decrease property of Lemma 3,
Lk — £, £k~1 - K, for positive parameter ps, we have

ps |0 = 2| < P’ - P,

ps et = 22| < Pt - P,

P "Et—l _rt

2
< P(LTY = P(LY).
F
By summing the above equations, we can obtain
t
E k1|2 < 0y t41
ps > HE c HF < P(£°%) — P(ctTh.
k=0
According to the conditions, it can be inferred that, {P(£")} is
decreasing and infP > —oo, there exist P. Let t — 400, then
P(L') — P(L), and we have
¢ 2 _
S HL" - L’““H < P(L°) — P < +oo.
k=0 F
we can infer that

lim Hc’“ - £k_1H —0.
F

And we have lim Hﬁk‘“ — Lk = 0.
F o
Based on the assumed conditions, it can show that £ = K.
We denote subsequences £ = (L1, L2, - ,Ln), then for all
L;, we have
k k|2 k k2
s | +xle¥]), + 5 [leitt + & _ap 2| o2
x 1 2 uk 2 || pk
F F
K k|2 K k|2
<lesll, +A||e¥]|, + & covet—xy || Y
1 2 uk 2 || pk
F F
Let k =k, — 1, £L; = £; and t — +o0, then
Lttt =i =L,
L;=L; =K.
And we can see that P(L*) — P(L), t — +oo.
Similarly, there is a similar conclusion for £ : show that

exists a subsequence {Ek‘} , let t = 400, such that
teN

g 5, PEM) — P&).

The proof of the continuity lemma has been completed. [
Now, we prove the Theorem 1.

Proof Lemma 3 establishes that the function P(L,&,Y,u)
satisfies the KL property, according to Lemma 4, Lemma 5
and Lemma 6, we prove the sequence {ﬁk,gk} satisfies the
sufficient decrease, relative error and continuity properties.

Therefore, the sequence {Lk,gk} globally converges to a
critical point of equation (3.2). The proof of theorem 1 is
completed. O



Supplementary figures

The Figure 4-11 are the supplementary figures for the main

manuscripts.
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Fig. 4. Visualization of cell clusters after dimension reduction for different methods on Siml. (a) TT-TRPCA, (b) LRTD, (c) LLRGTV, (d) t-TRPCA,

(e) LRTV and (f) GSTRPCA
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Fig. 5. Visualization of cell clusters after dimension reduction for different methods on Sim2. (a) TT-TRPCA, (b) LRTD, (c¢) LLRGTV, (d) t-TRPCA,

(e) LRTV and (f) GSTRPCA



after TT-TRPCA dir lity reduction visualization after LLRGTV dimensionality reduction visualization after LRTD dimensionality reduction
0
- P P
*. W7D (SRR
¥
5 5 ' 5 - -
L * - - ~—— o
P P Iy N S, ~ v
E i L0 8
P =5 .
1. 3
5 5 *
’ » N %
.. 5 .~
ol - _n_"‘ 3 v &Y ]
= s B > m o - 0 E ®
UMAP 1 UMAP 1 UMAP 1
a c
after - TRPCA di lity reduction after LRTV di ity reduction after GSTRPCA di lity reduction
»
- & IR
5 .t\'i. 5 ol
*d,
0 A
N . o o
i ~ ol
. ¥
1 ot
o
5 5
% R wnf il
D - v m 5 = 5 m = 0 g
e 1 e 1 e 1
d e f

Fig. 6. Visualization of cell clusters after dimension reduction for different methods on SCGEM. (a) TT-TRPCA, (b) LRTD, (¢) LLRGTYV, (d) t-TRPCA,

(e) LRTV and (f) GSTRPCA
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Fig. 7. Visualization of cell clusters after dimension reduction for different methods on Specter. (a) TT-TRPCA, (b) LRTD, (c¢) LLRGTV, (d) t-TRPCA,
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Fig. 8. Comparison of evaluation metrics performance of GSTRPCA and competing methods on five datasets.
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Fig. 10. Comparison of clustering performance between the GSTRPCA decomposition of irregular tensor and fill-GSTRPCA decomposition of regular
tensor on datasets Sim2, SCGEM and Specter.
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Fig. 11. Performance comparison of fill-GSTRPCA and t-STRPCA decomposition methods on datasets Sim2, SCGEM and Specter.
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