nature plants

Supplementary information

https://doi.org/10.1038/s41477-024-01846-1

Evidence for widespread thermal acclimation of canopy photosynthesis

In the format provided by the authors and unedited

- 1 Evidence for widespread thermal acclimation of canopy photosynthesis
- 2
- Jiangong Liu^{1*}, Youngryel Ryu^{1,2*}, Xiangzhong Luo³, Benjamin Dechant^{1,4,5}, Benjamin D.
- Stocker^{6,7}, Trevor F. Keenan^{8,9}, Pierre Gentine^{10,11}, Xing Li¹, Bolun Li^{1,12}, Sandy P. Harrison^{13,14},
 Iain Colin Prentice^{14,15}
- 6
- ¹ Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic
 of Korea
- 9 ² Department of Landscape Architecture and Rural Systems Engineering, Seoul National
- 10 University, Seoul, Republic of Korea
- ³ Department of Geography, National University of Singapore, 1 Arts Link, Singapore 117570
- ⁴ German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig,
- 13 Germany
- 14 ⁵ Leipzig University, Leipzig, Germany
- ⁶ Institute of Geography, University of Bern, Bern, Switzerland
- ⁷ Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
- 17⁸ Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, 1
- 18 Cyclotron Road, Berkeley, CA 94720, USA
- ⁹ Department of Environmental Science, Policy, and Management, University of California,
- 20 Berkeley, CA 94720, USA
- 21 ¹⁰ Earth and Environmental Engineering Department, Columbia University, New York, NY
- 22 10027, USA
- 23 ¹¹ Climate School, Columbia University, New York, NY 10025, USA
- ¹² School of Geographical Sciences, Nanjing University of Information Science and Technology,
- 25 Nanjing 210044, China
- ¹³ School of Archaeology, Geography and Environmental Science (SAGES), University of
- 27 Reading, Reading RG6 6AH, United Kingdom
- ¹⁴ Department of Earth System Science, Ministry of Education Key Laboratory for Earth System
- 29 Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China
- 30 ¹⁵ Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College
- 31 London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, United Kingdom
- 32 33
- *Corresponding author: Jiangong Liu (jl6314@columbia.edu); Youngryel Ryu (<u>yryu@snu.ac.kr</u>)
- 36 The SI contains 2 Supplementary Text, 3 Supplementary Tables, 9 Supplementary Figures, and
- 37 Supplementary References.
- 38
- 39

40 Supplementary Text 1. Farquhar-von Caemmerer-Berry model (FvCB) for estimating CO₂ 41 assimilation rate

42 We employ the standard FvCB model¹, which comprises the photosynthetic module of the

43 Breathing Earth System Simulator (BESS)^{2,3}, to estimate the canopy-scale CO₂ assimilation rate

- 44 (A) of C₃ plants in a big-leaf framework. Within the big-leaf framework, we assume the canopy
- 45 functions as a single bulk plane that serves as the source and sink for all mass and energy fluxes⁴.
- 46 The model determines A based on the slower rate of two biochemical processes: A_j , which is the
- 47 electron transport for ribulose-1,5-bisphosphate (RuBP) at low light and is dependent on the
- 48 capacity of the electron transport chain (J_{max} ; $\mu mol m^{-2} s^{-1}$), and A_c , which is the carboxylation of
- 49 RuBP and is dependent on ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activities
- 50 (V_{cmax} ; µmol m⁻² s⁻¹). Both A_i and A_c are influenced by intercellular CO₂ concentrations (C_i). For
- 51 non-optimality-based BESS versions (i.e., BESS_{PFT} and BESS_{LAI}), we assume a fixed ratio of C_i
- 52 to the ambient CO₂ concentration (C_a), which is referred to as χ and set at 0.7⁵. The eco-
- 53 evolutionary optimality (EEO) theory suggests that plants tend to maximize carbon gain and
- 54 minimize water loss by regulating stomatal conductance, which results in an optimal χ value⁶.
- 55 We use optimal χ for optimality-based BESS (BESS_{EEO}) (Supplementary Text 2).

56
$$A_j = \frac{\alpha I J_{max}}{\alpha I + 2.1 J_{max}} \frac{(C_i - \Gamma^*)}{4(C_i + 2\Gamma^*)}$$
(1)

57
$$A_c = \frac{V_{cmax}(C_i - \Gamma^*)}{C_i + K_c \left(1 + \frac{O}{K_o}\right)}$$
(2)

58

 $A = \min(A_c, A_j) \tag{3}$

59 where I (µmol photons m⁻² s⁻¹) is incident photosynthetically photon flux density, α (mol mol⁻¹) 60 is the intrinsic quantum yield based on incident light, Γ^* (Pa) is the CO₂ compensation point in

 $61 \qquad \text{the absence of dark respiration, O (Pa) is oxygen partial pressure, and K_{c} (Pa) and K_{o} (Pa) are}$

62 Michaelis-Menten constants of Rubisco for CO₂ and O₂, respectively⁷.

63

64 In this study, we integrate the parameters characterizing acclimation and adaptation following

⁶⁵ ref⁸ into the BESS code. An Arrhenius function is used to describe the temperature dependencies

66 of V_{cmax} and J_{max} for the baseline BESS⁹:

67
$$k = k^{25C} \times \exp\left[\frac{H_a \times 1000 \times (T - 298.15)}{298.15 \times R \times T}\right] \times \frac{\left[1 + \exp\left(\frac{298.15 \times S - H_d}{298.15 \times R}\right)\right]}{\left[1 + \exp\left(\frac{S \times T - H_d}{R \times T}\right)\right]}$$
(4)

68 where k^{25C} represents V_{cmax}^{25C} and J_{max}^{25C} , and R is the universal gas constant (8.31 J K⁻¹ mol⁻¹). T is 69 the canopy temperature in °K. H_a, H_d and S are activation energy (kJ mol⁻¹), deactivation energy 70 fixed at 200 kJ mol⁻¹, and entropy factor (kJ mol⁻¹ K⁻¹), respectively.

71

We use three empirical approaches to estimate V_{cmax} variants at a reference temperature of 25 °C (V_{cmax}^{25C}) (see Methods), and calculate J_{max}^{25C} as a function of V_{cmax}^{25C} , home temperature (T_{home} , °C) and growth temperature ($\overline{T_{aur}}$, °C)⁸. Here, T_{home} is defined as the average air temperature of the warmest month over the measurement period following ref¹⁰. The values of H_a and S are estimated as functions of $\overline{T_{aur}}$ and T_{home} to account for acclimation, with a general form as: $H_a \text{ or } S = a\overline{T_{aur}} + bT_{home} + c(\overline{T_{aur}} - T_{home}) + d$ (5) where parameters a, b, c and d are set, following refs^{8,10} and can be found in Supplementary

where parameters a, b, c and d are set, following refs^{8,10} and can be found in Supplementary Table 2. T represents a key source of uncertainties in canopy-scale photosynthetic modelling¹⁰. We test three approaches to estimate T, which assume that T is equivalent to either the air temperature (T_{air} , °K), the aerodynamic surface temperature (T_{aero} , °K), or the radiometric surface temperature of the big-leaf plane (T_{rad} , °K). T_{aero} is calculated as follows:

83
$$T_{aero} = T_{air} + \frac{H}{\rho G_{ah} c_p}$$
(6)

84 where H is the sensible heat flux (W m⁻²), ρ is the air density (kg m⁻³), G_{ah} is the aerodynamic 85 conductance to heat transfer (m s⁻¹), and C_p is the heat capacity of dry air (J K⁻¹ kg⁻¹). G_{ah} is 86 calculated as the sum of aerodynamic conductance to momentum transfer¹¹ and canopy boundary 87 layer conductance to heat transfer¹². T_{rad} is calculated based on the physical principle that the 88 longwave radiation emitted by an object is proportional to the fourth power of the object's 89 temperature, stated by the Stephan-Boltzmann law:

90
$$T_{rad} = \left(\frac{LW_{out} - (1 - \epsilon)LW_{in}}{\sigma\epsilon}\right)^{\frac{1}{4}}$$
(7)

91 where LW_{out} and LW_{in} are the outgoing and incoming longwave radiation (W m⁻²), respectively. 92 σ denotes the Stefan-Boltzmann constant (W m⁻² K⁻⁴). We set the emissivity of the surface, ϵ , to 93 0.98. We compute T_{aero} and T_{rad} with R package bigleaf⁴. Note that the data availability for T_{rad}

95 6 and 7). This is particularly significant given that LW_{out} and LW_{in} are available for only about 74% of the sites. The estimated T_{aero} and T_{rad} show strong correlations with T_{air} , with R^2 values 96 97 of 0.93 ± 0.10 and 0.78 ± 0.15 (mean ± 1 –SD, model: T_{air} ~ T_{aero} or T_{rad}) over FLUXNET2015 98 sites. In theory, T_{rad} and T_{aero} should more closely approximate the true canopy temperature (T) 99 than T_{air}, potentially leading to better model performance when using them as T approximations. 100 However, the three T approximations (i.e., T_{air}, T_{aero} and T_{rad}) yield highly similar results when 101 estimating hourly A (Supplementary Fig. 8). It is important to note that eddy covariance GPP data are not independent of Tair, since both daytime and nighttime partitioning methods use Tair 102 as an input¹³. This likely explains the comparable modelling performance between T_{air} and the 103 104 other two T approximations. We finally choose T_{air} over T_{aero} and T_{rad} because the data are more

and T_{aero} data is less than that for T_{air} , as their calculation depends on several variables (equation

105 frequently available. Detailed descriptions of other processes of the FvCB model in BESS and

106 BESS's performance in estimating GPP over flux sites are given in refs^{2,3,9}.

107

94

108 Supplementary Text 2. EEO-based estimate of leaf photosynthetic capacity109

110 The coordination hypothesis posits that leaf A_c (equation 2) tends to be equal to A_j (equation 1) 111 over intermediate time scales, meaning that photosynthesis operates at a co-limitation point of A_c 112 and $A_j^{14,15}$. We apply the findings from this study on PFT-dependent optimal time scales for 113 acclimation (Fig. 2) to represent the growth conditions of plants. To account for the effect of 114 finite $J_{max}^{6,16}$, we modify equation (1) using a non-rectangular hyperbola function¹⁷:

115
$$A_{j} = \frac{\alpha I}{\sqrt{1 + \left(\frac{\alpha I}{J_{max}}\right)^{2}}} \frac{(C_{i} - \Gamma^{*})}{(C_{i} + 2\Gamma^{*})}$$
(8)

116
$$\alpha = \frac{a_L b_L}{4} \Phi_{PSII,max} M \tag{9}$$

117 where $a_L = 0.8$ represents the leaf absorptance, $b_L = 0.5$ represents the fraction of absorbed light 118 for photosystem II (PSII), and the factor 4 accounts for the number of electron equivalents 119 required to assimilate one CO₂ molecule. The constant M = 12 (g) represents the weight of 1 mol 120 carbon. $\Phi_{PSII,max}$ represents the maximum quantum yield of PSII for a representative light-121 adapted leaf, and is dependent on T¹⁸:

122
$$\Phi_{PSII,max} = 0.352 + 0.022T - 0.00034T^2$$
(10)

123 The least-cost theory proposes that plants can optimize χ by minimizing the combined unit costs 124 per carbon assimilation of maintaining carbon assimilation and water transpiration (E)¹⁹:

125
$$e\frac{\partial(E/A)}{\partial\chi} = -f\frac{\partial(V_{cmax}/A)}{\partial\chi}$$
(11)

where e and f (unitless) are the unit costs for E and A, respectively. One optimal χ value can be resolved from equation (10) through an application of Fick's law of diffusion for H₂O and CO₂¹⁹:

128
$$\chi = \frac{\sqrt{\beta \frac{K+\Gamma^*}{1.6\eta^*} + \frac{\Gamma^* \sqrt{VPD}}{C_a}}}{\sqrt{\beta \frac{K+\Gamma^*}{1.6\eta^*} + \sqrt{VPD}}}$$
(12)

where VPD (Pa) is the vapor pressure deficit, and K (Pa) is the effective Michaelis-Menten coefficient of Rubisco²⁰. η^* (Pa s), which represents the viscosity of water at 25 °C, can be estimated using a T dependence function⁶. The parameter β is the ratio of the unit costs a and b (equation 9) when standardized to their values at 25 °C, and is fixed at 146 based on an updated isotope-derived χ database^{6,16}.

134

Furthermore, we assume that the optimal J_{max} value maximizes the difference between carbon gain (A_j) and the cost of c×J_{max}, where c (unitless) is a cost factor. We estimate c to be 0.103 based on a typical value of $J_{max}/V_{cmax} = 1.88^{6,21}$. By establishing an equivalence between equations (2) and (7), we can solve for an EEO-based leaf-scale V_{cmax} value (V_{cmax} EEO):

139
$$V_{cmax_EEO} = \alpha I \frac{C_i + K}{C_i + 2\Gamma^*} \sqrt{1 - \left[\frac{4c(C_i + 2\Gamma^*)}{C_i - \Gamma^*}\right]^2}$$
(13)

For the seasonally-fixed V_{cmax}^{25C} (V_{cmax}^{25C}) and phenology-based V_{cmax}^{25C} ($V_{cmax_LAI}^{25C}$), they are derived for the top leaves. When calculating $V_{cmax_EEO}^{25C}$, we assume a fraction of 1 for absorbed photosynthetically active radiation to represent leaves located at the top of a canopy. This assumption ensures consistency in the derivation of canopy V_{cmax}^{25C} among the three BESS variants.

146 To convert top-leaf V_{cmax}^{25C} ($V_{cmax,top}^{25C}$) to representative-leaf V_{cmax}^{25C} ($V_{cmax,ave}^{25C}$), we use a satellite-

based clumping index (k_n , unitless) derived from a global map²², which indicates the non-

148 randomness of leaf distribution⁷:

149
$$V_{cmax,ave}^{25C} = V_{cmax,top}^{25C} \times \frac{1 - e^{-k_n}}{k_n}$$
(14)

150 We calculate canopy-scale representative V_{cmax}^{25C} ($V_{cmax,canopy}^{25C}$) following:

 $V_{cmax,canopy}^{25C} = V_{cmax,ave}^{25C} \times LAI$ (15)

152 Detailed deduction of V_{cmax_EEO} can be found in ref²³. Additionally, we test the sensitivity of

153 $V_{cmax_EEO}^{25C}$ to the selection of the time scale for acclimation (τ) by examining its relative change

154 when setting $\tau = 14$ days compared to other τ values (Supplementary Fig. 9). Overall, $V_{cmax EEO}^{25C}$

155 changes by 0.17 ± 2.59 %, 0.28 ± 1.37 %, 0.14 ± 0.78 %, 0.01 ± 0.85 %, 0.37 ± 1.79 % and 1.34

156 \pm 3.01 % (mean \pm 1–SD) across flux sites when τ is set to 3, 7, 10, 20, 30 and 45 days,

157 respectively. This finding indicates that τ has a relatively limited impact on $V_{cmax_EEO}^{25C}$

158 estimation, particularly when τ is selected within the range of 7 to 30 days, a period commonly

159 used in previous studies²³⁻²⁵.

162

- Supplementary Fig. 1: Relationships among environmental variables and A_{max,2000}. a–c, The relationships between $\overline{T_{air}}$ and \overline{PPFD} (a), between $\overline{T_{air}}$ and T_{air} (b) and between A_{max,2000} and VPD (c). Black lines represent linear fits (Y ~ X).

Supplementary Fig. 2: The partial effect of $\overline{T_{air}}$ on Amax,2000 over fAPAR and Tair bins.

Diffuse fraction (f_{diff}) is incorporated in the modelling ($A_{max,2000} \sim \overline{T_{aur}} + f_{diff} + (1 | Site)$). Site-level f_{diff} is estimated by an artificial neural network model²⁶, due to limited data availability of

observed fdiff. Numbers (%) in parentheses represent the detectability of positive partial

correlation coefficients, which is defined as the percentage of the number of bins displaying a

- positive partial correlation coefficient over the total number of bins. Black dots indicate
- significant (two-sided, P < 0.05) correlations.

Supplementary Fig. 3: Averages (mean), standard deviations (SD) and ranges of

environmental variables in the fPAR-Tair bin pairs for the cross-site analysis. a-c, The mean (a),SD (b) and range (c) of $\overline{T_{air}}$ (°C), d, the mean of \overline{PPFD} (µmol m⁻² s⁻¹), and e–f, the mean of \overline{VPD} (kPa) and VPD (kPa) in each fPAR-T_{air} bin pair.

183 Supplementary Fig. 4: Percentage of each plant functional type (PFT) in fPAR-T_{air} bin

pairs for the cross-site analysis. a–f, The ratio (%) of the number of each PFT to the total sampling number in each fPAR-T_{air} bin pair, for deciduous broadleaf forests (DBF) (a),

182

185 sampling number in each fPAR-T_{air} bin pair, for deciduous broadleaf forests (DBF) (a),
186 evergreen broadleaf forests (EBF) (b), evergreen needle-leaf forests (ENF) (c), grasslands

187 (GRA) (**d**), mixed forests (MF) (**e**), and wetlands (WET) (**f**).

188 **Supplementary Fig. 5: Responses of the 5-d moving average of correlation** (*r*) between 189 **Photosynthetic capacity metrics and** $\overline{T_{air}}$ to the number of days used for averaging daytime 190 **Tair for evergreen broadleaf forests (EBF). a-b,** A_{max,2000} (a) and enhanced vegetation index 192 (EVI) (b) are used to indicate canopy photosynthetic capacity. Daily EVI for each EBF flux site 193 is derived from MODIS MCD43A4.

195

196 Supplementary Fig. 6: Percentages of window sizes (a) and quality flags (b) for the fitted

197 light response curves. A "low" quality flag indicates that curve fitting cannot be well

198 constrained with the available data within 14 days. A "medium" quality flag means the curve

199 fitting can be constrained but the fitting parameters show unreasonable ranges. A "high" quality

200 flag indicates that the curve fitting is well-constrained and the fitting parameters are within

201 reasonable ranges. The reasonable range for each parameter is provided in ref.²⁷.

203 204 Supplementary Fig. 7: Statistical metrics for the cross-site analysis. a–c, The sampling 205 number (a), marginal correlation coefficient (marginal r) (b), and conditional correlation 206 coefficient (conditional r) (c) for the cross-site analysis using linear mix-effect models (A_{max,2000} $\sim \overline{T_{airr}} + (1 | Site)$).

209TaeroTairTradTaeroTairTrad210Supplementary Fig. 8: Comparison of model performance in estimating hourly GPP using211three temperature approximations. a–d, Model performance is evaluated based on the212coefficient of determination (\mathbb{R}^2 , golden yellow) and GPP partitioned by the nighttime (a) and213daytime (c) methods, as well as relative root mean square error (rRMSE, teal) and GPP214partitioned by the nighttime (b) and daytime (d) methods. The temperature approximations215include aerodynamic surface temperature (T_{aero}), air temperature (T_{air}), and radiometric surface216temperature (T_{rad}). In the box plots, the central lines represent the median values, the upper and

lower box limits represent the 75th and 25th percentiles, and the upper and lower whiskersextend to 1.5 times the interquartile range, respectively. Identical letters indicate no statistically

significant differences between the average values of the metrics, according to Tukey's HSD test

220 (two-sided, P > 0.05). The analysis includes only non-cropland, non-dryland, C₃ sites with

acceptable performance (see Supplementary Table 2) and with available data for incoming and

- 222 outgoing longwave radiation needed for T_{rad} calculations (n = 36).
- 223

224

Supplementary Fig. 9: Relative change in $V_{cmax_EE0}^{25C}$ estimated using a 14-day time scale for acclimation compared to other time scales. The probability density function for the relative change in $V_{cmax_EE0}^{25C}$ is estimated using kernel density estimation, based on data from 105 longterm (observational length greater than three years), non-cropland, and C₃ sites.

230 Supplementary Table 1: Relationships between the site-level observed diffuse fraction and

231 $\overline{T_{aur}}$ for the flux sites where diffuse PAR and direct PAR are available. The diffuse fraction

232 is calculated as the ratio of diffuse PAR to the sum of diffuse and direct PAR. The relationship

233 between the diffuse fraction and $\overline{T_{aur}}$ is modelled as a linear function (diffuse fraction ~ $\overline{T_{aur}}$).

234 Diffuse fraction and $\overline{T_{air}}$ show a significant positive relationship at only one of the 41 sites.

235

Site	IGBP ^a	slope	R ²	p-value
AT-Neu	GRA	-0.0033	0.0295	< 0.05
BE-Bra	MF	-0.0031	0.0293	< 0.05
CA-Gro	MF	-0.0022	0.0198	< 0.05
CA-Obs	ENF	8.00E-04	0.0029	< 0.05
CA-Qfo	ENF	-0.0013	0.0062	< 0.05
CG-Tch	SAV	-0.0242	0.1631	< 0.05
CH-Oe1	GRA	-6.00E-04	0.001	> 0.05
CH-Oe2	CRO	3.00E-04	3.00E-04	> 0.05
CZ-BK1	ENF	-0.0029	0.016	< 0.05
CZ-BK2	GRA	-0.0042	0.0139	> 0.05
DE-Geb	CRO	-0.0065	0.0869	< 0.05
DE-Hai	DBF	-0.0085	0.1278	< 0.05
DE-Tha	ENF	-0.003	0.0455	< 0.05
ES-Ln2	OSH	1.00E-04	0.003	> 0.05
FI-Hyy	ENF	-0.0017	0.0129	< 0.05
FI-Lom	WET	-0.3004	0.0167	< 0.05
FR-Gri	CRO	-0.005	0.0938	< 0.05
FR-LBr	ENF	-0.0036	0.0416	< 0.05
FR-Pue	EBF	-0.0045	0.0568	< 0.05
GF-Guy	EBF	-0.0622	0.1985	< 0.05
GH-Ank	EBF	-0.0237	0.318	< 0.05
IT-BCi	CRO	-0.0073	0.1796	< 0.05
IT-Col	DBF	-0.0055	0.0817	< 0.05
IT-MBo	GRA	-0.0019	0.0076	< 0.05
IT-PT1	DBF	0.0064	0.0126	> 0.05
IT-Ro2	DBF	-0.0068	0.1393	< 0.05
IT-SR2	ENF	-0.008	0.1565	< 0.05
IT-SRo	ENF	-0.0055	0.1152	< 0.05
NL-Loo	ENF	-0.0046	0.0915	< 0.05
RU-Ha1	GRA	-0.008	0.2058	< 0.05
US-Me1	ENF	-0.0046	0.0407	< 0.05
US-Me2	ENF	-0.0064	0.0938	< 0.05
US-MMS	DBF	-0.0027	0.0375	< 0.05
US-Ne1	CRO	-0.0023	0.0341	< 0.05
US-Ne2	CRO	-0.0017	0.0193	< 0.05
US-Ne3	CRO	-0.0019	0.024	< 0.05
US-Syv	MF	-0.0037	0.055	< 0.05
US-UMB	DBF	-0.0042	0.075	< 0.05
US-UMd	DBF	-0.0031	0.0415	< 0.05
US-Var	GRA	-0.0069	0.1031	< 0.05
US-WCr	DBF	8.00E-04	0.001	> 0.05

²³⁶ ^aThe land cover classification defined by The International Geosphere–Biosphere Programme

237 (IGBP) (definitions are as in Fig. 2)

Supplement	tary radic 2.	site mormati	on or the		15 uata	Dasc
Site	Latitude	Longitude	IGBP ^a	Period	Model	° DOI
AR-SLu	-33.4648	-66.4598	MF	2009-2011	No	10.18140/FLX/1440191
AR-Vir	-28.2395	-56.1886	ENF	2009-2012	No	10.18140/FLX/1440192
AT-Neu	47.11667	11.3175	GRA	2002-2012	Yes	10.18140/FLX/1440121
AU-Ade	-13.0769	131.1178	WSA	2007-2009	No	10.18140/FLX/1440193
AU-ASM	-22.283	133.249	SAV	2010-2014	No	10.18140/FLX/1440194
AU-Cpr	-34.0021	140.5891	SAV	2010-2014	No	10.18140/FLX/1440195
AU-Cum	-33.61518	150.72362	EBF	2012-2014	No	10.18140/FLX/1440196
AU-DaP	-14.0633	131.3181	GRA	2007-2013	Yes	10.18140/FLX/1440123
AU-DaS	-14.1593	131.3881	SAV	2008-2014	No	10.18140/FLX/1440122
AU-Drv	-15.2588	132.3706	SAV	2008-2014	No	10.18140/FLX/1440197
AU-Emr	-23.8587	148.4746	GRA	2011-2013	No	10.18140/FLX/1440198
AU-Fog	-12.5452	131.3072	WET	2006-2008	No	10.18140/FLX/1440124
AU-Gin	-31.3764	115.7138	WSA	2011-2014	No	10.18140/FLX/1440199
AU-GWW	-30,1913	120.6541	SAV	2013-2014	No	10.18140/FLX/1440200
AU-How	-12.4943	131.1523	WSA	2001-2014	No	10.18140/FLX/1440125
AU-Lox	-34.4704	140.6551	DBF	2008-2009	Yes	10.18140/FLX/1440247
AU-RDF	-14.5636	132.4776	WSA	2011-2013	No	10.18140/FLX/1440201
AU-Rig	-36.6499	145.5759	GRA	2011-2014	Yes	10.18140/FLX/1440202
AU-Rob	-17 1175	145 6301	EBF	2014-2014	No	10 18140/FLX/1440203
AU-Stn	-17 1507	133 3502	GRA	2008-2014	No	10 18140/FLX/1440204
AU-TTE	-22.287	133.64	GRA	2012-2014	No	10.18140/FLX/1440205
AU-Tum	-35 6566	148 1517	EBF	2001-2014	No	10 18140/FLX/1440126
AU-Wac	-37 4259	145 1878	EBF	2005-2008	No	10 18140/FLX/1440127
AU-Whr	-36 6732	145 0294	EBF	2011-2014	No	10 18140/FLX/1440206
AU-Wom	-37 4222	144 0944	EBF	2010-2014	No	10 18140/FLX/1440207
AU-Ync	-34 9893	146 2907	GRA	2012-2014	Yes	10 18140/FLX/1440208
BE-Bra	51 30761	4 51984	MF	1996-2014	No	10.18140/FLX/1440128
BE-Lon	50 55162	4 74623	CRO	2004-2014	No	10.18140/FLX/1440129
BE-Vie	50 30493	5 99812	MF	1996-2014	No	10.18140/FLX/1440130
BR-Sal	-2 85667	-54 95889	EBE	2002-2014	No	10.18140/FLX/1440130
BR-Sa3	-3.01803	-54 97144	FBF	2002-2011	No	10.18140/FLX/1440033
CA-Gro	48 2167	-82 1556	MF	2000-2004	Ves	10.18140/FLX/1440033
CA-Man	55 87962	-98 48081	ENF	1994-2008	No	10.18140/FLX/1440034
	55 87917	_08 48380	ENF	2001-2005	Ves	10.18140/FLX/1440036
CA-NS2	55 90583	-98 52472	ENF	2001-2005	Ves	10.18140/FLX/1440030
CA-NS3	55 91167	-98 38222	ENF	2001-2005	Ves	10.18140/FLX/1440037
CA-NS4	55 91437	-98 380645	ENF	2001-2005	Ves	10.18140/FLX/1440030
CA-NS5	55 86306	-98 485	ENF	2002 2005	Ves	10.18140/FLX/1440059
CA-NS6	55 91667	-98 96444	OSH	2001-2005	No	10.18140/FLX/1440040
CA-NS7	56 63583	-99 94833	OSH	2001-2005	No	10.18140/FLX/1440041
CA-Oas	53 62889	-106 19779	DBE	1996-2010	Ves	10.18140/FLX/1440042
CA-Obs	53 98717	-105 11779	ENE	1997_2010	Ves	10.18140/FLX/1440045
CA-Ofo	49 6925	-74 34206	ENE	2003-2010	Ves	10.18140/FLX/1440045
CA-SE1	54 48503	-105 81757	ENF	2003-2010	No	10.18140/FLX/1440045
CA-SF2	54 25302	-105.81757	ENF	2003-2000	Vec	10.18140/FLX/1440040
CA-SF2	54.00156	-105.8775	OSH	2001-2005	No	10.18140/FLX/1440047 10.18140/EL $\chi/1440049$
CA-SF3 CA-TP1	12 6600261	-100.00520	ENE	2001-2000	No	10.10140/1LA/1440048
CA-TP	42.0009301	-00.339319	ENF	2002-2014	No	10.10140/1LA/1440030
$CA TD^2$	42.1144134	-00.430//3	ENF	2002-2007	No	10.10140/FLA/1440031
CA-IF3	42.7000111 12 710161	-00.340314	ENE	2002-2014	INU Vec	10.10140/FLA/1440052
CA-114	42./10101	-00.33/3/0	DDE	2002-2014	I CS	10.10140/FLA/1440033
CA-ITD	42.033320	-00.337731		2012-2014	I CS	10.10140/FLA/1440112 10.18140/ELV/1440142
	-4.2091/	11.03042 9.41044	SAV	2000-2009	INO No	10.10140/FLA/1440142
CH Davi	47.21022	0.41044	UKA ENE	2003-2014	INO No	10.10140/FLA/1440131
UL-Dav	40.01333	7.03371	EINF	177/-2014	INO	10.10140/FLA/1440132

239 Supplementary Table 2: Site information of the FLUXNET2015 database

CH-Fru	47.11583	8.53778	GRA	2005-2014	No	10.18140/FLX/1440133
CH-Lae	47.47833	8.36439	MF	2004-2014	No	10.18140/FLX/1440134
CH-Oe1	47.28583	7.73194	GRA	2002-2008	No	10.18140/FLX/1440135
CH-Oe2	47.28642	7.73375	CRO	2004-2014	No	10.18140/FLX/1440136
CN-Cha	42.4025	128.0958	MF	2003-2005	No	10.18140/FLX/1440137
CN-Cng	44.5934	123.5092	GRA	2007-2010	Yes	10.18140/FLX/1440209
CN-Dan	30.4978	91.0664	GRA	2004-2005	No	10.18140/FLX/1440138
CN-Din	23.1733	112.5361	EBF	2003-2005	No	10.18140/FLX/1440139
CN-Du2	42.0467	116.2836	GRA	2006-2008	Yes	10.18140/FLX/1440140
CN-Du3	42.0551	116.2809	GRA	2009-2010	Yes	10.18140/FLX/1440210
CN-Ha2	37.6086	101.3269	WET	2003-2005	No	10.18140/FLX/1440211
CN-HaM	37.37	101.18	GRA	2002-2004	Yes	10.18140/FLX/1440190
CN-Oia	26.7414	115.0581	ENF	2003-2005	No	10.18140/FLX/1440141
CN-Sw2	41.7902	111.8971	GRA	2010-2012	No	10.18140/FLX/1440212
CZ-BK1	49 50208	18 53688	ENF	2004-2014	No	10 18140/FLX/1440143
CZ-BK2	49 49443	18 54285	GRA	2004-2012	No	10 18140/FLX/1440144
CZ-wet	49 02465	14 77035	WET	2006-2012	Yes	10 18140/FLX/1440145
DE-Akm	53 86617	13 68342	WET	2009-2014	No	10 18140/FLX/1440213
DE-Geb	51 09973	10 91463	CRO	2001-2014	No	10 18140/FI X/1440146
DE Geo	50 95004	13 51259	GRA	2001-2014	No	10.18140/FLX/1440147
DE UN DE-Hai	51 07921	10 45217	DBF	2004-2014	Ves	10 18140/FLX/1440148
DE-Kli	50.89306	13 52238	CRO	2000-2012	No	10.18140/FLX/1440149
DE-KI DE-Lkb	49 09962	13 30467	ENE	2004-2014	No	10.18140/FLX/1440149
DE-LKU DE-L nf	51 32822	10 3678	DRF	2009-2013	Ves	10.18140/FLX/1440214
DE-Dhe	50 78666	13 72120	ENE	2002-2012	No	10.18140/FLX/1440150
DE-RuR	50.62191	6 30413	GRA	2008-2014	No	10.18140/FLX/1440131
DE-Ruk	50.86501	6 4 4 7 1 4	CRO	2011-2014 2011-2014	No	10.18140/FLX/1440216
DE-Kus DE-Seh	50.87062	6 11965	CRO	2011-2014	No	10.18140/FLX/1440217
DE-SfN	17 80639	11 3275	WET	2007-2010	Ves	10.18140/FLX/1440217
DE-Snw	51 80225	14.03360	WET	2012-2014	Ves	10.18140/FLX/1440219
DE-Spw DE-Tha	50.96256	13 56515	ENE	1006_2014	Ves	10.18140/FLX/1440220
DE-Tha DE-Zrk	53 87594	12 88901	WET	2013_2014	Ves	10.18140/FLX/1440132
DK-Eng	55 69053	12.00901	GRA	2015-2014	No	10.18140/FLX/1440221
DK-Eng	56 4842	0 58722	CPO	2005-2008	No	10.18140/FLX/1440155
DK-Fou	55 49597	9.36722		1006 2014	No	10.18140/FLA/1440154
DK-SOI	26 82261	11.04404		2007 2012	No	10.18140/FLA/1440133
ES-Allo	27.00704	-2.23232	OSH	2007-2012	No	10.18140/FLA/1440130
ES-LgS	37.09794	-2.90383	OSH OSH	2007-2009	No	10.18140/FLX/1440223
ES-LJU ES L n2	26.0605	-2.73212	OSH OSU	2004-2015	No No	10.18140/FLX/144013/
ES-LIIZ	50.9095	-3.4/362	USH ENE	2009-2009	INO Mar	10.18140/FLA/1440220
ГІ-НУУ	01.84/41	24.29477	ENF	1996-2014	Y es	10.18140/FLA/1440158
FI-JOK	60.8986	23.51345	CRO	2000-2003	NO Nat	10.18140/FLX/1440159
FI-Let	60.64183	23.95952	ENF	2009-2012	Y es	10.18140/FLX/144022/
FI-Lom	67.99724	24.20918	WEI	2007-2009	Yes	10.18140/FLX/1440228
FI-Sod	67.36239	26.63859	ENF	2001-2014	Yes	10.18140/FLX/1440160
FR-Fon	48.4/636	2./801	DBF	2005-2014	Yes	10.18140/FLX/1440161
FR-Gri	48.84422	1.95191	СКО	2004-2014	No	10.18140/FLX/1440162
FR-LBr	44.71711	-0.7693	ENF	1996-2008	No	10.18140/FLX/1440163
FR-Pue	43.7413	3.5957	EBF	2000-2014	No	10.18140/FLX/1440164
GF-Guy	5.27877	-52.92486	EBF	2004-2014	No	10.18140/FLX/1440165
GH-Ank	5.26854	-2.69421	EBF	2011-2014	NO	10.18140/FLX/1440229
GL-Nul	64.13083	-51.38611	WET	2008-2014	NO	10.18140/FLX/1440222
GL-ZaF	/4.48143	-20.55452	WEI	2008-2011	NO	10.18140/FLX/1440223
GL-ZaH	14.4/328	-20.5503	GRA	2000-2014	NO	10.18140/FLX/1440224
II-BCI	40.52375	14.95744	CKO	2004-2014	INO NI	10.18140/FLX/1440166
IT-CAI	42.38041	12.02656	DBF	2011-2014	No	10.18140/FLX/1440230
III-CA2	42.37722	12.02604	CRO	2011-2014	No	10.18140/FLX/1440231

IT-CA3	42.38	12.0222	DBF	2011-2014	No	10.18140/FLX/1440232
IT-Col	41.84936	13.58814	DBF	1996-2014	Yes	10.18140/FLX/1440167
IT-Cp2	41.70427	12.35729	EBF	2012-2014	No	10.18140/FLX/1440233
IT-Cpz	41.70525	12.37611	EBF	1997-2009	No	10.18140/FLX/1440168
IT-Isp	45.81264	8.63358	DBF	2013-2014	Yes	10.18140/FLX/1440234
IT-La2	45.9542	11.2853	ENF	2000-2002	No	10.18140/FLX/1440235
IT-Lav	45.9562	11.28132	ENF	2003-2014	No	10.18140/FLX/1440169
IT-MBo	46.01468	11.04583	GRA	2003-2013	Yes	10.18140/FLX/1440170
IT-Noe	40.60618	8.15169	CSH	2004-2014	No	10.18140/FLX/1440171
IT-PT1	45 20087	9.06104	DBF	2002-2004	Yes	10 18140/FLX/1440172
IT-Ren	46 58686	11 43369	ENF	1998-2013	No	10 18140/FLX/1440173
IT-Rol	42 40812	11 93001	DBF	2000-2008	Yes	10 18140/FL X/1440174
IT-Ro?	42 39026	11 92093	DBF	2002-2012	No	10 18140/FLX/1440175
IT-SR2	43 73202	10 29091	ENE	2002 2012	No	10 18140/FL X/1440236
IT-SRo	43.72786	10.29091	ENF	1999-2012	No	10.18140/FLX/1440176
IT-Tor	45 84444	7 57806	GRA	2008-2012	Ves	10.18140/FLX/1440237
ID_MRF	1/ 3860	142 3186	DBE	2003-2014	Ves	10.18140/FLX/1440237
IP-SMF	35 2617	137 0788	MF	2003-2005	No	10.18140/FLX/1440230
MV_PSO	2 073	102 3062	FRF	2002-2000	No	10.18140/FLX/1440237
MI-Hor	52 24035	5 0713	GRA	2003-2007	Ves	10.18140/FLX/1440240
NL-I oo	52.24055	5 74356	ENE	1996-2014	No	10.18140/FLX/1440177
PA_SPn	9 3 1 8 1 4	-79 63/6	DBE	2007_2009	No	10.18140/FLX/14401/0
$\mathbf{D}\mathbf{A} \cdot \mathbf{S}\mathbf{D}_{\mathbf{G}}$	0.31378	70 631/3	GPA	2007-2009	No	10.18140/FLX/1440180
DII Che	9.51578 68.61304	-/9.03143	WET	2007-2009	No	10.18140/FLA/14401/9
RU-Cale	70.82014	101.34143	OSH OSH	2002-2003	No	10.18140/FLA/1440181
DU Evo	70.82914 56.46153	22 02208	ENE	1008 2014	No	10.18140/FLX/1440182
DI Hal	54 72517	90.00215	GPA	2002 2004	Vec	10.18140/FLX/1440183
SD Dem	13 2820	30.00213	SAV	2002-2004	No	10.18140/FLX/1440184
SD-Dem	79 196	15 022	WET	2003-2009	No	10.18140/FLA/1440180
SJ-Auv	78 02162	11.925	SNO	2011-2014	No	10.18140/FLX/1440241
SJ-DIV	15 40278	15 /2222	SAV	2008-2009	No	10.18140/FLX/1440242
	13.40278	-13.43222	GPA	2010-2013	No	10.18140/FLX/1440240
US-ARI	26 6258	-99.42	GRA	2009-2012	No	10.18140/FLA/1440103
US-ARZ	25 5407	-99.3973		2009-2012	NO	10.18140/FLA/1440104
US-ARD	55.5497 25.54640	-98.0402	GRA	2005-2006	I es	10.18140/FLA/1440004
US-ARC	33.34049	-98.04	GRA	2003-2006	Y es	10.18140/FLX/1440005
US-AKM	30.0038	-97.4888	UKU	2003-2012	INO N-	10.18140/FLX/1440000
US-Alq	/0.4090	-13/.4089	WEI	2003-2008	INO N-	10.18140/FLX/144000/
US-BIO	38.8933	-120.0328	ENF	1997-2007	INO NI	10.18140/FLX/1440008
US-Cop	38.09	-109.39	GRA	2001-2007	INO NI	10.18140/FLX/1440100
US-CRI	41.628495	-83.34/086	CRO	2011-2013	No	10.18140/FLX/144011/
US-GBI	41.365/9	-106.2397	ENF	1999-2006	Yes	10.18140/FLX/1440118
US-GLE	41.36653	-106.2399	ENF	2004-2014	Yes	10.18140/FLX/1440069
US-Goo	34.2547	-89.8735	GRA	2002-2006	No	10.18140/FLX/14400/0
US-Hal	42.5378	-/2.1/15	DBF	1991-2012	Yes	10.18140/FLX/14400/1
US-IB2	41.84062	-88.24103	GRA	2004-2011	Yes	10.18140/FLX/1440072
US-Ivo	68.4865	-155.7503	WET	2004-2007	Yes	10.18140/FLX/1440073
US-KS1	28.4583	-80.6709	ENF	2002-2002	No	10.18140/FLX/1440074
US-KS2	28.6086	-80.6715	CSH	2003-2006	No	10.18140/FLX/14400/5
US-Lin	36.3566	-119.8423	CRO	2009-2010	No	10.18140/FLX/144010/
US-Los	46.0827	-89.9792	WET	2000-2014	Yes	10.18140/FLX/1440076
US-LWW	34.9604	-97.9789	GRA	1997-1998	No	10.18140/FLX/1440077
US-Mel	44.5794	-121.5	ENF	2004-2005	No	10.18140/FLX/1440078
US-Me2	44.4523	-121.5574	ENF	2002-2014	No	10.18140/FLX/1440079
US-Me3	44.3154	-121.6078	ENF	2004-2009	No	10.18140/FLX/1440080
US-Me4	44.4992	-121.6224	ENF	1996-2000	No	10.18140/FLX/1440081
US-Me5	44.43719	-121.56676	ENF	2000-2002	No	10.18140/FLX/1440082

US-Me6	44.3232842	-121.6078	ENF	2010-2014	No	10.18140/FLX/1440099
US-MMS	39.3232	-86.4131	DBF	1999-2014	Yes	10.18140/FLX/1440083
US-Myb	38.049861	-121.76498	WET	2010-2014	No	10.18140/FLX/1440105
US-Ne1	41.16506	-96.47664	CRO	2001-2013	No	10.18140/FLX/1440084
US-Ne2	41.16487	-96.4701	CRO	2001-2013	No	10.18140/FLX/1440085
US-Ne3	41.17967	-96.43965	CRO	2001-2013	No	10.18140/FLX/1440086
US-NR1	40.0329	-105.5464	ENF	1998-2014	Yes	10.18140/FLX/1440087
US-Oho	41.5545	-83.8438	DBF	2004-2013	Yes	10.18140/FLX/1440088
US-ORv	40.0201	-83.0183	WET	2011-2011	No	10.18140/FLX/1440102
US-PFa	45.9459	-90.2723	MF	1995-2014	No	10.18140/FLX/1440089
US-Prr	65.12367	-147.48756	ENF	2010-2014	Yes	10.18140/FLX/1440113
US-SRC	31.9083	-110.8395	MF	2008-2014	No	10.18140/FLX/1440098
US-SRG	31.789379	-110.82768	GRA	2008-2014	No	10.18140/FLX/1440114
US-SRM	31.8214	-110.8661	WSA	2004-2014	No	10.18140/FLX/1440090
US-Sta	41.3966	-106.8024	OSH	2005-2009	No	10.18140/FLX/1440115
US-Syv	46.242	-89.3477	MF	2001-2014	No	10.18140/FLX/1440091
US-Ton	38.4316	-120.96598	WSA	2001-2014	No	10.18140/FLX/1440092
US-Tw1	38.1074	-121.6469	WET	2012-2014	No	10.18140/FLX/1440108
US-Tw2	38.1047	-121.6433	CRO	2012-2013	No	10.18140/FLX/1440109
US-Tw3	38.1159	-121.6467	CRO	2013-2014	No	10.18140/FLX/1440110
US-Tw4	38.10298	-121.6414	WET	2013-2014	No	10.18140/FLX/1440111
US-Twt	38.1087204	-121.6531	CRO	2009-2014	No	10.18140/FLX/1440106
US-UMB	45.5598	-84.7138	DBF	2000-2014	Yes	10.18140/FLX/1440093
US-UMd	45.5625	-84.6975	DBF	2007-2014	Yes	10.18140/FLX/1440101
US-Var	38.4133	-120.9507	GRA	2000-2014	Yes	10.18140/FLX/1440094
US-WCr	45.8059	-90.0799	DBF	1999-2014	Yes	10.18140/FLX/1440095
US-Whs	31.7438	-110.0522	OSH	2007-2014	No	10.18140/FLX/1440097
US-Wi0	46.618778	-91.081444	ENF	2002-2002	Yes	10.18140/FLX/1440055
US-Wi1	46.730472	-91.232944	DBF	2003-2003	Yes	10.18140/FLX/1440054
US-Wi2	46.686889	-91.152833	ENF	2003-2003	No	10.18140/FLX/1440056
US-Wi3	46.634722	-91.098667	DBF	2002-2004	Yes	10.18140/FLX/1440057
US-Wi4	46.739333	-91.16625	ENF	2002-2005	No	10.18140/FLX/1440058
US-Wi5	46.653083	-91.085806	ENF	2004-2004	Yes	10.18140/FLX/1440059
US-Wi6	46.624889	-91.298222	OSH	2002-2003	No	10.18140/FLX/1440060
US-Wi7	46.649111	-91.069278	OSH	2005-2005	No	10.18140/FLX/1440061
US-Wi8	46.722333	-91.252417	DBF	2002-2002	Yes	10.18140/FLX/1440062
US-Wi9	46.618778	-91.081444	ENF	2004-2005	No	10.18140/FLX/1440063
US-Wkg	31.7365	-109.9419	GRA	2004-2014	No	10.18140/FLX/1440096
US-WPT	41.464639	-82.996157	WET	2011-2013	No	10.18140/FLX/1440116
ZM-Mon	-15.4391	23.2525	DBF	2000-2009	No	10.18140/FLX/1440189

^aThe land cover classification defined by The International Geosphere–Biosphere Programme (IGBP) (definitions are as in Fig. 1) ^bIf the site is C₃, non-cropland and non-dryland, and demonstrates acceptable model performance

 $(R^2 > 0.5)$ across all three model variants

Supplementary Table 3: Parameter values for temperature dependency functions of V_{cmax} 244

245 and J_{max} (equation 5)

246

Parameters	$H_{a,v}{}^{a}$	$H_{a,j}{}^{b}$	Sv ^c	S_j^d	b _{jv} ^e
а	1.14	0	-0.38	0	0
b	0	0	0	-0.84	-0.0375
с	0	0	0	-0.52	-0.0202
d	42.6	40.71	645.13	658.77	2.56

247 ^aActivation energy of V_{cmax}

^bActivation energy of J_{max} 248

^cEntropy term of V_{cmax} 249

250

^dEntropy term of J_{max} ^eThe ratio of J_{max}^{25C} to V_{cmax}^{25C} 251

252 References

253

254 1. Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic

- 255 CO_2 assimilation in leaves of C_3 species. *Planta* **149**, 78–90 (1980).
- 256 2. Jiang, C. & Ryu, Y. Multi-scale evaluation of global gross primary productivity and
- 257 evapotranspiration products derived from Breathing Earth System Simulator (BESS). *Remote*
- 258 Sensing of Environment **186**, 528–547 (2016).
- 259 3. Ryu, Y. et al. Integration of MODIS land and atmosphere products with a coupled-process
- 260 model to estimate gross primary productivity and evapotranspiration from 1 km to global
- scales. *Global Biogeochemical Cycles* **25**, 1–24 (2011).
- 4. Knauer, J., El-Madany, T. S., Zaehle, S. & Migliavacca, M. Bigleaf—An R package for the
 calculation of physical and physiological ecosystem properties from eddy covariance data. *PLoS ONE* 13, 1–26 (2018).
- 5. Baldocchi, D. An analytical solution for coupled leaf photosynthesis and stomatal
 conductance models. *Tree Physiology* 14, 1069–1079 (1994).
- 267 6. Wang, H. *et al.* Towards a universal model for carbon dioxide uptake by plants. *Nature*268 *Plants* 3, 734–741 (2017).
- 269 7. De Pury, D. G. G. & Farquhar, G. D. Simple scaling of photosynthesis from leaves to
 270 canopies without the errors of big-leaf models. *Plant, Cell and Environment* 20, 537–557
 271 (1997).
- 8. Kumarathunge, D. P. et al. Acclimation and adaptation components of the temperature
- dependence of plant photosynthesis at the global scale. *New Phytologist* **222**, 768–784
- 274 (2019).

275	9.	Li, B. et al. BESSv2.0: A satellite-based and coupled-process model for quantifying long-
276		term global land-atmosphere fluxes. Remote Sensing of Environment 295, 113696 (2023).

- 277 10. Knauer, J. et al. Higher global gross primary productivity under future climate with more
- advanced representations of photosynthesis. *Sci. Adv.* **9**, eadh9444 (2023).
- 279 11. Verma, S. B. Aerodynamic resistances to transfers of heat, mass and momentum. in
- 280 Estimation of areal evapotranspiration (pp. 13–20) (Wallingford, UK: International
- Association of Hydrological Sciences IAHS Publication No. 177, 1989).
- 12. Thom, A. S. Momentum, mass and heat exchange of vegetation. *Q.J Royal Met. Soc.* 98,
 124–134 (1972).
- 13. Pastorello, G. *et al.* The FLUXNET2015 dataset and the ONEFlux processing pipeline for
 eddy covariance data. *Scientific Data* 7, 225 (2020).
- 14. Chen, J. L., Reynolds, J. F., Harley, P. C. & Tenhunen, J. D. Coordination theory of leaf
 nitrogen distribution in a canopy. *Oecologia* 93, 63–69 (1993).
- 15. Maire, V. *et al.* The coordination of leaf photosynthesis links C and N fluxes in C₃ plant
 species. *PLoS ONE* 7, 1–15 (2012).
- 290 16. Stocker, B. D. et al. P-model v1.0: An optimality-based light use efficiency model for
- simulating ecosystem gross primary production. *Geoscientific Model Development* 13, 1545–
 1581 (2020).
- 293 17. Smith, E. L. The influence of light and carbon dioxide on photosynthesis. *Journal of General*294 *Physiology* 20, 807–830 (1937).
- 295 18. Bernacchi, C. J., Pimentel, C. & Long, S. P. In vivo temperature response functions of
- 296 parameters required to model RuBP-limited photosynthesis: Modelling RuBP-limited
- 297 photosynthesis. *Plant, Cell & Environment* **26**, 1419–1430 (2003).

- 298 19. Prentice, I. C., Dong, N., Gleason, S. M., Maire, V. & Wright, I. J. Balancing the costs of
- carbon gain and water transport: Testing a new theoretical framework for plant functional
 ecology. *Ecology Letters* 17, 82–91 (2014).
- 301 20. Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Portis, A. R. & Long, S. P. Improved
- 302 temperature response functions for models of Rubisco-limited photosynthesis. *Plant, Cell*
- 303 *and Environment* **24**, 253–259 (2001).
- 304 21. Kattge, J. & Knorr, W. Temperature acclimation in a biochemical model of photosynthesis:
 305 A reanalysis of data from 36 species. *Plant, Cell and Environment* **30**, 1176–1190 (2007).
- 306 22. He, L., Chen, J. M., Pisek, J., Schaaf, C. B. & Strahler, A. H. Global clumping index map
- 307 derived from the MODIS BRDF product. *Remote Sensing of Environment* 119, 118–130
 308 (2012).
- 309 23. Jiang, C., Ryu, Y., Wang, H. & Keenan, T. F. An optimality-based model explains seasonal
- 310 variation in C₃ plant photosynthetic capacity. *Global Change Biology* **26**, 6493–6510 (2020).
- 311 24. Luo, X. & Keenan, T. F. Global evidence for the acclimation of ecosystem photosynthesis to
- 312 light. *Nature Ecology and Evolution* **4**, 1351–1357 (2020).
- 313 25. Smith, N. G. & Dukes, J. S. Short-term acclimation to warmer temperatures accelerates leaf
- 314 carbon exchange processes across plant types. *Global Change Biology* **23**, 4840–4853
- 315 (2017).
- 316 26. Zhou, H. et al. Large contributions of diffuse radiation to global gross primary productivity
- 317 during 1981–2015. *Global Biogeochemical Cycles* **35**, e2021GB006957 (2021).
- 318 27. Lasslop, G. *et al.* Separation of net ecosystem exchange into assimilation and respiration
- 319 using a light response curve approach: Critical issues and global evaluation. *Global Change*
- *Biology* **16**, 187–208 (2010).