Supplementary information

Fludarabine increases nuclease-free AAVand CRISPR/Cas9-mediated homologous recombination in mice

In the format provided by the authors and unedited

Supplementary Figure 1| Various small molecule compounds enhanced rAAV transduction

The effect of various compounds on standard rAAV transduction was tested in Huh7 cells. Cells were treated with each compound at the indicated concentration and transduced with an AAVDJ vector expressing Fluc from the CAG promoter. Data is compared to relative luciferase activity of control (DMSO-treated) cells. Data is representative of two independent experiments, each with three biological replicates. Data is displayed as the group mean with error bars representing s.d.; n=3 replicate wells. Significance testing was performed by a one-way ANOVA with Dunnett's multiple comparison test. A single asterisk (*) represents a p-value of <0.05, ** is <.01, *** is <.001, and **** is <.0001; ns is not significant.

Supplementary Figure 2| Genomic DNA analysis to validate correct integration at the albumin locus in the liver of mice.

a, Schematic of the gene targeting Alb-P2A-hF9 vector integrated at the albumin genomic region. Also shown are positions of PCR primers (black arrows) used for qualitative analysis on on-target genomic integration. Primers Fw1 (binding in the *Alb* genomic locus) are used for initial amplification of integration junctions.

b, Junction capture PCR samples were run on agarose gels to detect genomic integration in the right homology arm region (above). PCR amplification of endogenous albumin locus was used as a control (below) (primers Fw2 and Rv). This data is from one independent experiment.

c, Agarose gel image of nested PCR reactions from each fludarabine-treated mouse is shown. Each well represents amplification from an individual mouse, while 'e' represents an empty well. This data is from one independent experiment.

d, Nested PCR amplicons, using primers Fw3 and Rv2 (expected product size of 1.5kb), from fludarabine-treated mice samples were Sanger sequenced. DNA was extracted from the gel and cloned into a plasmid for sequencing analysis using TOPO cloning. Sanger sequencing confirmed on-target genomic integration of the P2A-hF9 cassette without indels or mutations.

Supplementary Figure 3| FACS sorting of GFP+ hepatocytes

4-week-old male mice were injected with rAAVDJ-Alb-P2A-GFP ($2x10^{12}$ vg/mouse) and PBS or Fludarabine, as described previously (n=2 per group). Two-weeks later, hepatocytes were isolated by liver perfusion and dissociation, then FACS sorted for GFP positivity. Example of gating is shown for (a) a negative control non-injected mouse, (b) a mouse injected with PBS and rAAVDJ-Alb-P2A-GFP, (c) a mouse injected with Fludarabine and rAAVDJ-Alb-P2A-GFP.

Supplementary Figure 4| ddPCR analysis of on-target homologous recombination in GFP+ FACS sorted hepatocyte gDNA

a, 4-week-old male mice were injected with rAAVDJ-Alb-P2A-GFP (2x1012 vg/mouse) and PBS or fludarabine (375 mg/ kg/day) for three days (n=2 per group). Two-weeks later, hepatocytes were isolated by liver perfusion and dissociation, then FACS sorted for GFP positivity. FACS sorting was conducted using 'yield' mode, as opposed to 'purity' mode, which could result in a sorted population that is enriched but not purely GFP+.

b, gDNA was extracted from GFP+ hepatocytes and used for ddPCR reactions which amplified an untargeted region of mouse Alb (primers fw1 and rv1) (HEX probe) to quantify total Alb copies. Simultaneously, Alb alleles containing on-target integration of P2A-GFP were quantified using primers fw2 and rv2 (FAM probe).

c, The total number of GFP+ hepatocytes from the gated population during FACS sorting is shown. Bars are group average and each point represents average data from one animal.

d, The percentage of Alb alleles containing on-target integration of P2A-GFP out of total Alb copies is shown. Note the ploidy status of these hepatocytes was not determined and may range from diploid to octoploid or even more, meaning a single hepatocyte can contain many copies of Alb. Bars are group average and each point represents average data from one animal.

b

Supplementary Figure 5| Fludarabine treatment in neonatal mice does not lead to tumorigenesis or overt toxicity to the liver.

a, Neonatal mice were injected with i.p. with PBS (n=3) or Fludarabine (375 mg/kg) (n=4) and four hours later with rAAV8 -Alb-P2A-hF9 (2.5x10¹³ vg/kg) at one week of age. Fludarabine was administered once more, one day after vector injection. 157 days later, animal livers were collected, fixed in 10% formalin, and sectioned for H&E staining. H&E slides were examined in a blinded manner by a pathologist for analysis of liver condition. Three representative H&E images are provided for two example mice, one female (F) and one male (M), per group. Scale bar is 300 µm.

b, At the time of collection, livers were weighed and are given as the percentage of total body weight. Data is displayed as the group mean with error bars representing s.d. Significance was determined using a two-tailed Student's t-test.

Supplementary Figure 6| Delayed dosing of fludarabine failed to increase the efficiency of gene targeting; administration increased the efficiency of gene targeting at the *ApoE* locus *in vivo*

a, Mice were injected i.v. with rAAV8 Alb-P2A-hF9 targeting vector (1.0E11 vg/mouse). Plasma samples were collected at Day 22 and analyzed for hF9 levels via ELISA. Animals were then grouped for equal expression between a control and treatment group. n=2 per group.

b, Next, PBS (control) or fludarabine (125 mg/kg) was administered i.p. three times per day for three days (days 28-30 post vector-injection). hF9 protein levels were then determined 24 days later

c, 4-week-old mice were treated with Flu (375 mg/kg/day) for three days and injected with 1.0E11 vg of a gene targeting vector, rAAV8-ApoE-P2A-hF9, targeting the murine ApoE locus. Serum was collected at various times across a nearly 60-day time course and hF9 protein levels were determined. Data is displayed as the group mean with error bars representing s.e.m.; n=4 mice per group. Significance was determined using a two-way ANOVA testing.

Supplementary Figure 7| The effect of fludarabine administration on promoter-driven rAAV transduction and the processing of rAAV genomes from ssDNA to dsDNA in cell culture

Flu (125 mg/kg) was administered i.p three times per day for three days in 4-week-old mice. The mice were also injected i.v. with a rAAV8 vector expressing hAAT from the HLP promoter (3.0E10 vg/mouse) on the first day of drug treatment. Blood was collected at indicated time points and liver tissues were extracted at the end of the time course.

a, Serum hAAT protein levels were determined via ELISA for an 80-day time course. Data is displayed as the group mean with error bars representing s.d.; n=3 mice per group. Significance was determined using one-way ANOVA with Sidak's multiple comparisons test.

b, Total RNA was extracted from liver tissues at three days and 11 weeks, then qPCR was performed to quantify hAAT mRNA expression. Actb mRNA was used for normalization and data shown as relative expression to the PBS-treated group. Data is displayed as the group mean with error bars representing s.d.; n=3 mice per group. Significance was determined using an unpaired two-tailed t test. P-value for the Day 3 mRNA level was .0005 and .568 at Week 11.

For c-d, Huh7 cells were treated with control DMSO or RNR inhibitors, hydroxyurea (HU) (5mM) or fludarabine (Flu) (100µM), for 16 hours and transduced with an AAVDJ CAG-promoter expressing Fluc vector after a media change to washout drugs. 48 hours after transduction, nuclear fractions were isolated and genomic DNA was purified

c, The copy number of rAAV genomes in the nuclear fraction was measured by qPCR. Data shown is with 2 individual replicates along with the average.

d, Southern blot analysis using luciferase probes was performed using the same amount of genomic DNA to distinguish the double- or single-stranded forms of rAAV genomes. Non-denaturing agarose gel (1%) electrophoresis was used to separate single- or double-stranded form of rAAV genomes. DNA ladder (dsDNA) and purified single-stranded AAV genomes from rAAV preps were used as size controls.

Supplementary Figure 8|- Positive and negative control staining of BrdU or γH2AX in mouse liver (see Figures 3 and 4)

a, Representative 20x confocal images from IHC staining of BrdU in control no injection mouse liver is provided. Also shown is staining of mouse liver from a BrdU and Flu treated animal, stained without the primary anti-BrdU antibody.

b, Images from control stained livers, taken at identical settings to Figure 3b images, were quantified. Each dot represents the data from a single technical replicate image. n=1 animal for no injection and n=2 animals for no primary antibody control stains.

c, Representative 20x confocal images from IHC staining of γH2AX in control no injection or DEN-injected mouse livers are provided. Also shown is staining of mouse liver from a Flu treated acute-phase animal, stained without the primary anti-γH2AX antibody.

d, Images from control-stained livers, taken at identical settings to Figure 4a images, were quantified. Each dot represents the data from a single technical replicate image. n=1 animal for each control.

Supplementary Figure 9| Inhibition of RNR induced Ser139 phosphorylation of H2AX (γH2AX) in vitro

a, Huh7 cells were treated with fludarabine for 16 hours at the indicated concentrations and then total cell lysates were prepared, followed by western blotting analysis of γ H2AX. α -tubulin was used as a loading control.

b, Huh7 cells were transfected with RRM1 siRNA and total cell lysates were prepared, followed by western blotting for γ H2AX and α -tubulin 2 days after transfection.

Table 1

Drugs Reported to affect rAAV Transduction

Drug reported to increase rAAV transduction	Mechanism	Reference(s)
Torin-1	mTOR inhibitor	Hösel, M. et al.
MG132	proteasome inhibitor	(1) Schreiber, C. A. et al. (2) Johnson, J. S. & Samulski, R. J.
Trichostatin A	HDAC inhibitor	Kia, A., Yata, T., Hajji, N. & Hajitou, A.
FK228	HDAC inhibitor	Okada, T. et al.
Teniposide	topoisomerase inhibitor	Russell, D. W., Alexander, I. E., Dusty Miller, A. & Donnall Thomas, E.
Hydroxyurea	ribonucleotide reductase inhibitor	Marcus-Sekura, C. J. & Carter, B. J.

Table 2 Animal Health Results 12 hours post drug treatment

		Treatment					
Normal range		Fludarabine	Fludarabine	Fludarabine		PBS	PBS
5.5 - 9.3	WBC	1.25	1.16	0.76		3.65	6.32
7.0 - 8.8	RBC	8.44	8.74	9.32		9.22	8.77
13.7 - 16.4	HGB	12.9	13.4	13.9		14	13.8
39.0 - 47.0	НСТ	44.4	46.8	48.2		48.9	47.6
52.0 - 68.7	MCV	52.6	53.5	51.7		53	51.3
18.4 - 19.6	MCH	15.3	15.3	14.9		15.2	15.7
34.0 - 36.0	MCHC	29.1	28.6	28.8		28.6	29
675 - 1338	Platelet Count	1766	1639	1606		1760	1676
	RDW	19.4	19.4	20.5		21.9	20.9
	PDW	7.3	7.2	7.6		7.6	7.4
	MPV	6.4	6.3	6.5		6.3	6.5
	P-LCR	4.4	3.6	4.6		3	4.8
	PCT count	1.13	1.03	1.04		1.11	1.09
1.0 - 2.8	Reticulocyte count	2.94	2.85	3.02		8.51	8.1
	IRF	41.4	37.4	40.5		66.1	62
	IFR	58.6	62.6	59.5		33.9	38
	MFR	16.5	17	18.7		19.3	19.2
	Ret. Absolute	248136	249090	281464		784622	710370
	Platelet Estimate	adequate	Adequate	Adequate		Adequate	Adequate
15 - 32	Neutrophils	1	3	4		8	1
65 - 83	Lymphocytes	95	96	89		91	96
0 - 3	Monocytes	2	1	6		1	2
0 - 3	Eosinophils	2	0	1		0	1
	Basophils	0	0	1		0	0
	RBC morphology	NORMAL, OCCASIONAL HOWELL JOLLY BOD	Normal, Occasional Howell Jol	Normal Occasional Howell Jolly	Bodies	Normal +1 Polychromasia, Occasional Howe	Normal, Occasional Howell
825 - 2604	Neutrophils Absolute	13	35	30		292	63
3685 - 7812	Lymphocytes Absolute	1188	1114	676		3322	6067
0 - 279	Monocytes Absolute	25	12	46		37	126
0 - 279	Eosinophils Absolute	25	0	8		0	63
	Basophils Absolute	0	0	8		0	0
76 -160	ALT	126	90	42		41	43

Table 2 Animal Health Results

28 days post drug treatment

		Treatment				
Normal range		Fludarabine	Fludarabine	Fludarabine	PBS	PBS
5.5 - 9.3	WBC	3.77	6.35	5.23	4.23	3.22
7.0 - 8.8	RBC	10.18	10.39	9.95	9.59	10.4
13.7 - 16.4	HGB	15.1	15.6	15.1	14.7	15.2
39.0 - 47.0	НСТ	50.9	51.3	50.1	49	50.4
52.0 - 68.7	MCV	50	49.4	50.4	51.1	48.5
18.4 - 19.6	МСН	14.8	15	15.2	15.3	14.6
34.0 - 36.0	МСНС	29.7	30.4	30.1	30	30.2
675 - 1338	Platelet Count	1892	1939	1889	1492	1660
	RDW	19.4	19.9	19.3	18.5	20.1
	PDW	7.8	7.6	7.9	7.4	7.5
	MPV	6.5	6.4	6.6	6.5	6.3
	P-LCR	4.1	3.9	4.6	4.1	3.5
	PCT count	1.23	1.24	1.26	0.97	1.05
1.0 - 2.8	Reticulocyte count	5.67	5.71	5.69	6.01	5.17
	IRF	62.8	62	59.5	64.1	62.2
	IFR	37.2	38	40.5	35.9	37.8
	MFR	16.9	17	15.5	19.3	18.2
	Ret. Absolute	577206	593269	566155	576359	537680
	Platelet Estimate	ADEQUATE	ADEQUATE	ADEQUATE	ADEQUATE	ADEQUATE
15 - 32	Neutrophils	3	4	4	14	15
65 - 83	Lymphocytes	89	89	88	86	77
0 - 3	Monocytes	7	6	7	8	7
0 - 3	Eosinophils	1	1	1	2	1
	Basophils	0	0	0	0	0
	RBC morphology	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
825 - 2604	Neutrophils Absolute	113	254	209	592	483
3685 - 7812	Lymphocytes Absolute	3355	5652	4602	3638	2479
0 - 279	Monocytes Absolute	264	381	366	338	225
0 - 279	Eosinophils Absolute	38	64	52	85	32
	Basophils Absolute	0	0	0	0	0
76 -160	ALT	28	25	37	80	102

	Sequence (5' to 3')				
	CAAGCTGGAGTACAACTACAA				
AAV liter for GAPDH-P2A-GFP, Albumin-P2A-GFP	GGATCTTGAAGTTCACCTTGA				
$(\Delta A)/(titer for Albumin D2A bEQ Area D2A bEQ$	AGCACCAAGTTCACCATCTA				
AAV IIIEI IOI AIDUMIN-PZA-NF9, APOE-PZA-NF9	TTTCTGACCGGCATCATCAG				
	GCCAGCTTACATTTACCCAAAC				
	CCCATTGCTGAAGACCTTAGT				
AAV titor for Cos9	aaggatcacccagcctctgc				
AAV liter for Case	cctgctgaagacactcttgcca				
mAlb B2A fusion aBCB	CCTTCCACTCTGATATCTGCAC				
	GAAATTGGTGGCGCCGCTTC				
	ATCTACAACAACATGTTCTGCG				
Total IF9 qFCK	CTGATGATGCCGGTCAGAAA				
	CAAGCTGGAGTACAACTACAA				
TOTAL OFF GFCK	GGATCTTGAAGTTCACCTTGA				
Endogonous mAlb aPCP	CCTTCCACTCTGATATCTGCAC				
	CCATGACAGTCTTCAGTTGC				
	GCCAGCTTACATTTACCCAAAC				
	CCCATTGCTGAAGACCTTAGT				
Case aPCB	GTACGGCCTGCCCAATGATA				
	TGCGTTCTCTTTCCCGGTAG				
Fluc aPCP	CACATATCGAGGTGGACATTAC				
	TGGTTTGTATTCAGCCCATAG				
mAlb_P2A junction PCP	ATCTACAACAACATGTTCTGCG				
	ACCACCCATAAGATGGGAGAGTA				
mAlb P2A junction posted PCP	GAGACTCTTGTCAGGGCGATTCTG				
maib-r 2A junction nested F CK	CATTGTGTTGCCCATGTGGAAC				
	ctgctgtgcaccagttgatgtt				
Endogenous mAlb ddPCR	tctggtgctgaggacacgtagcccagt (HEX Probe)				
	TGCTTTCTGGGTGTAGCGAACT				
	gggcaaggcaacgtcatgg				
Integrated Alb-GFP ddPCR	tggcagtggcatgcttaatcctca (FAM Probe)				
	CCAGGGTTCTCTTCCACGTC				
Endogenous mActB aPCR	GTGACGTTGACATCCGTAAAGA				
	GCCGGACTCATCGTACTCC				

Source Data Files Supplementary Figure 9a

Source Data Files Supplementary Figure 9b

