
Open Access This file is licensed under a Creative Commons Attribution 4.0 
International License, which permits use, sharing, adaptation, distribution and 
reproduction in any medium or format, as long as you give appropriate credit to 

the original author(s) and the source, provide a link to the Creative Commons license, and indicate if 
changes were made. In the cases where the authors are anonymous, such as is the case for the reports of 
anonymous peer reviewers, author attribution should be to 'Anonymous Referee' followed by a clear 
attribution to the source work.  The images or other third party material in this file are included in the 
article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is 
not included in the article’s Creative Commons license and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. 

Peer Review File



Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

The arƟcle’s Ɵtle is: 

The Interpretable MulƟmodal 1 Machine Learning (IMML) framework reveals 

pathological signatures of distal sensorimotor polyneuropathy 

 

This is an analysis of the Kora dataset. 

Kora dataset, with 900 controls and almost 200 paƟents with diabeƟc neuropathy, is certainly a very 
valuable asset. First of all a disclaimer: I am not able to assess the methods in this manuscript, and an 
expert in such techniques should be asked for this. If the arƟcle is for subspecialty experts only, then I am 
the wrong reader. If physicians interested in diabeƟc neuropathy are supposed to read it, then it needs 
to be rewriƩen in a more understandable way. 

 

[EDITOR'S NOTE: Please do ensure the manuscript is worded in such a way that a clinician will be able to 
understand it given clinicians represent a large part of our target audience.] 

 

The Ɵtle is difficult to read, and I am not sure what the authors’ intenƟon is. 

In the abstract, they state: 

“we developed the Interpretable MulƟmodal Machine Learning (IMML) framework for empowering 
DSPN prevalence and incidence predicƟon based on sparse mulƟmodal data.“ 

From this, I understand they want to predict prevalence and incidence. 

However, the result secƟon of the abstract reads: 

“Important features included up-regulaƟon of proinflammatory cytokines, down-regulaƟon of 
SUMOylaƟon pathway and essenƟal faƩy acids, thus yielding insights in the disease pathology. These 
may become biomarkers for incident DSPN and guide prevenƟon strategies.“ 

So, was the aim to idenƟfy biomarkers? In any case, the aim should be clearly stated. 

 

I do not understand how “incident DSPN” was defined and ascertained. 

 

 



One of the main results is that age, waist circumference and height were different in the diabeƟc 
neuropathy group. Inflammatory proteins were also more frequent. Both are not surprising, but sƟll 
would be valuable results, if they can really predict DSPN. The main message should be stated. Which 
factors predict DSPN? How early does this predicƟon work? How certain is this predicƟon? Which of 
these factors are modifiable? Can the authors clearly disƟnguish predicƟve factors from accompanying 
factors of the disease? 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors use mulƟ-modal data including clinical and mulƟ-omic data to predict DSPN 
diagnosis/prevalence and incidence via elasƟc net. The modality features were selected by the top-
ranked features up to the highest GSEA enrichment score and the modality is selected via 5-fold cross-
validaƟon. InteresƟngly, the molecular data contribute significant improvement to the DSPN incidence 
predicƟon but not to the DSPN prevalence. While the overall results are interesƟng, the method 
descripƟon lacks details. 

Major comments: 

- elasƟc net does not account for the different distribuƟons or numerical scales of the mulƟ-modal 
features. What's the raƟonale of using it? For example, random forest may be a beƩer and more robust 
method here. 

- There are many Reactome gene sets, and not all of the Reactome gene sets are relevant. What gene set 
was used for the lead edge analysis followed by feature selecƟon up to the leading edge enrichment 
peak? What's the ID for the gene set? Is it just one gene set or union of mulƟple gene sets? 

- Line 502: How to convert SNPs to genes? Aggregate SNP effects over each nearby genes? 

- Line 513: “Features were considered for further selecƟon process of all models achieving an AUROC > 
0.5” I don’t understand this. Shouldn’t it be the features of non-zero elasƟc net regression coefficients 
being selected? 

- Line 515: Briefly describe how does RRA aggregate the gene lists. What does the FDR control? 

- What are the seƫng for the alpha and lambda in the elasƟc net? Did you choose them by 5-fold CV? 

- Line 532: What is “model complexity “defined here? 

- Line 546: more details needed. What are the individual classifiers on each modality (elasƟc net?)? What 
is the ensemble model in the meta-analysis? 

 

Minor comments: 



- In Fig 1b, label feature category name on the leŌ of the bars 

- In Fig 1, some extra text erroneously showing up on the right side. 

- Fig1h font is too small. 

 

 

Reviewer #3 (Remarks to the Author): 

 

In this study, an interpretable mulƟmodal machine learning (IMML) framework is introduced to 
systemaƟcally integrate mulƟ-omics and clinical data to predict the prevalence and future onset of distal 
sensorimotor polyneuropathy (DSPN). The results suggest that adding omics modaliƟes to clinical data 
can improve the predicƟon of the onset of DSPN about 6 years in advance. Furthermore, the IMML 
framework allows for modality-specific (and integrated) interpretaƟon and the paper makes a genuine 
aƩempt to further our understanding of DSPN. 

The paper is clearly wriƩen and the methods are well explained. While the paper presents solid 
empirical work on both the feature engineering and machine learning aspects of the quesƟon, the 
innovaƟve aspects of the work are less obvious. The idea of explicit feature engineering in biomedical 
data sets to increase interpretability is not necessarily novel. Furthermore, one of the major biological 
findings related to inflammatory responses is corroborated by previous work done on the exact same 
data set. Overall, the methodological and biological advances in this paper are modest. In addiƟon, I 
outline some methodological issues with the work, that further reduce my enthusiasm for its 
acceptance. 

 

MAJOR: 

- The fact that FFS performs comparably to ensemble stacking in Supp. Fig. S2, regardless of the choice of 
thresholding or GSEA for step 1, greatly undermines the overall IMML approach and this study in 
general. It appears that one could naively train an ensemble model without GSEA features and achieve 
similar performance on incident DSPN as that of IMML. Interpretability of the ensemble model could be 
extracted in a post hoc manner through exisƟng feature importance methods in machine learning such 
as SHAP. 

- It is interesƟng that molecular features worsen performance over clinical variables for prevalent DSPN 
and improve performance for incident DSPN. But is this that surprising, given that the model is 
specifically trained for the incident DSPN predicƟon task, by opƟmizing over the FF4 data set? How does 
a model trained on F4 data do when directly applied on FF4 data as a test set? In my opinion, this is the 
more appropriate model to evaluate for incident DSPN predicƟon. In reality, one would have access to 
features up unƟl a certain Ɵmepoint and would need to make predicƟons in the future from that 
Ɵmepoint. In the paper, an FF4-opƟmized model assumes that we have access to labels from the future. 



- The constraints of not having complete data for a vast majority of samples are understandable but I am 
concerned that there may be implicit biases in choosing the test set to contain only those individuals for 
whom all data modaliƟes were available. Without any comparisons of the demographics and metadata 
associated with the samples for the held-out test set vs. the overall training data, it is unclear if the 
performance results and gains are generalizable and robust or not. One example of this is that age 
appears as a significant feature for both predicƟon tasks. Perhaps the model is learning to disƟnguish 
young paƟents from older ones as a proxy for disƟnguishing between DSPN and unaffected individuals? 

- Although the framework here drasƟcally reduces the feature space used, there sƟll seems to be an 
issue with the samples sizes being much smaller than the number of features. While elasƟc net 
addresses this to an extent, it would be helpful to compare against other machine learning algorithms 
designed to address this issue, e.g. SVMs. 

 

MINOR: 

- In Fig. 1, panels “c” through “h”, it would be good to explicitly state whether the sample numbers come 
from F4, FF4 or both. 

- In figures 2c and 3c, it appears that the both case and control score distribuƟons peak in the 0.3-0.5 
range. This suggests that the scores may be miscalibrated and one way to diagnose this would be 
through calibraƟon plots. Having said this, the framing of two tasks: prevalent and incident DSPN, 
suggests that this whole study involves posiƟve-unlabeled learning and calibraƟon in such situaƟons is 
not necessarily straighƞorward to interpret. 

- Although the framework here drasƟcally reduces the feature space used, there sƟll seems to be an 
issue with the samples sizes being much smaller than the number of features. While elasƟc net 
addresses this to an extent, SVMs and random forests may provide some gains predicƟve performance, if 
there is reason to believe, that the cases and controls are non-linearly separable in feature space. 

- In the Methods secƟon (“Gene set enrichment analysis”), an FDR threshold of 20% seems permissive 
and rather arbitrary. What is the raƟonale for this cutoff? 

- In the Methods secƟon (“ExtracƟon of leading-edge genes”), there is some inconsistency between the 
text and Figure 1e. From the figure, only the clinical features are selected out using elasƟc nets but the 
text suggests that the molecular features are also subject to the same procedure. Can this be made more 
clear? 

- In the Methods secƟon (“IteraƟve forward feature selecƟon”), it would be helpful if the nested cross-
validaƟon could be explained more clearly. As I understand it, the outer loop is not strictly cross-
validaƟon but 100 bootstrap samples of the 80-20 split. 

 

 

 



Reviewer #1: Neurologist, neuropathic pain 
  

The article’s title is:  
The Interpretable Multimodal 1 Machine Learning (IMML) framework reveals 
pathological signatures of distal sensorimotor polyneuropathy 
 

This is an analysis of the Kora dataset. Kora dataset, with 900 controls and almost 200 
patients with diabetic neuropathy, is certainly a very valuable asset. First of all a disclaimer: 
I am not able to assess the methods in this manuscript, and an expert in such techniques 
should be asked for this. If the article is for subspecialty experts only, then I am the wrong 
reader. If physicians interested in diabetic neuropathy are supposed to read it, then it needs 
to be rewritten in a more understandable way. 
 
Thanks  a  lot for this invaluable feedback. We aim to 1) deliver a novel interpretable machine learning 
framework for pathological signatures of DSPN, as well as 2) making it accessible to clinicians and 
neurologists. In order to address the second point, we have majorly revised our manuscript to increase 
readability and clarified clinically ambiguous machine learning terminology. Please see our detailed 
response below. 
 

- The title is difficult to read, and I am not sure what the authors’ intention is. 
 
Our apologies, there was a typo in the title, which has been corrected from   

“The Interpretable Multimodal 1 Machine Learning (IMML) framework reveals 
pathological signatures of distal sensorimotor polyneuropathy.”  

to  
“The Interpretable Multimodal Machine Learning (IMML) framework reveals pathological 
signatures of distal sensorimotor polyneuropathy.”  

 
The aim of this title is highlighting the novelty of the machine learning framework and its use 
case in distal sensorimotor polyneuropathy.  
 

- In the abstract, they state:  “we developed the Interpretable Multimodal Machine Learning 
(IMML) framework for empowering DSPN prevalence and incidence prediction based on 
sparse multimodal data.“ From this, I understand they want to predict prevalence and 
incidence. However, the result section of the abstract reads: “Important features included 
up-regulation of proinflammatory cytokines, down-regulation of SUMOylation pathway and 
essential fatty acids, thus yielding insights in the disease pathology. These may become 
biomarkers for incident DSPN and guide prevention strategies.“ So, was the aim to identify 
biomarkers? In any case, the aim should be clearly stated. 
 
Thanks for pointing this out. We agree that the core-objectives are predicting incidence and 
prevalence of DSPN. Noteworthy, the IMML framework is interpretable, thus further 
empowers biomarker detection. Therefore, our model does both. In order to highlight this, 
we have adjusted the abstract accordingly: 
 

“..., we developed the Interpretable Multimodal Machine Learning (IMML) framework for 
predicting DSPN prevalence and incidence based on sparse multimodal data. Exploiting 
IMMLs interpretability further empowered biomarker identification. …” 

 
Furthermore, we clarified that we investigated the predictive and interpretable feature of the 
incidence prediction with respect to implications for the pathophysiology of DSPN: 



 
“... Important and interpretable features of the prediction of incident DSPN included up-
regulation of proinflammatory cytokines, down-regulation of SUMOylation pathway and 
essential fatty acids, thus yielding insights in the disease pathophysiology. …” 

 
- I do not understand how “incident DSPN” was defined and ascertained. 

 
Thanks for this comment, we have expanded the Methods section for clarification: 
 

“We used the examination part of the Michigan Neuropathy Screening Instrument (MNSI) 
score to assess the status of DSPN for all participants of KORA F4 and KORA FF4, as 
described previously (Herder et al., 2017). In the MNSI assessment, we evaluated the 
appearance of feet (normal or any abnormalities such as dry skin, calluses, infections, 
fissures, or other irregularities), foot ulceration, ankle reflexes, and vibration perception 
threshold at the great toes which was assessed with the Rydel-Seiffer graduated C 64 Hz 
tuning fork (Feldman et al., 1994). A scoring system ranging from 0 (indicating normal in 
all aspects) to a maximum of 8 points was used. The normal limits for vibration perception 
threshold, adjusted for age, were determined based on the method outlined by Martina 
et al. The MNSI score also included the bilateral examination of touch/pressure sensation 
using a 10-g monofilament (Neuropen) (Boyraz & Saracoglu, 2010). Therefore, the total 
MNSI score ranged from 0 (indicating normal in all aspects) to a maximum of 10 points. 
Considering the advanced age of the participants and the inclusion of the monofilament 
examination, we defined distal sensorimotor polyneuropathy (DSPN) as a score of equal 
or higher than 3 points ( Herder et al. Diabetes 2018). Thus, participants with an MNSI 
score ≥3 in KORA F4 were considered as prevalent DSPN cases, whereas participants 
without DSPN in KORA F4 (MNSI <3) but MNSI ≥3 in KORA FF4 were considered as incident 
cases. This definition meets the minimal diagnostic criteria for possible DSPN, as outlined 
by the Toronto Diabetic Neuropathy Expert Group (Tesfaye et al., 2010).” 

 
Using the above scoring scheme, we were able to identify people with and without DSPN in 
F4 and FF4 time points in the KORA cohort. An incident DSPN occurred when a person without 
DSPN at F4 developed DSPN at FF4. Now, to clarify and highlight the incident DSPN definition, 
we describe this within a dedicated paragraph: 
  

“Using this criterion, for prevalent DSPN analysis, among 1,091 out of 1,133 individuals 
having MNSI scoring records, there were 188 cases and 903 controls. For incident DSPN 
analysis, we only considered the 903 controls in the KORA F4, and examined their 
progression of DSPN status in the KORA FF4. Among these, we excluded 378 individuals 
that either did not participate or lacked MNSI scoring records in the KORA FF4. For the 
incident DSPN analysis, the remaining 521 participants were split into 131 DSPN cases 
and 394 controls. For both predictions of prevalent and incident DSPN, we only leveraged 
clinical and molecular features collected at the early time point of KORA F4.” 

 
- One of the main results is that age, waist circumference and height were different in the 

diabetic neuropathy group. Inflammatory proteins were also more frequent. Both are not 
surprising, but still would be valuable results, if they can really predict DSPN. The main 
message should be stated. Which factors predict DSPN?  

 
Thanks for highlighting this. We have revised the Discussion to further explain predictive and 
interpretable features of DSPN prevalence: 
 



“..The analysis of prevalent DSPN (classification of case-control in the F4 population) 
suggested that the clinical model (using only clinical variables) outperformed the 
concatenated models (using clinical + molecular variables) in prediction. Then, feature 
analysis of the clinical model suggested that age, height, neurological illness, and waist 
circumference were the most important factors that influence the prediction of prevalent 
DSPN. […]. In summary, for prevalent DSPN, our analysis is confirmatory of previous 
studies with respect to these clinical variables. However, here we report the clinical 
variables in the context of a comprehensive multi-modality analysis of DSPN prevalence, 
thus adding another layer of information to the model. “ 

  
Furthermore, we clarify the predictive features of DSPN incidence: 
 

“… In the case of incident DSPN prediction, the molecular variables added prediction value 
as they helped improve the prediction performance (higher AUROC values) compared to 
the clinical model alone. Feature analysis detected multiple important and potentially 
actionable biomarkers such as inflammatory proteins, SUMOylation-related transcripts 
and essential fatty acids. Although the association between inflammatory proteins and 
incident DSPN has been reported before (Herder Diabetes Care 2017, Herder Diabetes 
2018), there are as yet no data from population-based studies such as ours implicating 
SUMOylation-related transcripts and essential fatty acids in the development of DSPN so 
that these findings are novel and merit further investigation in other cohorts. Additionally, 
none of these biomarkers and pathways has been reported before in the context of our 
novel multi-modality analysis of DSPN incidence…” 

 
- How early does this prediction work?  

 
We are limited by the design of the KORA F4 and FF4 studies. Participation in both studies was 
on average 6.5 years (± 0.2 years) apart with no data on incident DSPN in the meantime. To 
further clarify this point, we expanded the manuscript as the following: 
 

“The KORA cohort contains repeated assessment of DSPN status using identical 
examination methods at two timepoints, which allows studying both prevalent and 
incident DSPN. The fact that the mean follow-up time was 6.5 years and that we do not 
have data on DSPN diagnosis between both studies means that our data cannot be 
extrapolated to considerably shorter or longer time-periods than 6.5 years. It is possible 
that different variables may be more powerful for short-term or very long-term prediction 
of DSPN which needs to be addressed in future studies.”  

 
- How certain is this prediction?  

 
In this study we use AUROC (area under the ROC curve) to access the prediction power of our 
model. An AUROC of 0.5 or less reflects random or worse than random predictions, 
respectively. Besides reporting median AUROC values in our manuscript, now we added 95% 
confidence interval to the Results section as well as Figure 2 & 3 to provide information on 
the precision of the predictive power of our model: 
 

“...The clinical model had a median area under the receiver operating curve (AUROC; 
Methods) value of 0.752 with an interquartile range (IQR) of 0.686-0.821 and 95% 
confidence interval (CI) of 0.733-0.770, whilst the best performing model with molecular 
data only achieved a median AUROC of 0.583 with IQR of 0.539-0.627. This suggested 
that clinical variables alone are sufficient to stratify individuals with and without DSPN.” 



 
“... Identical to previous analysis, first we built a baseline model leveraging clinical 
features alone, which achieved a median AUROC of 0.603 with an IQR of 0.543-0.676 and 
95% CI of 0.588-0.624. This was significantly outperformed by adding either one or two 
additional molecular data modalities (Fig. 3a,b; Supp. Fig. S13), i.e. median AUROC of 
0.678 with an IQR of 0.612-0.752 and 95% CI of 0.652-0.692 and AUROC of 0.700 with 
IQR of 0.651-0.774 and 95% CI of 0.686-0.722, respectively (Wilcoxon rank sum test, p = 
1.9e-16 and p = 2.9e-11, respectively). We observed that inflammatory proteins were 
>80% the first picked molecular layer, followed by metabolites, whilst SNPs and CpG sites 
seemed to carry the least predictive information (Fig. 3a). The performance tended to 
saturate at 3-modality complexity as adding more modalities did not significantly 
improve the performance anymore (Wilcoxon rank sum test, p=0.95), i.e. 4-modality 
models had a median AUROC of 0.714 with an IQR of 0.640-0.774 and 95% CI of 0.684-
0.720 (Fig. 3b)....” 

 
- Which of these factors are modifiable?  

 
With respect to prevalent DSPN, we identified mostly clinical variables of which waist 
circumference is modifiable, as shown in the Results and Discussion:  
 

“.The analysis of prevalent DSPN (classification of case-control in the F4 population) 
suggested that the clinical model (using only clinical variables) outperformed the 
concatenated models (using clinical + molecular variables) in prediction. Then, feature 
analysis of the clinical model suggested that age, height, neurological illness, and waist 
circumference were the most important factors that influence the prediction of prevalent 
DSPN. Age and height have been reported to be associated with prevalent DSPN (Ziegler 
et al., 2022). The neurological comorbidity status of patients is not used to classify DSPN 
yet, however, there might be an intrinsic neurological mechanism that links DSPN to other 
neurological illnesses. Finally, waist circumference is strongly correlated with BMI, which 
has been reported to be a risk factor for developing DSPN (Fakkel et al., 2020). From a 
clinical perspective it is worth mentioning that only waist circumference represents a 
modifiable risk factor which emphasizes the role of obesity prevention and treatment also 
in the context of DSPN.” 

 
Furthermore, we expanded our Discussion on modifiable factors that are important for 
incident DSPN prediction. First we discuss inflammatory effects:  
 

“Remarkably, inflammatory effects were observed in the blood samples prior to disease 
onset. Thus, the predictive pro-inflammatory cytokines, chemokines and transmembrane 
proteins observed in this study could represent modifiable risk factors and therefore 
therapeutic targets for disease prevention. For example, salicylate was reported in many 
studies to have inhibitory effects on production of cytokines and chemokine. In addition, 
novel treatment approaches targeting IL-1 beta-related mechanisms have been 
demonstrated to reduce subclinical inflammation and have beneficial effects on 
cardiometabolic risk, and may be generalisable for DSPN. Beyond pharmacological 
approaches to attenuate subclinical inflammation, it is important to emphasise that 
subclinical inflammation is triggered by a range of other modifiable risk factors such as 
high-calorie diet, certain nutrients, physical inactivity, obesity, psychosocial stress and 
sleep disturbances so that lifestyle changes represent another option for intervention 
(Furman D et al., 2019).” 

 



Furthermore, we propose the actionable follow-ups for the SUMO pathway: 
 

“The transcriptomic layer also gained attention as one of the most important predictors 
of DSPN. Particularly, significant down-regulation of the small ubiquitin-related modifier 
(SUMO) pathway was consistent with a recent study, which demonstrated SUMO 
posttranslational modifications are involved in glycolysis. Furthermore, the tricarboxylic 
acid (TCA) cycle plays a crucial role in maintaining important metabolic processes in 
sensory neurons, and deficiency of SUMO activity causes damaging effects which may 
specifically contribute to DSPN pathogenesis. Although this enrichment analysis has to be 
interpreted with caution due to the small sample size, it is noteworthy that oxidative 
stress and inflammation have been proposed as mediators linking hyperglycaemia and 
impaired SUMOylation in diabetic polyneuropathy and that aberrant SUMOylation has 
also been implicated in the aetiology of neurodegenerative diseases. Thus, this finding 
extends the aforementioned results on inflammation, corroborates other studies and may 
point towards another mechanism how DSPN risk could be targeted by addressing 
modifiable risk factors leading to inflammation and oxidative stress.” 
 

 And finally, we discuss the actionability of fatty acids: 
 

“ [...] Overall, caprate, linolenate and adrenate have not been linked to DSPN in detailed 
investigations but nevertheless highlight the possibility that they should be modifiable 
risk factors that could be modulated by specific dietary interventions or dietary 
supplements. Importantly, experimental results suggested that PUFA might be a 
potential agent to treat DSPN (Tao et al., 2008; Duran et al., 2022), subject to future 
studies focussing on high-risk individuals assessing the potential preventive and 
therapeutic properties of dietary fatty acids in this context. ” 

 
- Can the authors clearly distinguish predictive factors from accompanying factors of the 

disease? 
 
We thank the reviewer for this important question. With cross-sectional studies, this issue 
cannot be addressed. The prospective part of our analysis focussing on incident DSPN can 
clarify the aspect of temporal relationships between risk factors and onset of DSPN but does 
not allow for causal inference. The aspect of causality would need approaches such as 
Mendelian randomisation studies in human cohorts or studies based on animal models or in 
vitro studies using relevant cell culture models of neurotoxicity. Our findings on incident DSPN 
provide good candidates for such analyses, but we believe that adding them would be beyond 
the scope of our manuscript. 

 
“One aspect that we were unable to claim are causal relationships due to the inherent 
limitations of the KORA study design. This is neither addressable in the cross-sectional 
studies, nor in the prospective segment of our analysis, which concentrates on the 
occurrence of Diabetic Sensorimotor Polyneuropathy (DSPN), however, the latter sheds 
light on the temporal associations between risk factors and the onset of DSPN. To delve 
into the aspect of causality, alternative methodologies are warranted, such as Mendelian 
randomization studies conducted in human cohorts or investigations utilizing animal 
models and in vitro studies employing pertinent cell culture models of neurotoxicity. Our 
findings concerning incident DSPN offer promising candidates for such inquiries subject 
to further studies.” 

 
Reviewer #2: Computational, deep learning, multimodal data, complex traits 



 
- While the overall results are interesting, the method description lacks details 

 
Thanks for acknowledging the novelty of our finding. We agree that extending the Methods 
section is beneficial for reproducibility, thus have comprehensively extended it. Please see the 
answers to your comments below, as well as the revised Methods section for more details.   
 

- elastic net does not account for the different distributions or numerical scales of the multi-
modal features. What's the rationale of using it? For example, random forest may be a 
better and more robust method here. 
 
Elastic net was employed due to its inherent interpretability. Particularly, feature importance 
could be easily extracted by computing t-statistics of the models’ beta values.   
  
We agreed that the multi-modal features are heterogenous and come in different numerical 
scales. To clarify this, we have adjusted the text as the following.  
 

“[...] Each molecular layer was standardized before downstream analysis by computing 
the z-score, which accounts for different distributions and numerical scales of features. 
Our analysis pipeline pre-processed the data in a modality-specific manner, as shown 
below.”   

 
Furthermore, we agree that using nonlinear algorithms may be beneficial, thus, included them 
in a benchmarking and compared performance of predictions: 
 

“To select the machine learning algorithm for DSPN prediction, we compared the 
predictive performance of elastic net, random forest and support vector machine, the 
latter leveraged linear and radial kernels (Supp. Fig. S9). For this we performed 100 
matched resamples with forward feature selection. Elastic net outperformed the other 
three machine learning algorithms in both prevalent DSPN (Supp. Fig. S9a-d) and incident 
DSPN predictions (Supp. Fig. S9e-h). Best performances in prevalent DSPN (AUROCs of 
0.737) and  incident DSPN (AUROCs of 0.708) predictions were observed at 1-modality and 
3-modality complexity, respectively. Notably, none of the other machine learning 
algorithms reached AUROC higher than 0.700 at any model complexity.“ 



 
Supplementary Figure S9: Prediction performance of four different machine learning 
algorithms. Here we compare the predictive power of (a-d) prevalent DSPN and (e-h) incident 
DSPN. We benchmarked (a,e) elastic net (glmnet), (b,f) random forest (rf), and support vector 
machine with (c,g) radial (svmRadial) and (d,h) linear kernel (svmLinear).  
  

- There are many Reactome gene sets, and not all of the Reactome gene sets are relevant. 
What gene set was used for the lead edge analysis followed by feature selection up to the 
leading edge enrichment peak? What's the ID for the gene set? Is it just one gene set or 
union of multiple gene sets? 
 
We have expanded our description accordingly. During the feature selection, we implemented 
gene set enrichment analysis using Reactome gene sets as reference biological information. 
We did this in a non-bias and data driven manner so all the gene sets in the database were 
considered:  
 

“...In all cases, we included the full set of Reactome signaling pathways at the lowest 
levels of pathway hierarchy to avoid redundancy, and at the time, ensure full unbiased 
coverage (Supp. Table S5)…” 
 



For further increasing transparency, we created a supplemental table containing all pathway 
definitions (Supp. Table S5), as well as downstream analysis with Robust Rank Aggregation 
algorithm to extract the most significant gene sets (Supp. Table S3 & S4). 
 

- Line 502: How to convert SNPs to genes? Aggregate SNP effects over each nearby genes? 
 
Thanks for this question. We mapped SNPs according to their proximity to genes, however, 
we further refined the method for gene set analysis for genomic data (and also DNA 
methylation data) as the following:  
 

“... For genomic data, we leveraged the MAGMA software (de Leeuw CA et al.) to 
estimate the gene effect and subsequently perform gene set analysis. First, we annotated 
SNPs according to nearby genes (2 kb upstream and 0.5 kb downstream), and 
consecutively used MAGMA to estimate the gene effect on the phenotype, taking into 
account the SNPs that were mapped to this gene. MAGMA estimated the gene effect by 
first conducting principal component analysis (PCA) using all SNPs linked to this gene, and 
afterwards used PCs to train a linear regression model predicting the phenotype. Finally, 
MAGMA computed the gene’s p-value with F-test, and  converted these to Z-values for 
the gene set analysis leveraging a linear regression model.  
 
For methylomic data, we used the methylRRA method (Ren X et al.)  to perform gene set 
enrichment analysis (GSEA) on the CpG probes. First, this required a differential 
expression analysis on the probes using the R package limma, followed by using the 
ranked list of p-values as input for methylRRA. To this end, methylRRA computed a p-
value for each gene leveraging the ranking of all CpGs annotated to that gene by 
implementing Robust Rank Aggregation algorithm. Consequently, the p-values were 
transformed into z-scores and were used for the  GSEA to extract significant gene sets. ” 

 
- Line 513: “Features were considered for further selection process of all models achieving an 

AUROC > 0.5” I don’t understand this. Shouldn’t it be the features of non-zero elastic net 
regression coefficients being selected? 
 
Thanks for pointing this out. In order to clarify, we adjusted the manuscript as below: 
 

“Leading-edge genes in upregulated gene sets are all genes from the beginning of the 
ranked gene list until the enrichment score (ES). In contrast, in case of down-regulated 
gene sets, leading-edge genes are from the ES to the end of the ranked gene list. Here, 
we leveraged 80% of all data for each of the 100 stratified resamples, did GSEA, extracted 
the leading edge molecules to train an elastic net model, and finally tested the model 
prediction on the left out remaining 20% of samples. For aggregating results of these 100 
stratified resamples, we only considered predictive models (AUROC > 0.5), and leveraged 
a Robust Rank Aggregation (RRA) algorithm with a false discovery rate (FDR) cutoff of 
5%, which delivered a union of leading-edge gene sets. Afterwards, a GSEA was 
conducted on the union of leading-edge gene sets to extract the final consensus 
significant gene sets and leading edge molecules, which were subject to final model 
training.” 

 
- Line 515: Briefly describe how does RRA aggregate the gene lists. What does the FDR 

control? 
 
Thanks for this comment. We added a section in the Methods on robust rank aggregation: 



 
“Robust Rank Aggregation 
We leveraged the implementation of Robust Rank Aggregation of Kolde et al. [26]. The 
molecules/molecule sets were ranked according to p-values, leading to a different 
ranked list per cross-validation/resampling run. Then, the rank distribution of each 
molecule/molecule set across all lists was tested against the random ranking 
distribution generated by permutation with the null hypothesis that there was no 
difference between the two distributions. The p-values of the test were adjusted for 
multiple hypothesis testing by multiplying the number of tested lists and additionally 
adjusted for the number of tested molecules/molecule sets by Benjamini-Hochberg 
method.“ 

 
- What are the setting for the alpha and lambda in the elastic net? Did you choose them by 

5-fold CV? 
 
Thanks, we revised the manuscript to add more details regarding this: 
 

“The iterative forward feature selection (FFS) integrates multiple data modalities. It is 
based on a nested cross-validation leveraging elastic net models with weighted log-loss 
function to overcome class imbalances [...]. We tuned elastic net’s hyperparameters 
alpha and lambda by grid search of 20 alphas and lambdas in range [0,1], resulting in 400 
parameter sets. The chosen hyperparameter combination was the one having best mean 
performance across 5-fold cross-validations ....”    

 
- Line 532: What is “model complexity “defined here? 

 
Thanks for pointing this out. The model complexity here means the number of modalities as 
input to the model. The more modalities, the higher complexity: 
 

“For the second step, i.e. final model training and multimodal data integration, we 
leveraged the short-listed features from the analyses above. The final model was trained 
with an embedded feature selection whilst balancing model complexity. In the context of 
this study, we refer to the number of input modalities as model complexity …”  

 
- Line 546: more details needed. What are the individual classifiers on each modality (elastic 

net?)? What is the ensemble model in the meta-analysis? 
 
Thanks for the comment, we have updated the Methods section accordingly: 
 

“Benchmarking of feature selection and integration methods 
 
For feature selection, we compared GSEA with the conventional thresholding methods. 
For feature integration, we benchmarked FFS, data concatenation and ensemble stacking 
approaches. Thus, in total there were six combinations of methods to compare. For the 
thresholding method, we implemented differential expression analysis using limma and 
selected features having p-values<0.05.  
 
Regarding feature integration, we benchmarked the FFS with ensemble stacking and 
feature concatenation. The latter concatenated all features into a single matrix before 
training the model. The ensemble stacking approach leveraged 100 independent runs 
with stratified resampling. This is, we generated 100 sets of stratified resamples, each 



consisting of 80% training and 20% test set (i.e. outer loop). Within  each 80% training 
set, we further divided the data into 5-fold cross validation sets (i.e. inner loop). For each 
iteration of the inner loop, we trained an elastic net model on four out of five validation 
sets and made predictions on the remaining validation set. After five iterations, we 
obtained the predictions of all samples for that inner loop (corresponding to the 80% 
training set from the outer loop). We used this together with the ground truth (80% outer 
train) to train an elastic net meta model in the outer loop, and consecutively tested the 
predictive performance on the remaining 20% test set. Importantly, the test sets were 
never used for any parameter optimisation nor training, and only leveraged for unbiased 
performance evaluation. This process was repeated for each data modality. For the 
feature analysis we implemented Robust Rank Aggregation on the meta models of the 
ensemble stacking across 100 resamplings, then extracted the individual feature 
importance. ”  
 

We also added the following pseudocode for further explaining the ensemble stacking 
process. 

 
      

 
Reviewer #3: Computational, machine learning, genomics 
 
 

- In this study, an interpretable multimodal machine learning (IMML) framework is 
introduced to systematically integrate multi-omics and clinical data to predict the 
prevalence and future onset of distal sensorimotor polyneuropathy (DSPN). The 
results suggest that adding omics modalities to clinical data can improve the 
prediction of the onset of DSPN about 6 years in advance. Furthermore, the IMML 
framework allows for modality-specific (and integrated) interpretation and the 
paper makes a genuine attempt to further our understanding of DSPN. The paper is 
clearly written and the methods are well explained.  
 
We appreciate this kind evaluation. 



 
- While the paper presents solid empirical work on both the feature engineering and machine 

learning aspects of the question, the innovative aspects of the work are less obvious. The 
idea of explicit feature engineering in biomedical data sets to increase interpretability is not 
necessarily novel. Furthermore, one of the major biological findings related to inflammatory 
responses is corroborated by previous work done on the exact same data set. Overall, the 
methodological and biological advances in this paper are modest.  
 
Thanks for this comment. To address this, we would like to further emphasize the novelty of 
our work.  
 
Firstly, highlighting the robustness of our methodology, we confirmed established and 
anticipated associations of cross-sectional DSPN predictions. Secondly, to the best of our 
knowledge, this is the first attempt to leverage multimodal signaling pathway information in 
an end-to-end prediction task to study incidence DSPN. Furthermore, we systematically 
leveraged our models to detect individual biomarkers of these phenotypes. Previous  DSPN 
studies, either on the same data set or others, focused on univariate statistical analyses of 
cross-sectional DSPN, whilst largely neglecting multi-omics integration: 
 

“...Furthermore, we presented an innovative machine learning framework to model 
incidence of DSPN by integrating multi-omic and clinical data. Previous efforts either 
focused on classifying the disease in a cross-sectional context, lacked multi-omics 
integration strategies or exhibited limitations of univariate statistical analyses (Haque et 
al., Shin et al, Kazemi et al., Jian et al., Dagliati et al. and Herder et al.). In our study, the 
multi-omic data integration added significant information to boost predictive 
performance.” 

 
Notably, it is the unique study design of the KORA cohort which empowered the DSPN 
incidence prediction. Now, we further highlight this in our manuscript:  
 

“One strength of our study’s design is the utilisation of population-based prospective data 
from a large cohort (KORA F4). The KORA cohort contains repeated assessment of DSPN 
status using identical examination methods at two timepoints, which allows studying 
both prevalent and incident DSPN…” 
 

Finally, we further highlight the novelty of detected biomarkers in the revised manuscript: 
 
“...Feature analysis detected multiple important and potentially actionable biomarkers 
such as inflammatory proteins, SUMOylation-related transcripts and essential fatty acids. 
Although  the association between inflammatory proteins and incident DSPN has been 
reported before, there are as yet no data from population-based studies such as ours 
implicating SUMOylation-related transcripts and essential fatty acids in the development 
of DSPN so that these findings are novel and merit further investigation in other cohorts. 
Additionally, none of these biomarkers and pathways has been reported before in the 
context of our novel multi-modality analysis of DSPN incidence.” 

 
- In addition, I outline some methodological issues with the work, that further reduce my 

enthusiasm for its acceptance. 
 
Thank you for your comments. We have addressed them carefully and also adjusted the 
manuscript accordingly, please see below for details.  



 
- The fact that FFS performs comparably to ensemble stacking in Supp. Fig. S2, regardless of 

the choice of thresholding or GSEA for step 1, greatly undermines the overall IMML 
approach and this study in general. It appears that one could naively train an ensemble 
model without GSEA features and achieve similar performance on incident DSPN as that of 
IMML. Interpretability of the ensemble model could be extracted in a post hoc manner 
through existing feature importance methods in machine learning such as SHAP. 

 
In this benchmarking, one of the main messages was that the GSEA-based feature selection 
performed better than thresholding-based approach, regardless of the choice of multi-modal 
feature integration methods, which is depicted in now Supp. Fig. S3. We revised the 
manuscript to further explain the algorithms and their selection:  
 

“...We benchmarked three feature integration methods, i.e. forward feature selection 
(FFS), ensemble and concatenation of all features together (Supp. Fig. S3a; Methods), 
and observed best performance with GSEA-FFS followed by GSEA-ensemble stacking 
(Supp. Fig. S3b). When comparing the performance of the FFS and ensemble stacking 
methods using all modalities and with GSEA as the feature selection approach, the FFS 
algorithm achieved marginally higher predictive performance (Supp. Fig. S8a). Both 
methods retained inflammatory proteins as the most predictive features, however, the 
GSEA-FFS was further able to detect clinically relevant signals from other modalities 
(Supp. Fig. S8b). Therefore, we implemented an iterative FFS algorithm with resampled 
cross-validation (Methods).” 

 
We also expanded the Method section to further explain this: 

 
“Regarding feature integration, we benchmarked the FFS with ensemble stacking and 
feature concatenation. We performed an ensemble stacking approach in 100 
independent runs with stratified resampling. This is, we generated 100 sets of stratified 
resamples, each consisting of 80% training and 20% test set (i.e. outer loop). Within  each 
80% training set, we further divided the data into 5-fold cross validation sets (i.e. inner 
loop). For each iteration of the inner loop, we trained an elastic net model on four out of 
five validation sets and made predictions on the remaining validation set. After five 
iterations, we obtained the predictions of all samples for that inner loop (corresponding 
to the 80% training set from the outer loop). We used this together with the ground truth 
(80% outer train) to train an elastic net meta model in the outer loop, and consecutively 
tested the predictive performance on the remaining 20% test set. Importantly, the test 
sets were never used for any parameter optimisation nor training, and only leveraged for 
unbiased performance evaluation. This process was repeated for each data modality. For 
the feature analysis we implemented Robust Rank Aggregation on the meta models of 
the ensemble stacking across 100 resamplings, then extracted the individual feature 
importance.” 

 
Below is the newly added Supplemental Figure S8: 



 
 
Supplementary Figure S8. Performance of forward feature selection (FFS) and ensemble 
stacking feature integration methods across 100 stratified resamplings. (a) AUROC of the 
testing prediction of the two algorithms. P-value of Wilcoxon rank sum test is shown. (b) 
Important features selected by the GSEA-ensemble stacking (GSEA-Es) and GSEA-FFS methods 
and their overlapping.  
 

- It is interesting that molecular features worsen performance over clinical variables for 
prevalent DSPN and improve performance for incident DSPN. But is this that surprising, 
given that the model is specifically trained for the incident DSPN prediction task, by 
optimizing over the FF4 data set? How does a model trained on F4 data do when directly 
applied on FF4 data as a test set? In my opinion, this is the more appropriate model to 
evaluate for incident DSPN prediction. In reality, one would have access to features up until 
a certain timepoint and would need to make predictions in the future from that timepoint. 
In the paper, an FF4-optimized model assumes that we have access to labels from the future. 

 
Thanks for the comment, we suspect this is a misunderstanding. Both prevalent DSPN and 
incident DSPN predictions exclusively leveraged features of the early F4 timepoint as model 
input. For the incident DSPN prediction, we additionally leveraged the diagnosis labels (i.e. 
outcomes) of the later  FF4 timepoint. Now, we further clarify this in the manuscript: 
 

“Using this criterion, for prevalent DSPN analysis, among 1,091 out of 1,133 individuals 
having MNSI scoring records, there were 188 cases and 903 controls. For incident DSPN 
analysis, we only considered the 903 controls in the KORA F4, and examined their 
progression of DSPN status in the KORA FF4. Among these, we excluded 378 individuals 
that either did not participate or lacked MNSI scoring records in the KORA FF4. For the 
incident DSPN analysis, the remaining 521 participants were split into 131 DSPN cases 
and 394 controls. Both prevalent and incident DSPN predictions leveraged clinical and 
molecular features as input collected at the early F4 time point of KORA.” 

  
- The constraints of not having complete data for a vast majority of samples are 

understandable but I am concerned that there may be implicit biases in choosing the test 
set to contain only those individuals for whom all data modalities were available. Without 
any comparisons of the demographics and metadata associated with the samples for the 
held-out test set vs. the overall training data, it is unclear if the performance results and 
gains are generalizable and robust or not. One example of this is that age appears as a 
significant feature for both prediction tasks. Perhaps the model is learning to distinguish 
young patients from older ones as a proxy for distinguishing between DSPN and unaffected 
individuals? 



If we understand your point correctly, you are concerned about potential biases in selected 
samples for the feature selection, model training and testing datasets. To this end, we 
performed PCA using all clinical features and visualized the two datasets in each modality to 
see if there was obvious segregation. In all modalities, we observed no effect in selection for 
feature selection and model training sets (Supp. Fig. S2), suggesting there was no bias in data 
partitioning.   
 

 
 
Supplementary Figure S2. PCA of clinical features for feature selection and model training 
datasets. Grey contour plots highlight the model training sets, whilst other colors indicate the 
feature selection set of the different modalities: (a) Genomics, (b) Transcriptomics, c) 
Proteomics, (d) Metabolomics, (e) Methylomics and (f) Clinical data.  

 
We further revised the data partitioning description in the Results part of the manuscript: 
 

“...Both subsets of data for feature selection and model training and testing were subject 
to PCA analysis using clinical information to ensure there was no potential bias in sample 
selection (Supp. Fig. S2).” 

 
- Although the framework here drastically reduces the feature space used, there still seems 

to be an issue with the sample sizes being much smaller than the number of features. While 
elastic net addresses this to an extent, it would be helpful to compare against other machine 
learning algorithms designed to address this issue, e.g. SVMs. 
 
Thanks for this suggestion. We included a  benchmarking of elastic net, random forest, SVM 
with linear and radial kernels:  

“To select the machine learning algorithm for DSPN prediction, we compared the 
predictive performance of elastic net, random forest and support vector machine, the 
latter leveraged linear and radial kernels (Supp. Fig. S9). For this we performed 100 
matched resamples with forward feature selection. Elastic net outperformed the other 
three machine learning algorithms in both prevalent DSPN (Supp. Fig. S9a-d) and incident 
DSPN predictions (Supp. Fig. S9e-h). Best performances in prevalent DSPN (AUROCs of 
0.737) and  incident DSPN (AUROCs of 0.708) predictions were observed at 1-modality 
and 3-modality complexity, respectively. Notably, none of the other machine learning 
algorithms reached AUROC higher than 0.700 at any model complexity. “ 

 
The performance comparison is shown in Supp. Fig. S9: 
 



 
Supplementary Figure S9: Prediction performance of four different machine learning 
algorithms. Here we compare the predictive power of (a-d) prevalent DSPN and (e-h) incident 
DSPN. We benchmarked (a,e) elastic net (glmnet), (b,f) random forest (rf), and support vector 
machine with (c,g) radial (svmRadial) and (d,h) linear kernel (svmLinear).   

 
- In Fig. 1, panels “c” through “h”, it would be good to explicitly state whether the sample 

numbers come from F4, FF4 or both. 
 
Thanks for pointing this out. All the samples here were only from the F4 timepoint. Some of 
the samples had DSPN information in FF4, which was the basis to determine incident DSPN 
label. In Fig. 1, sample and feature sizes were depicted for incident DSPN analysis. The same 
information for prevalent DSPN was plotted in Supp. Fig. S1 in the manuscript. In order to 
clarify, we edited the legend of Fig. 1:    

 
“Figure 1: Workflow of interpretable multimodal framework for feature prioritisation, 
DSPN classification and disease incidence prediction. (a) Distribution of samples across 
time points (KORA F4 and FF4), disease status (case or control) at baseline (KORA F4) and 
follow-up (KORA FF4) and prediction tasks. (b) Number of features stratified according to 
data modalities. In grey are removed features after pre-processing. (c) Number of 
samples characterised within each data modality and their overlaps in KORA F4. (d) Fully 
characterised samples in KORA F4 were exclusively leveraged for (g) the second and final 
training step, whilst the remaining sparse samples were used for (e) prior feature 
prioritisation: All molecular features were shortlisted based on differential expression 
analysis (DEA), gene set enrichment analysis (GSEA) and their leading-edge genes 
(Methods), whilst clinical features were ranked according to feature importance of elastic 



net models. (f) Features for the final training step were selected based on rank 
aggregation (Methods). (g) The final training set contained 54 DSPN cases and 188 
controls in KORA F4. In the second step, elastic net models determined the optimal 
complexity, features and combination of modalities. These models implemented forward 
feature selection in a nested cross-validation, using weighted log loss to account for class 
imbalance, and finally 100 stratified resampling during training and rank aggregation 
(Methods), thus returning (h) the refined and final model further subject to functional 
analysis for gaining insights in DSPN pathophysiology.” 

 

 
- In figures 2c and 3c, it appears that the both case and control score distributions peak in the 

0.3-0.5 range. This suggests that the scores may be miscalibrated and one way to diagnose 
this would be through calibration plots. Having said this, the framing of two tasks: prevalent 
and incident DSPN, suggests that this whole study involves positive-unlabeled learning and 
calibration in such situations is not necessarily straightforward to interpret. 
 
Thanks for pointing this out. We solved this by calibrating the predicted probabilities. 
Particularly, we fit a logistic regression model to the predicted probabilities, using the true 
binary outcomes as the target variable, taking into account the class imbalance. We added 
this detail to Methods section and add a supplementary figure:   
 

“...The prediction performance of the model was tested by predicting on the outer test 
set (20% samples). The prediction probabilities were calibrated using the Platt scaling 
method. In each step, the model adds the next best data modality based on increased 
performance until all data modalities are included.” 
 

To check if the prediction was calibrated properly, we made calibration curves for both 
prevalent (Supp. Fig. S10a) and incident DSPN (Supp. Fig. S10b) prediction. The plots showed 
that the predicted probabilities are mostly close to the true outcomes, except for a few 
outliers.  
 

 
Supplementary Figure S10: Calibration analysis. Calibration plots of predicted probabilities 
for (a) prevalent DSPN and (b) incident DSPN. 
 
Finally we adjusted Fig. 2c & 3c in the manuscript to reflect the calibrated probabilities. 
 

- In the Methods section (“Gene set enrichment analysis”), an FDR threshold of 20% seems 
permissive and rather arbitrary. What is the rationale for this cutoff? 
 



This lenient cut-off was motivated by allowing the selection of features with lower effect size, 
which may cumulatively add predictive power when integrated. During modality integration, 
we implemented an embedded feature selection with elastic net selecting the most 
informative features. We added the motivation for the lenient threshold to our method 
description: 
 

“...Finally, the p-values were adjusted for multiple hypothesis testing with false discovery 
rate (FDR) < 20%, which is a lenient threshold allowing the selection of features with lower 
effect size, which may add predictive value in multivariate models in later integration 
steps.” 

 
- In the Methods section (“Extraction of leading-edge genes”), there is some inconsistency 

between the text and Figure 1e. From the figure, only the clinical features are selected out 
using elastic nets but the text suggests that the molecular features are also subject to the 
same procedure. Can this be made more clear? 
 
Thank you for pointing this out. We have adjusted the text accordingly:  
 

“Leading-edge genes in upregulated gene sets are all genes from the beginning of the 
ranked gene list until the enrichment score (ES). In contrast, in case of down-regulated 
gene sets, leading-edge genes are from the ES to the end of the ranked gene list. Here, 
we leveraged 80% of all data for each of the 100 stratified resamples, did GSEA, extracted 
the leading edge molecules to train an elastic net model, and finally tested the model 
prediction on the left out remaining 20% of samples. For aggregating results of these 100 
stratified resamples, we only considered predictive models (AUROC > 0.5), and leveraged 
a Robust Rank Aggregation (RRA) algorithm with a false discovery rate (FDR) cutoff of 
5%, which delivered a union of leading-edge gene sets. Afterwards, a GSEA was 
conducted on the union of leading-edge gene sets to extract the final consensus 
significant gene sets and leading edge molecules, which were subject to final model 
training.” 

 
- In the Methods section (“Iterative forward feature selection”), it would be helpful if the 

nested cross-validation could be explained more clearly. As I understand it, the outer loop 
is not strictly cross-validation but 100 bootstrap samples of the 80-20 split. 
 
Yes, you are correct. The outer loop was stratified resamples of 80-20 split. We have revised 
the Method section accordingly: 
  

“The iterative forward feature selection (FFS) integrates multiple data modalities. It is 
based on 100 independent runs of five-fold cross-validation. We tuned elastic net’s 
hyperparameters alpha and lambda by grid search of 20 alphas and lambdas in range 
[0,1], resulting in 400 parameter sets. The chosen hyperparameter combination was the 
one having best mean performance across 5-fold cross-validations. In each run, we 
randomly sampled 80% of the dataset to perform five-fold cross-validation and the 
performance was tested with the remaining 20% data. For each fold of model training, 
elastic net models with weighted log-loss function to overcome class imbalances were 
implemented. Within the inner loop, a 5-fold cross-validation selected the best data 
modality to add next. The prediction performance of the model was tested by predicting 
on the outer test set (20% samples). The prediction probabilities were calibrated using 
the Platt scaling method. In each step, the model adds the next best data modality based 
on increased performance until all data modalities are included. “ 



Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

The manuscript has much improved and is beƩer accessible now to the reader. 

 

 

Reviewer #2 (Remarks to the Author): 

 

Thank the authors for addressing my comments. One more comment is that 'Model complexity' implies 
the number of parameters or the sophisƟcaƟon of the machine learning model rather than the number 
of input modaliƟes. I do not recommend use that term here. 

 

 

Reviewer #3 (Remarks to the Author): 

 

Most of my comments have been addressed saƟsfactorily and I appreciate the efforts put into 
strengthening the manuscript. However, one key point sƟll remains. Regarding the disƟncƟon between 
predicƟng prevalent and incident DSPN, as I understand it, two different models were trained and 
evaluated in the two-step framework presented here. Even though only features from F4 were used for 
both models, they were sƟll opƟmized on two different training data sets. My original quesƟon was: 
what would happen if I trained a single model only on F4 features and data, froze it and used it to make 
predicƟons on the FF4 data set? Ideally, the prevalent DSPN model should have learned to weight 
features such that future DSPN cases within the the F4 controls would be scored higher. In my opinion, 
this should serve as the baseline to determine if molecular features are truly drivers of incident DSPN 
predicƟon. It is also possible the worse-performing model for prevalent DSPN (clinical + molecular 
features) may end up doing beƩer on incident DSPN predicƟon, which is a stronger demonstraƟon of 
predicƟve success. EssenƟally, any claims about biological or clinical uƟlity of predicƟon models should 
account for situaƟons in which such models would be deployed. PredicƟng DSPN cases 6.3-6.7 years into 
the future implies that one does not even have access to even the DSPN labels from the future. If this 
concern can be addressed or the claim of future predicƟon toned down, I am comfortable with 
recommending the publicaƟon of this work. 

 

 



Reviewer #2: 

 

- Thank the authors for addressing my comments. One more comment is that 

'Model complexity' implies the number of parameters or the sophistication of the 

machine learning model rather than the number of input modalities. I do not 

recommend use that term here. 

 

Thank you for your comment. We adjusted the manuscript and systematically changed 

the terminology to “number of modalities” accordingly. Below are a few examples of 

textual changes, among others (consistently highlighted in revised manuscript): 

 

“...We hypothesise that well performing models at the minimum number of data 

modalities will give insights into the disease aetiology of DSPN and its incidence, 

thus may improve diagnosis and pave the way for prevention strategies…” 

 

“...The final model was trained with an embedded feature selection whilst 

balancing the number of modalities…” 

 

“...Best performances in prevalent DSPN (AUROCs of 0.737) and  incident 

DSPN (AUROCs of 0.708) predictions were observed at 1-modality and 3-

modality models, respectively…” 

 

Reviewer #3: 

 

- Most of my comments have been addressed satisfactorily and I appreciate the 

efforts put into strengthening the manuscript. However, one key point still 

remains. Regarding the distinction between predicting prevalent and incident 

DSPN, as I understand it, two different models were trained and evaluated in the 

two-step framework presented here. Even though only features from F4 were used 

for both models, they were still optimized on two different training data sets.  

 

Thank you for the positive feedback. Regarding the distinction between prevalent and 

incident DSPN predictions, you are correct, they are two separate tasks, i.e. the two-step 

framework was run separately for the two independent models. Both models were 

trained on the same feature sets from time point F4, however, they used two different 

output labels. 

 

To clarify that both models use the same features / input from F4, we added further 

clarification in Fig. 1a: 

 

“(a) Distribution of samples across time points (KORA F4 and FF4), disease 

status (case or control) at baseline (KORA F4) and follow-up (KORA FF4) and 

prediction tasks. Both models were trained on the same set of F4 features but 

different labels and a subset of samples.” 



 

We also further clarified the definition incident and prevalent label: 

 

“...The earlier F4 time point surveyed 1,091 individuals of whom 622 were 

followed up at the later FF4 time point. We used the established Michigan 

Neuropathy Screening Instrument (MNSI) to assess and define the DSPN status 

as described in previous studies [ref 24,25]. Using MNSI, we identified 188 

DSPN cases and 903 controls at F4, and 131 controls who developed DSPN 

between F4 and FF4 (Supp. Table S1, S2). The first machine learning task was 

to predict DSPN prevalence at F4 (Fig. 1a). The second task was to predict 

whether controls at F4 will develop incident DSPN during the period from F4 to 

FF4 (Fig. 1a).” 

 

- My original question was: what would happen if I trained a single model only on 

F4 features and data, froze it and used it to make predictions on the FF4 data set? 

Ideally, the prevalent DSPN model should have learned to weight features such 

that future DSPN cases within the the F4 controls would be scored higher. In my 

opinion, this should serve as the baseline to determine if molecular features are 

truly drivers of incident DSPN prediction. It is also possible the worse-performing 

model for prevalent DSPN (clinical + molecular features) may end up doing better 

on incident DSPN prediction, which is a stronger demonstration of predictive 

success. Essentially, any claims about biological or clinical utility of prediction 

models should account for situations in which such models would be deployed.  

 

Thank you for further clarifying your comment. Accordingly, we implemented this 

baseline model and added it to the manuscript: 

 

“Molecular data improves DSPN incidence prediction 

 

DSPN incidence prediction was strongly enhanced by integrating clinical and 

molecular data. In contrast to clinical baseline models (Supplemental Figure 

S13a,b), we observed a strong benefit in leveraging molecular modalities for 

predicting whether participants of the KORA F4 cohort will develop DSPN or not 

within the next 6.5±0.2 years (Fig. 3a,b; Supplemental Figure S13c). The 

baseline DSPN incidence model using clinical features alone achieved a median 

AUROC of 0.603 with an IQR of 0.543-0.676 and 95% CI of 0.588-0.624. This 

was significantly outperformed by adding either one or two additional molecular 

data modalities (Fig. 3a,b; Supp. Fig. S10b, S14), i.e. median AUROC of 0.678 

with an IQR of 0.612-0.752 and 95% CI of 0.652-0.692 and AUROC of 0.700 with 

IQR of 0.651-0.774 and 95% CI of 0.686-0.722, respectively (Wilcoxon rank sum 

test, p = 1.9e-16 and p = 2.9e-11, respectively). In essence, molecular features 

significantly enhanced DSPN incidence prediction.” 

 



                   
Supplemental Figure S13: Baseline models to predict DSPN incidence. Prediction 
probabilities during testing of negative samples using a) the prevalent DSPN model trained 
on clinical data alone at F4, b) baseline incidence model trained only on clinical variables at 
F4 and incidence label at FF4 and c) the full incidence model trained on clinical + molecular 
variables at F4 and incidence label at FF4. Cases are samples developing DSPN from F4 to 
FF4, and controls are ones remaining negative. 
 

- Predicting DSPN cases 6.3-6.7 years into the future implies that one does not even 

have access to even the DSPN labels from the future. If this concern can be 

addressed or the claim of future prediction toned down, I am comfortable with 

recommending the publication of this work. 

 

Thanks for this comment. We rigorously cross-validated our models according to state-

of-the-art machine learning practice. This ensured that DSPN incident labels remained 

unknown to the trained model, and ultimately is the basis of generalisability. To highlight 

this, we expanded the method section: 

 

“Fully multi-modal characterised samples were used for final model training. For 

prevalent DSPN prediction, this was 285 samples (31 cases and 254 controls), 

whilst for incident DSPN prediction, it was 242 samples (54 cases and 188 

controls). We created 100 stratified splits which leveraged 80% samples for 

feature integration / training, and the remaining 20% for model testing. We further 

partitioned the 80% training samples into stratified five folds for cross-validation. 

The cross-validation performance was used as a criterion for the FFS algorithm 

to select the optimal model. We never used any test data for neither model 

training nor tuning of model parameters.” 



REVIEWERS' COMMENTS: 

 

Reviewer #2 (Remarks to the Author): 

 

All my comments have been addressed. 

 

 

Reviewer #4 (Remarks to the Author): 

 

Thank you for inviƟng me to review this paper, developing a machine learning framework (IMML) for 
predicƟng DSPN, incorporaƟng mulƟmodal data types including clinical, genomic and proteomic data. 
Given the wealth of informaƟon available in many health datasets, methods of combining different 
modaliƟes of data are of growing interest, and this paper makes an important advance. 

 

Given the paper has been reviewed previously, I focus on the responses to the previous reviewers. The 
authors have saƟsfactorily addressed the comments from reviewer 2. Reviewer 3 in their first comment 
highlighted the different training tasks, one for prevalence in F4, and the other for predicƟng incidence 
between F4 and FF4. In changes to the manuscript, the authors have clarified this issue and the 
disƟncƟon between the two tasks is sufficiently clear. Reviewer 3’s second comment suggested use of 
the model trained on the F4 data should be used as a baseline to make predicƟons on the FF4 dataset. 
The authors have made changes to the secƟon ‘Molecular data improves DSPN incidence predicƟon’ and 
have added supplemental Figure S13c. In conjuncƟon with the clarificaƟon of the different tasks I believe 
they have saƟsfactorily addressed this point. I was unclear about the concern raised by reviewer 3’s final 
comment on ‘PredicƟng DSPN cases 6.3-6.7 years into the future…’, but believe this reflected a concern 
over whether future labels were used in the training – in the rebuƩal and revisions, the authors indicate 
this was not the case. 

 

Overall, I think the authors have adequately responded to the earlier reviewer comments. My only 
addiƟonal comments for the authors to consider are below: 

1. In Figure S13, what is “Cohen’d”? I presume this is Cohen’s d, but a descripƟon and interpretaƟon 
should be provided, e.g., in the figure capƟon, to guide the reader 

2. In Discussion, the authors highlight the advance in incorporaƟng mulƟmodal data sources. Further 
brief discussion on the clinical implicaƟons of using such a model in pracƟce now, rather than as a proof 
of concept, would be valuable. The AUROC values are relaƟvely low and suggest that its real world 
applicaƟon would be limited, without further development and refinement. 



 

 

 

Reviewer #5 (Remarks to the Author): 

 

Title: The Interpretable MulƟmodal Machine Learning (IMML) framework reveals pathological signatures 
of distal sensorimotor polyneuropathy 

 

 

Author: 

Prof. Menden and colleagues 

 

Pgs 230-234 

As recommended, the authors have included a clinical baseline model (s13 a, b) to determine if 
molecular features are truly drivers of incident DSPN predicƟon. 

 

Pgs 557-558 

In addiƟon, the authors have clarified, as requested, that the test data was set aside and not used for 
model training or parameter tuning to ensure the generalizability of the test findings, that could be 
applied to future test data sets. 

 



Reviewer #2 (Remarks to the Author): 

 

All my comments have been addressed. 

 

 

Reviewer #4 (Remarks to the Author): 

 

- Thank you for inviting me to review this paper, developing a machine learning 

framework (IMML) for predicting DSPN, incorporating multimodal data types 

including clinical, genomic and proteomic data. Given the wealth of information 

available in many health datasets, methods of combining different modalities of 

data are of growing interest, and this paper makes an important advance. 

 

We appreciate the positive evaluation of our work.  

 

- Given the paper has been reviewed previously, I focus on the responses to the 

previous reviewers. The authors have satisfactorily addressed the comments from 

reviewer 2. Reviewer 3 in their first comment highlighted the different training 

tasks, one for prevalence in F4, and the other for predicting incidence between F4 

and FF4. In changes to the manuscript, the authors have clarified this issue and 

the distinction between the two tasks is sufficiently clear. Reviewer 3’s second 

comment suggested use of the model trained on the F4 data should be used as a 

baseline to make predictions on the FF4 dataset. The authors have made changes 

to the section ‘Molecular data improves DSPN incidence prediction’ and have 

added supplemental Figure S13c. In conjunction with the clarification of the 

different tasks I believe they have satisfactorily addressed this point. I was 

unclear about the concern raised by reviewer 3’s final comment on ‘Predicting 

DSPN cases 6.3-6.7 years into the future…’, but believe this reflected a concern 

over whether future labels were used in the training – in the rebuttal and revisions, 

the authors indicate this was not the case. 

 

Thanks for assessing our revisions.  

 

- Overall, I think the authors have adequately responded to the earlier reviewer 

comments. My only additional comments for the authors to consider are below: 

1. In Figure S13, what is “Cohen’d”? I presume this is Cohen’s d, but a description 

and interpretation should be provided, e.g., in the figure caption, to guide the 

reader 

 

Thank you for your comment. Yes it was a typo, “Cohen’d” refers to “Cohen's d”, which 

was used in this context as a measure of effect size. We adjusted the figure, and the 

figure caption as below: 

 



Supplemental Figure S13: Baseline models to predict DSPN incidence. 

Prediction probabilities during testing of negative samples using a) the prevalent 

DSPN model trained on clinical data alone at F4, b) baseline incidence model 

trained only on clinical variables at F4 and incidence label at FF4 and c) the full 

incidence model trained on clinical + molecular variables at F4 and incidence 

label at FF4. Cases are samples developing DSPN from F4 to FF4, and 

controls are ones remaining negative. For each comparison, Cohen’s d was used 

as the measure of the difference between groups.  

 

- 2. In Discussion, the authors highlight the advance in incorporating multimodal 

data sources. Further brief discussion on the clinical implications of using such a 

model in practice now, rather than as a proof of concept, would be valuable. The 

AUROC values are relatively low and suggest that its real world application would 

be limited, without further development and refinement. 

 

Thank you for your comment. We adjusted the discussion part to discuss more about the 

clinical translation aspect of the model: 

 

Strikingly, our findings were observed in blood instead of biopsies containing 

neuronal cells which would be more tissue-specific for DSPN but are not 

accessible in large epidemiological cohort studies. Results of this study 

highlighted the utility of a less invasive blood-based assay to study complex 

diseases such as DSPN in clinical practice. Although the prediction performance 

could be improved further by increasing the quantity and quality of data collection 

and more advanced machine learning development, we believe that using such a 

model could both be valuable in clinical practice and for the design of future 

intervention studies. On the one hand, the early identification of people at 

elevated risk of DSPN could lead to an intensification of (pharmacological and 

non-pharmacological) risk factor treatment in these people. On the other hand, 

our model could be used for an enrichment of high-risk individuals in future 

intervention trials which could reduce required sample size and therefore the 

costs to assess novel prevention and treatment options. In the long run, our 

results indicate potentially actionable biomarkers that could be targeted by novel 

therapy concepts.    

 

Reviewer #5 (Remarks to the Author): 

 

Title: The Interpretable Multimodal Machine Learning (IMML) framework reveals 

pathological signatures of distal sensorimotor polyneuropathy 

 

 

Author: 

Prof. Menden and colleagues 

 



Pgs 230-234 

As recommended, the authors have included a clinical baseline model (s13 a, b) to 

determine if molecular features are truly drivers of incident DSPN prediction. 

 

Pgs 557-558 

In addition, the authors have clarified, as requested, that the test data was set aside and 

not used for model training or parameter tuning to ensure the generalizability of the test 

findings, that could be applied to future test data sets. 

 

Thanks for assessing our manuscript. 
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