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Figure S1. Analysis of facial similarity among the patients. (a) Pairwise rank matrix and hierarchical clustering of the five
images. Each column represented the result of the rank of the rest four images in each row when analyzing one image in the
column. The smaller the rank was, the closer the two images were in the phenotype space, and the more similar the two
images were. For example, by testing image 1-1ll, image 1-1lI-2 was on the 1st rank, and 3-lll was on the 2nd rank. Images 1-ll
(10-years-old) and 1-11l-2 (5-years-old) were taken from the same patient 1-lll at different ages. Patients 1-1ll and 1-V are family
members. (b) Pairwise distance matrix and hierarchical clustering of the five images. Each cell represented the cosine distance
between two images. The smaller the distance was, the closer the two images were in the phenotype space and the more
similar the two images were. For example, 3-1ll was more similar to 1-lll than to 1-lll-2, because the distance of 0.64 was
smaller than 0.71. Images 1-lll (10-years-old) and 1-1lI-2 (5-years-old) were taken from the same proband 1-Ill at different ages.
Patients 1-lll and 1-V are family members.
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Figure S2. Clinical features of patients with TOMM7 p.P29L variant. (a) Dystrophic nails of the probands. (b) Fundus
photography showing macular scars of the 2-year-old patient 1-V. (c) Whole body bone X-ray of proband 3-lII.
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Figure S3. Recurrent TOMM7 p.P29L variant in three unrelated families. (a) Representative IGV image of NGS showing
homozygous missense variant of TOMM?7 in patients and heterozygous in their parents. (b) The total sum of runs of
homozygosity (SROH) and the number of runs of homozygosity (NROH) were calculated from exome sequencing results of the
family members (parents in black dot, probands in red triangle) and an unrelated control (green square). (c) Runs of
homozygosity (ROH) with exome sequencing data showing genomic regions with ROH spanning over one million bases (blue
lines). TOMMY7 is located in the shared ROH on chromosome 7 among patients (orange triangle).
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Figure S3. Recurrent TOMM7 p.P29L variant in three unrelated families. (a) Representative IGV image of NGS showing
homozygous missense variant of TOMM?7 in patients and heterozygous in their parents. (b) The total sum of runs of
homozygosity (SROH) and the number of runs of homozygosity (NROH) were calculated from exome sequencing results of the
family members (parents in black dot, probands in red triangle) and an unrelated control (green square). (c) Runs of
homozygosity (ROH) with exome sequencing data showing genomic regions with ROH spanning over one million bases (blue
lines). TOMMY7 is located in the shared ROH on chromosome 7 among patients (orange triangle).
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Figure S5. Differentiation and functional assays in CRISPR-edited iPSCs-derived endothelial cell. (a) Cell morphology of
iPSCs, iPSC-derived mesodermal cells and iPSC-derived endothelial (iEndo) cells. (b) Representative flow cytometry for
PDGFRA-positive cells on day 2 of differentiation. (c and d) Results from RNAseq showing read count of markers for iPSCs
(NANOG and OCT4), mesodermal cells (T, HAND1, and PDGFRA) and endothelial cells (HAND1, PDGFRA and CDH5) in iPSCs
(b) and iEndo cells (c). (e) Immunoblotting with anti-TOM7 and anti-TOM40 antibodies in whole-cell lysate and in
mitochondria-enriched lysates from iEndo cells. WT, wild-type; Het, heterozygous TOMM7+P.: Homo, homozygous
TOMM7PYPL: KO, TOMM7 knock-out TOMM77-. Data were presented as mean + S.E.M.
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Figure S6. Mitochondrial quality control and functional assays in iPSC-derived endothelial cells with TOMM?7 variant. (a)
Initiation of mitochondrial mitophagy monitored by the accumulation of full-length PINK1 precursor. The cleaved form of
PINK1 was detected with the treatment of proteasome inhibitor MG132. iEndo cells were treated with 20 mM CCCP and/or
10mM MG132 for 6 hr and lyzed for immunoblotting. FL, full-length; A, cleaved. *, non-specific bands; red triangle, TOM7. (b)
Quantification of full-length PINK1 in iEndo cells in (a). (c) Extension data of Figure 3e. Representative confocal images
of immunofluorescent staining with anti-TOM40 (Red; staining mitochondria) and DAPI in iEndo cells. White arrowheads
indicate large, round mitochondria. Green arrows indicate elongated mitochondria. (d) Tracing of Complex | activity and
Complex Il activity at 30-sec intervals for 10 min in iEndo cells. (e) NAD*/NADH level in iEndo cells. (f) Quantification of the
staining of MitoSOX in iEndo cells by flow cytometry. WT, wild-type; Het, heterozygous TOMMZ7+/P. Homo,
homozygous TOMM7P/PL: KO, TOMM?7 knock-out. Data were presented as mean £ S.E.M. *P < 0.05, **P < 0.01, ***P < 0.001.
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Figure S7. Developmental defects and cerebral vessel dysmorphism in tomm?7-deleted zebrafish. (a) Targeted sequencing of
tomm?7 in F1 zebrafish from backcross of FO generation (obtained by the backcross of injected mosaic zebrafish to WT
zebrafish) to WT zebrafish. Four representative frameshift mutations in tomm7 were shown. (b) Targeted sequencing of
tomm7 in FO zebrafish viewed with integrative genome viewer (IGV) showing heterozygous deletion of tomm?7. (c)
Confirmation of tomm7-deletions by Sanger sequencing. (d) Chi-square test of comparisons of observed ratios of +/+, +/A,
and A/A F1 generation from the tomm?7-deleted intercross with expected Mendelian ratio (25%, 50%, 25%) at 48 hpf and 96
hpf. Statistical analysis was performed using the chi-square goodness-of-fit test (e) Morphology of tomm7-deleted embryos
from 3.5 hpf to 96 hpf. (f) Quantification of body length of tomm?7 zebrafish at 96 hpf. Statistical analysis was performed using
Kruskal-Wallis test with Dunn's post hoc test for multiple comparisons. WT, N=19; +/A, N=34; A/A, N=14. (g) Representative
images of intersegmental vessels (ISVs) in Tg(flila: EGFP) tomm?7 zebrafish at 48 hpf. Scale bars, 100 um. (h) Quantification of
ISV diameter in tomm?7 zebrafish at 48 hpf. The diameter of six ISVs from individual embryo was measured by Image)
software. Statistical analysis was performed using Kruskal-Wallis test with Dunn's post hoc test for multiple comparisons. WT,
N=2; +/A, N=6; A/A, N=3.
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Figure S8. Mitochondrial respiration in iPSCs with TOMM?7 variant. (a) Representative oxygen consumption rate (OCR)
analysis using the Seahorse Mito Stress Test with 3.5x10* iPSCs. Oligo., oligomycin; FCCP, carbonyl cyanide-p-
trifluoromethoxyphenylhydrazone; Rot, rotenone; AA, antimycin A. (b) Basal respiration, ATP-coupled respiration, maximal
mitochondrial respiratory capacity, proton leak-linked respiration, percentage of respiration used for ATP synthesis, and spare
respiratory capacity were calculated from the representative assay (a). Statistical analysis was performed using Kruskal-Wallis
test with Dunn's multiple comparisons test. (c) Immunoblotting of differentially abundant protein components in whole-cell
lysate and mitochondria-enriched lysates from iPSCs cells. (d) Quantitative analyses of the level of ATP5A in whole-cell or
mitochondria-enriched lysates from (c). WT, wild-type; Het, heterozygous TOMM7+/Pt: Homo, homozygous TOMMZ7PL/PL; KO,
TOMMY7 knock-out. Data were presented as mean = S.E.M. *P < 0.05, **P < 0.01, ***P < 0.001.
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Figure S9. Transcriptome analysis in homozygous vs. heterozygous iPSCs. (a) Gene set enrichment analysis showing positively
enriched Hallmark dataset in TOMM7PYPL cells when compared with TOMM7+/PL cells. (b) Category network plot showing the
linkage of significantly upregulated Hallmark gene sets in TOMMZ7P/PL cells when compared with TOMMZ7+/Pt cells. (c) Gene set
enrichment analysis showing negative enriched GO terms in TOMM7P/PL cells when compared with TOMM7+/P cells. (d) Category
network plot showing the linkage of significantly downregulated GO terms in TOMM7PYPt cells when compared with TOMM7+/Pt
cells. (e) Dotplot showing the ratio of enriched genes in representing 11 significantly activated and suppressed GO terms in
TOMM7PYPL cells when compared with TOMMZ7+/PL cells. WT, wild-type; Het, heterozygous TOMM7+Pl: Homo, homozygous
TOMM7PLPL: KO, TOMM?7 knock-out.
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Figure S10. Transcriptome analysis in homozygous vs. WT iPSCs. (a) Dot plot showing the ratio of enriched genes in
representing 12 significantly activated and suppressed GO terms in TOMM7PL/PL iPSCs when compared with WT cells. (b)
Heatmap showing the unsupervised cluster of cell samples based on top 50 differentially expressed genes (identified by
comparing TOMM7PL/PL with WT iEndo cells). (c) Venn diagram showing the number of shared or unique differentially expressed
genes in iPSCs among TOMM?7 variants (when compared with WT). WT, wild-type; Het, heterozygous TOMM7+/PL: Homo,
homozygous TOMMZ7P/PL: KO, TOMM?7 knock-out TOMM77.
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Figure S11. Transcriptome analysis in TOMM?7 knockout vs. WT iPSCs. (a and b) Gene set enrichment analyses showing
significantly upregulated and downregulated Hallmark gene sets (a) and GO terms (b) in TOMM?7/- cells when compared with WT
cells. (c) Category network plot showing the linkage of upregulated and downregulated genes and Hallmark datasets in TOMM77-
cells when compared with WT cells. (d) Dotplot showing the ratio of enriched genes in representing 20 significantly activated or
suppressed GO terms in TOMM77- cells when compared with WT cells. WT, wild-type; Het, heterozygous TOMMZ7+/PL: Homo,
homozygous TOMMZ7PL/PL; KO, TOMM?7 knock-out, TOMM?77-.
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Figure S12. Reprogramming of iPSCs from patient 1-1ll’'s PBMCs. (a) Karyotyping with metaphase spreads of reprogrammed
iPSCs at P12/P5 (P12 represented the total passage number, including 7 passages cultured in feeder-dependent and 5 more
passages after shifting to the feeder-free cultivation). (b) Transgene-free confirmation was done with iPSCs at P8. (c)
Pluripotency markers were evaluated by RT-PCR of reprogrammed iPSCs at P12/P5 with primers of Nanog, OCT4, and SOX2. (d)
Pluripotency markers were evaluated in reprogrammed iPSCs at P12/P5 by flow cytometry of IBMS-iPSC-091-01 P16/P9 with
SSEA4, TRA-1-60, TRA-1-81, OCT4, SOX2, and Nanog (e) Pluripotency markers were evaluated by immunochemistry in
reprogrammed iPSCs at P12/P5 staining with SSEA4, SOX2, TRA-1-60 and OCTA4. (f) Teratoma formation with reprogrammed
iPSCs (P12/P5) injected into 8 weeks old NOD/SCID mice’s testes were harvested 8 weeks later and stained with Hematoxylin
and Eosin stain.
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Figure S13. Mitochondrial respiration in fibroblasts derived from CRISPR-edited patient’s iPSC.
(a) Workflow of deriving fibroblasts from iPSCs reprogrammed from PBMC of patient 1-lll without CRISPR/Cas9 editing. (b)
Results from real-time quantitative PCR showing markers for iPSCs (NANOG and OCT4) and fibroblasts (COL1A1, CD10 and CD73)
in iPSC-derived fibroblasts (iFibro). (c) Cell morphology of iPSCs, embryoid bodies (EB) and iPSC-derived fibroblasts (iFibro). (d)
Representative confocal images of immunofluorescent staining with anti-Vimentin or COL1A1 (Red) and DAPI in iFibro. (e)
Immunoblotting with anti-ATP5A in whole cells and in mitochondria-enriched lysates from iFibro. (f) Quantitative analyses of the
level of ATP5A in (e). (g) Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) measured by the Seahorse
Mito Stress Test with 3x10* iFibro cells. Oligo., oligomycin; FCCP, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone; Rot,
rotenone; AA, antimycin A. (h) Basal respiration, ATP-coupled respiration, maximal mitochondrial respiratory capacity, proton
leak-linked respiration, non-mitochondrial respiration, percentage of respiration used for ATP synthesis, spare respiratory
capacity calculated from one representative experiment (g). Statistical analysis was performed using Kruskal-Wallis test with
Dunn's multiple comparisons test. (i) Rate of ATP production from mitochondrial respiration or glycolysis. Statistical analysis of
mitochondrial ATP and glycolytic ATP was performed using the Kruskal-Wallis test followed by Dunn's post hoc test, with
comparisons made to WT cells for each parameter. Edited WT, CRISPR/Cas9 corrected TOMM?7 wild-type single colonies isolated
from reprogrammed patient 1-lll iPSCs. Edited KO, CRISPR/Cas9-mediated TOMM?7 knockout single colonies isolated from
reprogrammed patient 1-lll iPSCs. Data were presented as mean * S.E.M. *P < 0.05, **P < 0.01.
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